Структура фотопреобразователя на основе кристаллического кремния и линия по его производству


 

H01L31/0747 - Полупроводниковые приборы, чувствительные к инфракрасному излучению, свету, электромагнитному, коротковолновому или корпускулярному излучению, предназначенные либо для преобразования энергии такого излучения в электрическую энергию, либо для управления электрической энергией с помощью такого излучения; способы или устройства, специально предназначенные для изготовления или обработки таких приборов или их частей; конструктивные элементы приборов (H01L 51/00 имеет преимущество; приборы, состоящие из нескольких компонентов на твердом теле, сформированных на общей подложке или внутри нее, кроме приборов, содержащих чувствительные к излучению компоненты, в комбинации с одним или несколькими электрическими источниками света H01L 27/00; кровельные покрытия с приспособлениями для размещения и использования устройств для накопления или концентрирования энергии E04D 13/18; получение тепловой энергии с

Владельцы патента RU 2632267:

Общество с ограниченной ответственностью "НТЦ тонкопленочных технологий в энергетике при ФТИ им. А.Ф. Иоффе", ООО "НТЦ ТПТ" (RU)

Изобретение относится к области полупроводниковых приборов, а именно к структуре фотопреобразователей на основе монокристаллического или поликристаллического кремния и к линии по производству фотопреобразователей. Структура фотопреобразователя на основе кристаллического кремния включает: текстурированную поликристаллическую или монокристаллическую пластину кремния; пассивирующий слой в виде аморфного гидрогенизированного кремния, нанесенный на каждую сторону пластины кремния; р-слой; n-слой; контактные токосъемные слои в виде прозрачных проводящих оксидов; тыльный токосъемный слой в виде металлического непрозрачного проводящего слоя, при этом в качестве р-слоя и n-слоя применяют металлические оксиды соответственно р-типа и n-типа, при этом слои n-типа и р-типа, пассивирующий и токосъемный слои наносятся методом магнетронного распыления. В качестве металлического оксида n-типа используют оксид цинка (ZnO), или SnO2, Fe2О3, ТiO2, V2O7, МnО2, CdO, или другие металлические оксиды n-типа. В качестве металлического оксида р-типа используют МоО, или СоО, Сu2О, NiO, Сr2О3, или другие металлические оксиды р-типа. Линия по производству фотопреобразователя на основе кристаллического кремния, включающая последовательные операции, такие как: очистку и текстурирование пластин кристаллического кремния; нанесение пассивирующего слоя аморфного гидрогенизированного кремния на каждую сторону пластины кремния; нанесение р-слоя фотопреобразователя; нанесение n-слоя фотопреобразователя; нанесение контактных токосъемных слоев фотопреобразователя; нанесение тыльного токосъемного слоя; окончательная сборка, при этом выполняют последовательное магнетронное напыление пассивирующего слоя, р-слоя в виде металлического оксида р-типа, n-слоя в виде металлического оксида n-типа и токосъемных слоев методом магнетронного распыления. При этом может осуществляться магнетронное распыление кремниевой мишени в атмосфере силана и аргона с добавлением водорода. Изобретение позволяет повысить производительность, уменьшить габариты производственной линии, исключить необходимость переворота пластин кремния в процессе производства. 2 н. и 3 з.п. ф-лы, 1 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к области полупроводниковых приборов, а именно к структуре фотопреобразователей на основе монокристаллического или поликристаллического кремния и к линии по производству фотопреобразователей.

Уровень техники

Среди возобновляемых источников энергии фотоэлектрическое преобразование солнечной энергии в настоящее время признано самым перспективным. Дальнейшее развитие солнечной энергетики требует постоянного совершенствования характеристик фотопреобразовательных устройств (солнечных элементов). Наиболее успешным направлением развития технологий повышения КПД солнечных элементов представляется использование гетеропереходов между аморфным гидрогенизированным и кристаллическим кремнием (a-Si:H/c-Si), которые обладают всеми преимуществами солнечных элементов на основе кристаллического кремния, но могут быть изготовлены при низких температурах, что позволяет существенно снизить стоимость изготовления солнечных элементов на основе гетеропереходов.

В настоящее время для пассивации поверхности кремниевых пластин при производстве солнечных модулей на основе гетероперехода (HJT технологии) используется метод плазмохимического осаждения из газовой фазы. Данный метод подразумевает осаждение пленки аморфного гидрогенизированного кремния путем разложения силана, разбавленного водородом, в высокочастотной плазме тлеющего разряда. При этом особенности процесса и конструкции реактора исключают возможность использования конвейерной линии и требуют переворота пластин для пассивации каждой стороны. Данные ограничения замедляют процесс производства и вызывают необходимость применения дополнительного оборудования, такого как переворотчик пластин.

Из уровня техники известен солнечный элемент, описанный в заявке РСТ (см. [1] WO 2014148443 (А1), МПК H01L 31/0236, опубл. 25.09.2014), содержащий монокристаллическую подложку кремния, текстурированную с двух сторон, на которые нанесен слой аморфного кремния толщиной 2-3 нм, на одном из слоев аморфного кремния нанесен слой легированного аморфного кремния р-типа толщиной 10-30 нм, а на другом слое аморфного кремния нанесен слой легированного аморфного кремния n-типа толщиной 10-30 нм.

Известен способ получения фотоэлектрического элемента с нанесением пассивационного слоя методом PECVD процесса (см. [2] патент США №5935344, МПК H01L 31/04, опубл, 10.08.1999), однако недостатком такого нанесения является низкая производительность и необходимость переворота пластин для нанесения пассивационного покрытия с каждой стороны, а в случае применения реакторов большой площади необходимо применение дополнительных приспособлений, таких как держатели подложек.

Также из уровня техники известен солнечный элемент, описанный в заявке США (см. [3] US 2015090317, МПК H01L 27/142, H01L 31/0224, опубл. 02.04.2015), содержащий фотоэлектрический преобразователь в виде пластины кристаллического кремния, покрытый проводящими слоями в виде аморфного кремния. В общем, заявка описывает HIT технологию с получением слоев p-i-n и n-i-p типа, при этом слои n- и р-типа получают PECVD методом. Недостатком аналога является ограниченный спектр материалов, который возможно получить PECVD технологией нанесения n-слоя.

Известны способы формирования и получения кремниевых тонкопленочных модулей солнечного элемента (см. [4] патент РФ №2454751, МПК H01L 31/042, опубл. 27.06.2012, [3] патент РФ №2435874, МПК H01L 31/18, опубл. 10.12.2011), включающие использования горелки с высокочастотной индуктивно-связанной плазмой с индукционной катушкой, введение плазменного газа, выбранного из группы, состоящей из гелия, неона, аргона, водорода и их смесей, в упомянутую горелку с высокочастотной индуктивно-связанной плазмой для формирования плазмы внутри упомянутой катушки, впрыскивание химического реагента, например, состоящего из SiCl4, SiH4, SiHCl3, SiF4 соединений, содержащих кремний, в упомянутую горелку, и осаждение тонкопленочного слоя на поверхность кремниевой подложки при помощи горелки. Индуктивно-связанная плазма позволяет получить слои p-i-n и n-i-p типа.

Недостатком известного решения является использование атмосферного давления, что может затруднить получение пассивирующих слоев. При использовании горелки подразумевается наличие факела (его температура будет выше 200°С), что приведет к созданию дефектов на поверхности пластины.

Сущность изобретения

Задачей заявленной группы изобретений является применение металлических оксидов в качестве n- и р-слоя солнечного модуля на основе кристаллического кремния.

Техническим результатом является повышение производительности, уменьшение габаритов производственной линии, исключение необходимости переворота пластин кремния в процессе производства.

Для решения поставленной задачи и достижения заявленного результата предлагается структура фотопреобразователя на основе кристаллического кремния и линия по его производству.

Структура фотопреобразователя на основе кристаллического кремния включает: текстурированную поликристаллическую или монокристаллическую пластину кремния; пассивирующий слой в виде аморфного гидрогенизированного кремния, нанесенный на каждую сторону пластины кремния; р-слой; n-слой; контактные токосъемные слои в виде прозрачных проводящих оксидов; тыльный токосъемный слой в виде металлического непрозрачного проводящего слоя, при этом в качестве р-слоя и n-слоя применяют металлические оксиды соответственно р-типа и n-типа, при этом слои n-типа и р-типа, пассивирующий и токосъемный слои наносятся методом магнетронного распыления. В качестве металлического оксида n-типа используют оксид цинка (ZnO), или SnO2, Fe2O3, TiO2, V2O7, MnO2, CdO, или другие металлические оксиды n-типа. В качестве металлического оксида р-типа используют МоО, или СоО, Сu2О, NiO, Сr2О3, или другие металлические оксиды р-типа.

Линия по производству фотопреобразователя на основе кристаллического кремния, включающая последовательные операции, такие как: очистку и текстурирование пластин кристаллического кремния; нанесение пассивирующего слоя аморфного гидрогенизированного кремния на каждую сторону пластины кремния; нанесение р-слоя фотопреобразователя; нанесение n-слоя фотопреобразователя; нанесение контактных токосъемных слоев фотопреобразователя; нанесение тыльного токосъемного слоя; окончательная сборка, при этом выполняют последовательное магнетронное напыление пассивирующего слоя, р-слоя в виде металлического оксида р-типа, n-слоя в виде металлического оксида n-типа и токосъемных слоев методом магнетронного распыления. При этом может осуществляться магнетронное распыление кремниевой мишени в атмосфере силана и аргона с добавлением водорода. Ключевыми отличиями заявленного решения от аналогов является:

1. Исключение из технологической цепочки CVD методов (включая PECVD и LPCVD) и использование магнетронного распыления для получения всех слоев структуры (пассивирующего, р-слоя, n-слоя, токосьемных слоев). В связи с этим появляется возможность уменьшения габаритов производственной линии и повышения производительности.

2. Использование для получения пассивирующего слоя аморфного гидрогенизированного кремния метода магнетронного распыления.

3. Использование оксидов металлов для создания n- и р-слоев структуры фотопреобразователя.

Краткое описание чертежей

Фиг. 1 - Технический процесс изготовления фотопреобразователя на основе кристаллического кремния.

Осуществление изобретения

Техническое решение представляет собой технологическую линейку, основанную на последовательном магнетронном напылении слоев, для изготовления фотопреобразователей на основе кристаллического кремния.

Линия по производству структуры фотопреобразователя на основе кристаллического кремния включает в себя подготовительные процессы, напыление пассивационных слоев, напыление р-слоя структуры фотопреобразователя, напыление n-слоя структуры фотопреобразователя, напыление контактных слоев фотопреобразователя, окончательную сборку фотопреобразователя.

В качестве исходных кремниевых кристаллических пластин кремния могут использоваться поликристаллические или монокристаллические пластины, полученные методом Чохральского, методом зонной плавки или другим методом.

Этап подготовительных процессов является стандартным процессом, содержащим очистку и текстурирование пластин кристаллического кремния, и может быть реализован различными способами, включая плазменные, химические и прочие процессы очистки и травления. Далее выполняют нанесение пассивирующего слоя аморфного гидрогенизированного кремния путем магнетронного распыления кремниевой мишени в атмосфере аргона с добавлением водорода и (или) силана, или других кремнийорганических соединений. Данная процедура в процессе производства фотопреобразователей на основе кристаллического кремния необходима для повышения времени жизни носителей заряда в пластине кремния. Затем производят нанесение р-слоя фотопреобразователя на основе металлического оксида р-типа методом магнетронного распыления. Данный этап необходим для формирования в объеме фотопреобразователя встроенного поля, служащего для разделения фотоиндуцированных носителей заряда и генерации фототока. В качестве металлического оксида р-типа используют МоО, или СоО, или Сu2О, или NiO, или Сr2О3, или другие металлические оксиды р-типа. Следом выполняют нанесение n-слоя фотопреобразователя на основе металлического оксида n-типа методом магнетронного распыления. Данный этап необходим для формирования в объеме фотопреобразователя встроенного поля, служащего для разделения фотоиндуцированных носителей заряда и генерации фототока. В качестве металлического оксида n-типа используют оксид цинка (ZnO), или SnО2, или Fe2О3, или ТiO2, или V2O7, или МnО2, или CdO, или другие металлические оксиды n-типа. Затем производят нанесение контактных токосъемных слоев фотопреобразователя также методом магнетронного распыления. Данный этап является стандартной процедурой, необходимой для эффективного токосъема с изготовленного фотопреобразователя. Как правило, используются прозрачные оксиды металлов, такие как оксид олова или индий-оловянный оксид (ITO). Также в качестве тыльного токосъема могут применяться металлические слои, играющие так же роль отражателя.

Этап окончательной сборки также является стандартным процессом и, в значительной, мере варьируется. Для снижения контактного сопротивления может использоваться сетка, нанесенная с помощью трафаретной печати или другим способом. Также контактные шины могут быть изготовлены по различным технологиям. Окончательная сборка может производиться по различным технологиям, с применением различных способов коммутации и капсуляции.

Отличительной чертой данного изобретения от аналогов является совокупное применение в процессе нанесения слоев на этапах пассивации, нанесения р- и n-слоев и нанесения токосъемных слоев исключительно магнетронного напыления. Данное техническое решение позволяет повысить производительность процесса производства фотопреобразователей на основе кристаллического кремния, за счет:

1. Сокращение технологического процесса и исключение этапа переворота пластин, необходимого при PECVD процессе осаждения.

2. Возможность применение конвейерной системы.

3. Высокая технологичность процессов магнетронного осаждения.

Стоит также отметить, что данная технологическая цепочка не требует высокотоксичных газов, таких как фосфин или диборан, необходимых при формировании структуры методом PECVD осаждения.

Структура фотопреобразователя на основе кристаллического кремния, полученная по вышеописанной линии, представляет из себя текстурированную поликристаллическую или монокристаллическую пластину кремния, которая со всех сторон пассивирована слоем в виде аморфного гидрогенизированного кремния. На верхнюю сторону пластины нанесен р-слой в виде металлического слоя р-типа. На нижнюю сторону пластины нанесен n-слой в виде металлического оксида n-типа. Поверх n- и р-слоев нанесены контактные токосъемные слои в виде прозрачных проводящих оксидов. С тыльной стороны нанесен тыльный токосъемный слой в виде металлического непрозрачного проводящего слоя. Причем слои n-типа и р-типа, пассивирующий и токосъемный слои наносятся методом магнетронного распыления.

1. Структура фотопреобразователя на основе кристаллического кремния, включающая:

- текстурированную поликристаллическую или монокристаллическую пластину кремния;

- пассивирующий слой в виде аморфного гидрогенизированного кремния, нанесенный на каждую сторону пластины кремния;

- p-слой;

- n-слой;

- контактные токосъемные слои в виде прозрачных проводящих оксидов;

- тыльный токосъемный слой в виде металлического непрозрачного проводящего слоя,

отличающаяся тем, что

в качестве p-слоя и n-слоя применяют металлические оксиды соответственно p-типа и n-типа, при этом слои n-типа и p-типа, пассивирующий и токосъемные слои наносятся методом магнетронного распыления.

2. Структура по п. 1, отличающаяся тем, что в качестве металлического оксида n-типа используют оксид цинка (ZnO), или SnO2, Fe2O3, TiO2, V2O7, MnO2, CdO, или другие металлические оксиды n-типа.

3. Структура по п. 1, отличающаяся тем, что в качестве металлического оксида p-типа используют MoO, или CoO, Cu2O, NiO, Cr2O3, или другие металлические оксиды p-типа.

4. Линия по производству фотопреобразователя на основе кристаллического кремния, включающая последовательные операции:

- очистка и текстурирование пластин кристаллического кремния,

- нанесение пассивирующего слоя аморфного гидрогенизированного кремния на каждую сторону пластины кремния,

- нанесение p-слоя фотопреобразователя,

- нанесение n-слоя фотопреобразователя,

- нанесение контактных токосъемных слоев фотопреобразователя,

- нанесение тыльного токосъемного слоя,

- окончательная сборка,

отличающаяся тем, что

выполняют последовательное магнетронное напыление пассивирующего слоя, p-слоя в виде металлического оксида p-типа, n-слоя в виде металлического оксида n-типа и токосъемных слоев методом магнетронного распыления.

5. Линия по п. 4, отличающаяся тем, что выполняют последовательное магнетронное напыление пассивирующего, p-типа и n-типа слоев методом магнетронного распыления кремниевой мишени в атмосфере силана и аргона с добавлением водорода.



 

Похожие патенты:

Изобретение относится к способу изготовления многоэлементных или матричных фотоприемников на основе антимонида индия. Многоэлементный фотоприемник на основе антимонида индия включает матрицу фоточувствительных элементов (МФЧЭ) с антиотражающим покрытием на освещаемой стороне фоточувствительных элементов (ФЧЭ), соединенных микроконтактами со схемой считывания.

Согласно изобретению предложен способ изготовления солнечных батарей, содержащий этапы формирования пленки SiNx поверх второй главной поверхности полупроводниковой подложки n-типа; формирования диффузионного слоя p-типа поверх первой главной поверхности полупроводниковой подложки n-типа после стадии формирования пленки SiNx; и формирования поверх диффузионного слоя p-типа пассивирующей пленки, состоящей из пленки SiO2 или пленки оксида алюминия.

Изобретение относится к способам получения тройных нано-гетероструктур из полупроводниковых материалов, характеризующихся различной шириной запрещенной зоны, и может быть использовано при разработке фотокатализаторов на основе нано-гетероструктурных материалов в фотоэлектрохимических и фотокаталитических устройствах для получения чистого водорода и кислорода, синтеза органических молекул.

Изобретение относится к способам коммутации ячеек фотоэлектрических преобразователей на основе кристаллического кремния, в частности к способу контактирования контактных шин к пластинам фотоэлектрических преобразователей с применением адгезивов и ультразвуковой пайки.

Изобретение относится к области оптоэлектронной техники и может быть использовано для создания переизлучающих текстурированных покрытий для использования в тонкопленочных солнечных элементах.

Изобретение относится к технологии сборки гибридных матричных фотоприемных устройств (МФПУ). Одной из основных операций при изготовлении МФПУ является сборка кристаллов в корпус с последующим соединением контактных площадок кристалла БИС с внешними выводами корпуса МФПУ.

Изобретения могут быть использованы для формирователя сигналов изображения в инфракрасной области спектра. Гетероструктурный диод с p-n-переходом содержит подложку на основе HgCdTe, главным образом n-легированную, причем упомянутая подложка содержит первую часть (4), имеющую первую концентрацию кадмия, вторую часть (11), имеющую вторую концентрацию кадмия больше, чем первая концентрация кадмия, причем вторая часть(11) образует гетероструктуру с первой частью (4), р+-легированную зону (9) или р-легированную зону, расположенную в концентрированной части (11) и продолжающуюся в первую часть (4) и образующую p-n-переход (10) с n-легированным участком первой части (4), называемым базовой подложкой (1), при этом концентрированная часть (11) расположена только в р+-легированной зоне (9) и образует карман (12) по существу с постоянной концентрацией кадмия.

Изобретение может быть использовано в современных системах дальнометрии, управления неподвижными и движущимися объектами, зондирования облачности, контроля рельефа местности и т.д.

Изобретение относится к области полупроводникового материаловедения, а именно – к технологии получения тонких фоточувствительных пленок селенида свинца, широко используемых в изделиях оптоэлектроники в ИК-диапазоне 1-5 мкм, лазерной и сенсорной технике.
Изобретение относится к электронной технике, в частности к способам создания наногетероструктур для фотопреобразующих и светоизлучающих устройств. Способ изготовления наногетероструктуры со сверхрешеткой включает выращивание на подложке GaSb газофазной эпитаксией из металлоорганических соединений в потоке водорода сверхрешетки, состоящей из чередующихся слоев GaSb и InAs.

Изобретение относится к области полупроводниковых приборов, а именно к изготовлению активных слоев солнечных модулей на основе монокристаллического или поликристаллического кремния.

Изобретение относится к области преобразования солнечной энергии в электрическую в тонкопленочных полупроводниковых солнечных элементах. Способ контроля структурного качества тонких пленок для светопоглощающих слоев солнечных элементов заключается в том, что регистрируют излучение пленок при импульсном лазерном возбуждении, при этом уровень возбуждения устанавливают в диапазоне 10-200 кВт/см2 для возникновения стимулированного излучения с полушириной спектра Δλ~10 нм, и сравнивают интенсивности и полуширины спектров стимулированного излучения для определения относительного структурного качества пленок.

Изобретение относится к измерительной технике и может быть использовано для дистанционного беспроводного измерения различных физических величин, в частности температуры, давления, перемещения, магнитной индукции, ультрафиолетового излучения, концентрации газов и др., с помощью датчиков на поверхностных акустических волнах (ПАВ) при их облучении радиоимпульсами.

Многопереходный солнечный элемент для космической радиационной среды, причем многопереходный солнечный элемент имеет множество солнечных субэлементов, расположенных в порядке убывания запрещенной зоны, включающее в себя: первый солнечный субэлемент, состоящий из InGaP и имеющий первую запрещенную зону, причем первый солнечный субэлемент имеет первый ток короткого замыкания, связанный с ним; второй солнечный субэлемент, состоящий из GaAs и имеющий вторую запрещенную зону, которая имеет ширину, меньшую, чем первая запрещенная зона, причем второй солнечный субэлемент имеет второй ток короткого замыкания, связанный с ним; при этом в начале срока службы первый ток короткого замыкания меньше, чем второй ток короткого замыкания, так что эффективность AM0 преобразования является субоптимальной.

Согласно изобретению предложена эффективная солнечная батарея, выполненная многопереходной с защитным диодом, причем у многопереходной солнечной батареи и структуры защитного диода имеется общая тыльная поверхность и разделенные меза-канавкой фронтальные стороны, общая тыльная поверхность включает в себя электропроводящий слой, многопереходная солнечная батарея включает в себя стопу из нескольких солнечных батарей и имеет расположенную ближе всего к фронтальной стороне верхнюю солнечную батарею и расположенную ближе всего к тыльной стороне нижнюю солнечную батарею, каждая солнечная батарея включает в себя np-переход, между соседними солнечными батареями размещены туннельные диоды, количество слоев полупроводника у структуры защитного диода меньше, чем количество слоев полупроводника у многопереходной солнечной батареи, последовательность слоев полупроводника у структуры защитного диода идентична последовательности слоев полупроводника многопереходной солнечной батареи, причем в структуре защитного диода выполнен по меньшей мере один верхний защитный диод и один расположенный ближе всего к тыльной стороне нижний защитный диод, а между соседними защитными диодами размещен туннельный диод, количество np-переходов в структуре защитного диода по меньшей мере на один меньше, чем количество np-переходов многопереходной солнечной батареи, на передней стороне многопереходной солнечной батареи и структуры защитного диода выполнена структура соединительного контакта, содержащая один или несколько слоев металла, а под структурой соединительного контакта выполнен состоящий из нескольких слоев полупроводника электропроводящий контактный слой, и эти несколько слоев полупроводника включают в себя туннельный диод.

Заявленное изобретение относится к технике преобразования световой энергии в электрическую и предназначено для преобразования световой энергии в электрическую. Заявленная оптопара содержит излучатель, фотоприемный элемент, закрепленные на корпусе, причем в качестве излучателя света использована шаровая лампа, в качестве фотоприемного элемента использована батарея солнечных элементов, корпус выполнен в виде трубы из диэлектрического материала, на внешней боковой поверхности которого имеются распределители потенциала.

Штабелевидная интегрированная многопереходная солнечная батарея с первым элементом батареи, причем первый элемент батареи включает в себя слой из соединения InGaP с первой константой решетки и первой энергией запрещенной зоны, а толщина слоя превышает 100 нм, и слой выполнен как часть эмиттера, и/или как часть базы, и/или как часть расположенной между эмиттером и базой области объемного заряда, и вторым элементом батареи, причем второй элемент батареи включает в себя слой из соединения InmРn со второй константой решетки и второй энергией запрещенной зоны, а толщина слоя превышает 100 нм, и слой выполнен как часть эмиттера, и/или как часть базы, и/или как часть расположенной между эмиттером и базой области объемного заряда, и третьим элементом батареи, причем третий элемент батареи включает в себя слой из соединения InxGa1-xAs1-yPy с третьей константой решетки и третьей энергией запрещенной зоны, а толщина слоя превышает 100 нм, и слой выполнен как часть эмиттера, и/или как часть базы, и/или как часть расположенной между эмиттером и базой области объемного заряда, и четвертым элементом батареи, причем четвертый элемент батареи включает в себя слой из соединения InGaAs с четвертой константой решетки и четвертой энергией запрещенной зоны, а толщина слоя превышает 100 нм, и слой выполнен как часть эмиттера, и/или как часть базы, и/или как часть расположенной между эмиттером и базой области объемного заряда, причем для значений энергии запрещенной зоны справедливо соотношение Eg1>Eg2>Eg3>Eg4, и между двумя элементами батареи сформирована область сращения плат.

Солнечный концентраторный модуль (1) содержит боковые стенки (2), фронтальную панель (3) с линзами (4) Френеля на внутренней стороне фронтальной панели (3), тыльную панель (9) с фоконами (6) и солнечные элементы (7), снабженные теплоотводящими основаниями (8).

Изобретение относится к полупроводниковой электронике и может быть использовано для создания солнечных элементов. Метаморфный фотопреобразователь включает подложку (1) из GaAs, метаморфный буферный слой (2) и по меньшей мере один фотоактивный p-n-переход (3), выполненный из InGaAs и включающий базовый слой (4) и эмиттерный слой (5), слой (6) широкозонного окна из In(AlxGa1-x)As, где x=0,2-0,5, и контактный субслой (7) из InGaAs.

Изобретение относится к области электротехники, а именно к устройству каскадной солнечной батареи. Каскадная солнечная батарея выполнена с первой полупроводниковой солнечной батареей, причем в первой полупроводниковой солнечной батарее имеется р-n переход из первого материала с первой константой решетки, и со второй полупроводниковой солнечной батареей, причем во второй полупроводниковой солнечной батарее имеется р-n переход из второго материала со второй константой решетки, и причем первая константа решетки меньше, чем вторая константа решетки, и у каскадной солнечной батареи имеется метаморфный буфер, причем метаморфный буфер включает в себя последовательность из первого, нижнего слоя AlInGaAs или AlInGaP, и второго, среднего слоя AlInGaAs или AlInGaP, и третьего, верхнего слоя AlInGaAs или AlInGaP, и метаморфный буфер сформирован между первой полупроводниковой солнечной батареей и второй полупроводниковой солнечной батареей, и константа решетки метаморфного буфера изменяется по толщине (по координате толщины) метаморфного буфера, и причем между по меньшей мере двумя слоями метаморфного буфера константа решетки и содержание индия увеличивается, а содержание алюминия уменьшается.

Изобретение относится к полупроводниковой технике, а именно к фотоэлектрическим преобразователям (ФП) для прямого преобразования солнечной энергии в электрическую энергию.
Наверх