Катализатор термокаталитической переработки тяжелого и остаточного углеводородного сырья

Изобретение относится к нефтехимической промышленности, а именно к области производства гетерогенных катализаторов процесса переработки нефтесодержащих отходов и тяжелых нефтяных остатков (мазута, гудрона, смолисто-асфальтеновой фракции нефти, битума, тяжелой нефти), содержащих цеолит, и может быть с успехом реализовано на предприятиях нефтехимической и нефтедобывающей промышленности для повышения глубины переработки нефти и получения высококачественных жидких и газообразных топливных продуктов. Катализатор термокаталитической переработки тяжелого и остаточного углеводородного сырья включает цеолит HZSM-5 и бентонитовую глину. Согласно изобретению катализатор получен смешением компонентов при следующем соотношении компонентов, мас.%:

цеолит HZSM-5 30-40 бентонитовая глина 40-50 карбонат кальция 18-22 хлорид металла подгруппы железа 1.8-2.2

с последующим отжигом полученной смеси. Кроме того, в качестве хлорида металла подгруппы железа используют хлорид никеля, или железа, или кобальта. Технический результат изобретения - повышение активности и стабильности катализатора и селективности процесса в переработке тяжелого и остаточного углеводородного сырья, а также возможность регенерации и снижение потерь катализатора при производстве, хранении и применении. 1 з.п. ф-лы, 2 табл., 24 пр.

 

Изобретение относится к нефтехимической промышленности, а именно к области производства гетерогенных катализаторов процесса переработки нефтесодержащих отходов и тяжелых нефтяных остатков (мазута, гудрона, смолисто-асфальтеновой фракции нефти, битума, тяжелой нефти), содержащих цеолит, и может быть с успехом реализовано на предприятиях нефтехимической и нефтедобывающей промышленности для повышения глубины переработки нефти и получения высококачественных жидких и газообразных топливных продуктов.

Известны гетерогенные каталитические системы, предназначенные для процесса пиролиза (Пиролиз углеводородного сырья в присутствии катализаторов. / Мухина Т.Н., Черных С.П., Беренц А.Д. и др. М.: ЦНИИТЭнефтехим, 1978. - 72 с.). В качестве активных компонентов каталитических систем использовались оксиды металлов переменной валентности, таких как ванадия, индия, марганца, железа, хрома, молибдена; оксиды и алюминаты щелочных и щелочно-земельных металлов, преимущественно кальция и магния и редкоземельных элементов; кристаллические и аморфные алюмосиликаты. В качестве носителей использовали пемзу, различные модификации оксида алюминия или циркония, некоторые алюмосиликаты.

Общими недостатками данных каталитических систем являлись высокая стоимость модификаторов, трудоемкость приготовления, недостаточная продолжительность межрегенерационной работы, а также низкая активность и селективность в переработке углеводородного сырья.

Алюмосиликаты, в частности цеолиты, широко применяются в нефтехимической промышленности и в переработке нефти и относятся к третьему классу катализаторов (катализаторы, содержащие цеолиты). В последнее время в катализаторы на основе цеолитов вносятся различные добавки для повышения качества получаемых топливных продуктов (патентные документы CN 1103105A; CN 1057408А; CN 1099788А; CN 1145396А; CN 1354224А; CN 1504541 A; CN 1566275A; US 5006497; US 5055176).

Общим недостатком этих катализаторов является их недостаточная активность и селективность в переработке тяжелого и остаточного углеводородного сырья в низшие углеводороды, а также трудность полной регенерации катализаторов.

Известен также катализатор для пиролиза низкомолекулярных углеводородных фракций (RU, №2343975; B01J 29/40; B01J 37/02; 20.01.2009), включающий в качестве основы катализатора цеолит семейства пентасил с силикатным модулем SiO2/Al2O3=20-80, одновременно модифицированный хромом и фтором, при следующем содержании компонентов, мас.%: цеолит 55-80; оксида хрома 1-6,75; фторида водорода 1-5,8; связующий компонент (γ-Al2O3) - остальное.

Недостатком этого катализатора является его недостаточная активность и селективность в переработке тяжелого и остаточного углеводородного сырья в низшие углеводороды.

Наиболее близким к предлагаемому катализатору является катализатор конверсии углеводородов (RU, №2409422, C10G 11/05; B01J 29/076; B01J 29/072; 20.01.2011), содержащий (от общего веса катализатора): 1-60 вес.% смеси цеолитов, 5-99 вес.% термостойкого неорганического оксида и 0-70 вес.% глины, причем смесь цеолитов содержит (от общего веса смеси): 1-75 вес.% бета-цеолита, модифицированного фосфором и переходным металлом М, 25-99 вес.% цеолита с MFI-структурой и 0-74 вес.% цеолита с крупными порами, причем безводный химический состав бета-цеолита, модифицированного фосфором и переходным металлом М, имеет следующий вид: (0-0,3)Na2O⋅(0,5-10)Al2O3⋅(1,3-10)P2O5⋅(0,7-15)MxOy⋅(64-97)SiO2 (в скобках указаны массовые проценты оксидов), где переходный металл М - это один или несколько металлов, выбранных из группы, состоящей из Fe, Со, Ni, Cu, Mn, Zn и Sn, х - число атомов переходного металла М и y - число, при котором обеспечивается валентность, соответствующая степени окисления переходного металла М.

Недостатками катализатора являются его недостаточная активность и селективность в переработке тяжелого и остаточного углеводородного сырья в низшие углеводороды, сложность и неоднородность его структуры из-за использования смеси различных цеолитов и малая пористость катализатора, что существенно снижает его каталитическую активность, особенно в переработке тяжелых углеводородов.

Задачей, решаемой при создании изобретения, является создание прочного эффективного регенерируемого катализатора с высокой активностью в реакции термокаталитической переработки тяжелого и остаточного углеводородного сырья.

Технический результат изобретения - повышение активности и стабильности катализатора и селективности процесса в переработки тяжелого и остаточного углеводородного сырья, а также возможность регенерации и снижение потерь катализатора при производстве, хранении и применении.

Поставленная задача и заявленный технический результат достигаются тем, что катализатор термокаталитической переработки тяжелого и остаточного углеводородного сырья включает цеолит HZSM-5 и бентонитовую глину. Согласно изобретению катализатор дополнительно содержит карбонат кальция и хлорид металла подгруппы железа при следующем соотношении компонентов, мас.%:

цеолит HZSM-5 30-40
бентонитовая глина 40-50
карбонат кальция 18-22
хлорид металла подгруппы железа 1.8-2.2

При этом в качестве хлорида металла подгруппы железа используют хлорид никеля, или железа, или кобальта.

Предлагаемый катализатор обладает:

- повышенной активностью и стабильностью в термокаталитической переработке тяжелого и остаточного углеводородного сырья;

- термостабильностью при температуре до 900°С;

- возможностью практически полной регенерации.

Цеолит HSZM-5 необходим в качестве твердой пористой основы для катализатора, кроме того, он обладает высокой каталитической активностью по отношению к тяжелым и остаточным углеводородам. Его содержание больше 40 мас.% существенно снижает образование жидких и газообразных продуктов переработки тяжелого и остаточного углеводородного сырья, снижает низшую объемную теплоту сгорания газовой смеси и увеличивает коксообразование, а уменьшение его менее 30 мас.% затрудняет формирование прочных гранул диаметром 2-3 мм, что также снижает его каталитическую активность за счет уменьшения количества получаемых жидких и газообразных продуктов переработки тяжелого и остаточного углеводородного сырья и снижения низшей объемной теплоты сгорания газовой смеси, а также затрудняет его регенерацию (после каждой регенерации теряется до 20 мас.% катализатора).

Бентонитовая глина необходима для придания прочной структуры гранулам катализатора и используется в качестве структурирующего компонента. Увеличение ее содержания больше 50 мас.% существенно снижает прочность образующихся гранул катализатора диаметром 2-3 мм, снижает образование жидких и газообразных продуктов переработки тяжелого и остаточного углеводородного сырья и низшую объемную теплоту сгорания газовой смеси, а уменьшение ее менее 40 мас.% также снижает активность катализатора за счет уменьшения количества получаемых жидких и газообразных продуктов переработки тяжелого и остаточного углеводородного сырья, снижает низшую объемную теплоту сгорания газовой смеси и увеличивает коксообразование.

Карбонат кальция необходим для придания гранулам катализатора пористости за счет выделения газообразного углекислого газа при взаимодействии карбоната кальция с бентонитовой глиной и цеолитом HZSM-5, создающего в гранулах катализатора устойчивую структурированную систему взаимосвязанных пор, а также для упрочнения гранул катализатора за счет образования соединений кальция. Содержание карбоната кальция в катализаторе больше 22 мас.% существенно снижает прочность образующихся гранул катализатора диаметром 2-3 мм за счет значительного увеличения пористости, а уменьшение его менее 18 мас.% значительно снижает пористость гранул, что также снижает активность катализатора за счет уменьшения количества получаемых жидких и газообразных продуктов переработки тяжелого и остаточного углеводородного сырья и снижения низшей объемной теплоты сгорания газовой смеси.

Хлориды никеля, железа или кобальта необходимы для повышения конверсии тяжелого и остаточного углеводородного сырья в низшие углеводороды (прежде всего - C1-C4), обладающие наивысшей ценностью с точки зрения получения жидких и газообразных топлив. Содержание хлоридов никеля, железа или кобальта в катализаторе менее 2,2 мас.% существенно снижает количество получаемых жидких и газообразных продуктов переработки тяжелого и остаточного углеводородного сырья и низшую объемную теплоту сгорания газовой смеси, а увеличение его более 2,2 мас.% не приводит к дальнейшему увеличению количества получаемых жидких и газообразных продуктов переработки тяжелого и остаточного углеводородного сырья и низшей объемной теплоты сгорания газовой смеси, при этом существенно удорожает катализатор.

Катализатор готовят следующим образом.

Пример 1

Для приготовления катализатора использовали следующее соотношение компонентов, мас.%: цеолит HZSM-5 - 33; бентонитовая глина - 45; карбонат кальция - 20; хлорид кобальта - 2%.

Компоненты смешивали до однородной массы, далее проводили пропитку полученной смеси 100 мл 2%-ным раствором хлорида кобальта и фильтровали полученную смесь. После этого осуществляли гранулирование смеси на тарельчатом грануляторе для придания формы гранул и фракционирование с отделением фракции от 2 до 3 мм. Гранулирование катализатора на тарельчатом грануляторе позволило увеличить однородность состава и свойств катализатора. При отсутствии гранулирования катализатора он обладает неоднородным составом как по размеру и форме частиц, так и по соотношению компонентов в отдельных частицах, что существенно снижает его каталитическую активность в переработке тяжелого и остаточного углеводородного сырья.

Далее катализатор отжигают в муфельной печи при температуре 900°С в течение 30 минут, после чего хранят до использования. Отжиг катализатора необходим для удаления влаги и повышения стабильности катализатора.

После использования в процессе термокаталитической переработки тяжелого и остаточного углеводородного сырья катализатор может быть регенерирован методом окислительной регенерации в муфельной печи при температуре в 700°С в течение 30 минут и повторно использован в процессе переработки тяжелого и остаточного углеводородного сырья. Регенерация катализатора необходима для выжига продуктов коксоотложения и повторного использования с практически полным сохранением начальной активности и стабильности в процессе переработки тяжелого и остаточного углеводородного сырья.

В проведенных экспериментах была исследована активность предлагаемого катализатора в процессе термокаталитической переработки тяжелого и остаточного углеводородного сырья на примере мазута М-100 с различными соотношениями компонентов катализатора, а также при различных условиях отжига катализатора и его регенерации.

Эксперименты по исследованию активности катализаторов проводились на лабораторной установке термокаталитической переработки тяжелых и остаточных углеводородов. Условия проведения экспериментов: содержание катализатора - 10 мас.%. от массы мазута М-100; температура процесса термодеструкции тяжелого и остаточного углеводородного сырья - 600°С; время пребывания сырья в рабочей зоне реактора - 30 секунд.

Пример 2

Для приготовления катализатора использовали следующее соотношение компонентов, мас.%: цеолит HZSM-5 - 33; бентонитовая глина - 45; карбонат кальция - 20; хлорид железа - 2%.

Термодеструкцию мазута М-100 проводили согласно методике, описанной в примере 1.

Пример 3

Для приготовления катализатора использовали следующее соотношение компонентов, мас.%: цеолит HZSM-5 - 33; бентонитовая глина - 45; карбонат кальция - 20; хлорид никеля - 2%.

Термодеструкцию мазута М-100 проводили согласно методике, описанной в примере 1.

Пример 4

Для приготовления катализатора использовали следующее соотношение компонентов, мас.%: цеолит HZSM-5 - 29; бентонитовая глина - 49; карбонат кальция - 20; хлорид кобальта - 2%.

Термодеструкцию мазута М-100 проводили согласно методике, описанной в примере 1.

Пример 5

Для приготовления катализатора использовали следующее соотношение компонентов, мас.%: цеолит HZSM-5 - 39; бентонитовая глина - 39; карбонат кальция - 20; хлорид кобальта - 2%.

Термодеструкцию мазута М-100 проводили согласно методике, описанной в примере 1.

Пример 6

Для приготовления катализатора использовали следующее соотношение компонентов, мас.%: цеолит HZSM-5 - 24; бентонитовая глина - 54; карбонат кальция - 20; хлорид кобальта - 2%.

Термодеструкцию мазута М-100 проводили согласно методике, описанной в примере 1.

Пример 7

Для приготовления катализатора использовали следующее соотношение компонентов, мас.%: цеолит HZSM-5 - 44; бентонитовая глина - 34; карбонат кальция - 20; хлорид кобальта - 2%.

Термодеструкцию мазута М-100 проводили согласно методике, описанной в примере 1.

Пример 8

Для приготовления катализатора использовали следующее соотношение компонентов, мас.%: цеолит HZSM-5 - 34; бентонитовая глина - 46; карбонат кальция - 18; хлорид кобальта - 2%.

Термодеструкцию мазута М-100 проводили согласно методике, описанной в примере 1.

Пример 9

Для приготовления катализатора использовали следующее соотношение компонентов, мас.%: цеолит HZSM-5 - 32; бентонитовая глина - 44; карбонат кальция - 22; хлорид кобальта - 2%.

Термодеструкцию мазута М-100 проводили согласно методике, описанной в примере 1.

Пример 10

Для приготовления катализатора использовали следующее соотношение компонентов, мас.%: цеолит HZSM-5 - 32; бентонитовая глина - 43; карбонат кальция - 25; хлорид кобальта - 2%.

Термодеструкцию мазута М-100 проводили согласно методике, описанной в примере 1.

Пример 11

Для приготовления катализатора использовали следующее соотношение компонентов, мас.%: цеолит HZSM-5 - 36; бентонитовая глина - 47; карбонат кальция - 15; хлорид кобальта - 2%.

Термодеструкцию мазута М-100 проводили согласно методике, описанной в примере 1.

Пример 12

Для приготовления катализатора использовали следующее соотношение компонентов, мас.%: цеолит HZSM-5 - 33,5; бентонитовая глина - 45; карбонат кальция - 20; хлорид кобальта - 1,5%.

Термодеструкцию мазута М-100 проводили согласно методике, описанной в примере 1.

Пример 13

Для приготовления катализатора использовали следующее соотношение компонентов, мас.%: цеолит HZSM-5 - 33,2; бентонитовая глина - 45; карбонат кальция - 20; хлорид кобальта - 1,8%.

Термодеструкцию мазута М-100 проводили согласно методике, описанной в примере 1.

Пример 14

Для приготовления катализатора использовали следующее соотношение компонентов, мас.%: цеолит HZSM-5 - 33; бентонитовая глина - 44,8; карбонат кальция - 20; хлорид кобальта - 2,2%.

Термодеструкцию мазута М-100 проводили согласно методике, описанной в примере 1.

Пример 15

Для приготовления катализатора использовали следующее соотношение компонентов, мас.%: цеолит HZSM-5 - 32,7; бентонитовая глина - 44,8; карбонат кальция - 20; хлорид кобальта - 2,5%.

Термодеструкцию мазута М-100 проводили согласно методике, описанной в примере 1.

Пример 16

Для приготовления катализатора использовали следующее соотношение компонентов, мас.%: цеолит HZSM-5 - 33; бентонитовая глина - 45; карбонат кальция - 20; хлорид кобальта - 2%, однако для экспериментов отбиралась фракция катализатора от 1 до 2 мм.

Термодеструкцию мазута М-100 проводили согласно методике, описанной в примере 1.

Пример 17

Для приготовления катализатора использовали следующее соотношение компонентов, мас.%: цеолит HZSM-5 - 33; бентонитовая глина - 45; карбонат кальция - 20; хлорид кобальта - 2%, однако для экспериментов отбиралась фракция катализатора более 3 мм.

Термодеструкцию мазута М-100 проводили согласно методике, описанной в примере 1.

Пример 18

Для приготовления катализатора использовали следующее соотношение компонентов, мас.%: цеолит HZSM-5 - 33; бентонитовая глина - 45; карбонат кальция - 20; хлорид кобальта - 2%, однако отжиг катализатора проводился при температуре 850°С.

Термодеструкцию мазута М-100 проводили согласно методике, описанной в примере 1.

Пример 19

Для приготовления катализатора использовали следующее соотношение компонентов, мас.%: цеолит HZSM-5 - 33; бентонитовая глина - 45; карбонат кальция - 20; хлорид кобальта - 2%, однако отжиг катализатора проводился при температуре 950°С.

Термодеструкцию мазута М-100 проводили согласно методике, описанной в примере 1.

Пример 20

Для приготовления катализатора использовали следующее соотношение компонентов, мас.%: цеолит HZSM-5 - 33; бентонитовая глина - 45; карбонат кальция - 20; хлорид кобальта - 2%.

Термодеструкцию мазута М-100 проводили согласно методике, описанной в примере 1. После этого проводили окислительную регенерацию катализатора в течение 20 минут при температуре 700°С. Далее проводили повторную термодеструкцию мазута М-100 согласно описанной выше методике.

Пример 21

Для приготовления катализатора использовали следующее соотношение компонентов, мас.%: цеолит HZSM-5 - 33; бентонитовая глина - 45; карбонат кальция - 20; хлорид кобальта - 2%.

Термодеструкцию мазута М-100 проводили согласно методике, описанной в примере 1. После этого проводили окислительную регенерацию катализатора в течение 30 минут при температуре 700°С. Далее проводили повторную термодеструкцию мазута М-100 согласно описанной выше методике.

Пример 22

Для приготовления катализатора использовали следующее соотношение компонентов, мас.%: цеолит HZSM-5 - 33; бентонитовая глина - 45; карбонат кальция - 20; хлорид кобальта - 2%.

Термодеструкцию мазута М-100 проводили согласно методике, описанной в примере 1. После этого проводили окислительную регенерацию катализатора в течение 45 минут при температуре 700°С. Далее проводили повторную термодеструкцию мазута М-100 согласно описанной выше методике.

Пример 23

Для приготовления катализатора использовали следующее соотношение компонентов, мас.%: цеолит HZSM-5 - 33; бентонитовая глина - 45; карбонат кальция - 20; хлорид кобальта - 2%.

Термодеструкцию мазута М-100 проводили согласно методике, описанной в примере 1. После этого проводили окислительную регенерацию катализатора в течение 30 минут при температуре 650°С. Далее проводили повторную термодеструкцию мазута М-100 согласно описанной выше методике.

Пример 24

Для приготовления катализатора использовали следующее соотношение компонентов, мас.%: цеолит HZSM-5 - 33; бентонитовая глина - 45; карбонат кальция - 20; хлорид кобальта - 2%.

Термодеструкцию мазута М-100 проводили согласно методике, описанной в примере 1. После этого проводили окислительную регенерацию катализатора в течение 30 минут при температуре 750°С. Далее проводили повторную термодеструкцию мазута М-100 согласно описанной выше методике.

Результаты экспериментов иллюстрируются с помощью таблиц, где в таблице 1 приведены результаты экспериментов (поверхностные характеристики катализатора, массовое соотношение образующихся твердых, жидких и газообразных продуктов и низшая объемная теплота сгорания газовой смеси) по примерам 1-19; в таблице 2 приведены поверхностные характеристики катализатора до и после регенерации и результаты экспериментов с катализатором до и после регенерации по примерам 20-24.

Приведенные в таблицах 1 и 2 экспериментальные данные по вышеизложенным примерам показывают, что наилучшие результаты (наиболее высокое содержание в катализаторе пор размером до 10 нм, наивысшая удельная площадь поверхности катализатора, наибольшее количество образовавшихся жидких и газообразных продуктов термодеструкции, наибольшая низшая удельная теплота сгорания газообразных продуктов) были получены в примерах 1 и 21, то есть наиболее целесообразно использовать следующее соотношение компонентов катализатора: цеолит HZSM-5 - 30-40 мас.%; бентонитовая глина - 40-50 мас.%; карбонат кальция - 18-22 мас.%; хлорид кобальта, железа или никеля - 1,8-2,2 мас.% с использованием фракции катализатора от 2 до 3 мм, с последующим отжигом катализатора при температуре 900±5°С и окислительной регенерацией катализатора после использования при температуре 700±5°С в течение 30 минут. Такое соотношение компонентов позволяет получить пористую структуру с содержанием пор размером от 1 до 10 нм в количестве от 40 до 60% и удельную поверхность 140-160 м2/г, что обеспечивает увеличение активности катализатора по отношению к высокомолекулярным компонентам тяжелого и остаточного углеводородного сырья, характеризующимся большими размерами молекул и затрудненной доступностью для активных центров катализатора. Экспериментально определено, что снижение удельной поверхности менее 140 м2/г приводило к существенному уменьшению количества получаемых жидких и газообразных продуктов переработки тяжелого и остаточного углеводородного сырья и снижению низшей объемной теплоты сгорания газовой смеси.

Аналогичные результаты экспериментов были получены при термодеструкции модельного нефтешлама (20 мас.% нефти Каспийского месторождения, 80 мас.% кварцевого песка) и битуминозной нефти.

Полученные результаты свидетельствуют о том, что применение катализатора на основе хлоридов металлов, импрегнированных в матрицу смеси цеолита HZSM-5 и бентонитовой глины, является высокоэффективной возможностью для создания эффективных катализаторов термокаталитической переработки тяжелого и остаточного углеводородного сырья многократного использования.

Таким образом, данный катализатор может быть успешно применен на предприятиях нефтехимической промышленности для термокаталитической переработки тяжелого и остаточного углеводородного сырья в высококачественные жидкие и газообразные топливные компоненты.

1. Катализатор термокаталитической переработки тяжелого и остаточного углеводородного сырья, включающий цеолит HZSM-5 и бентонитовую глину, отличающийся тем, что он получен смешением компонентов при следующем соотношении компонентов, мас.%:

цеолит HZSM-5 30-40
бентонитовая глина 40-50
карбонат кальция 18-22
хлорид металла подгруппы железа 1.8-2.2

с последующим отжигом полученной смеси.

2. Катализатор по п. 1, отличающийся тем, что в качестве хлорида металла подгруппы железа используют хлорид никеля, или железа, или кобальта.



 

Похожие патенты:
Изобретение относится к области нефтепереработки, в частности к катализаторам для гидроизомеризации нефтяного сырья. Предлагаемый катализатор включает гидрирующий металлический компонент на носителе, содержащем цеолит и оксид алюминия.
Изобретение относится к катализатору для селективного синтеза фракций высококачественного бензина из синтез-газа и к способу его получения. .

Изобретение относится к применению катализаторов для превращения кислородсодержащих соединений до низших олефинов. .

Изобретение относится к катализаторам изомеризации. .
Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности, в частности к способу получения катализаторов для превращения прямогонных бензиновых фракций нефти в высокооктановый компонент бензина.

Изобретение относится к способу пропитки металлом VIII группы экструдата молекулярного сита со связующим материалом с помощью ионного обмена с водным раствором соли металла VIII группы.

Изобретение относится к устройству и способу удаления N2О при производстве азотной кислоты. .

Изобретение относится к процессу изомеризации н-парафиновых углеводородов и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. .

Изобретение относится к области получения катализаторов для синтеза ароматических углеводородов, преимущественно бензола, из углеводородных фракций, состоящих, в основном, из парафинов С6-С8.
Изобретение относится к способу получения композиции, содержащей оксиды Al-, Ce- и Zr-, и к самой композиции. Способ включает стадии (a) приготовления водного раствора смеси солей металлов церия, циркония и алюминия, причем этот водный раствор содержит одну или несколько солей редкоземельных металлов иных, чем церий, (b) добавления к раствору, полученному на стадии (а), основания в присутствии Н2О2, при температурах от 0°С до 95°С, и осаждения полученных смешанных солей металлов в форме гидроксидов или окси-гидроксидов, (c) необязательного выделения осадка, полученного на стадии (b), (d) обработки водной суспензии, полученной на стадии (b), или выделенного осадка, полученного на стадии (с), с помощью поверхностно-активного вещества, выбранного из группы, состоящей из Triton®, Tergitol®, неионных поверхностно-активных веществ, содержащих единицы этиленоксида/пропиленоксида, этилфенолэтоксилатов, сополимеров этиленоксида/пропиленоксида и лауриновой кислоты, и (e) выделения осадка, полученного на стадии (d) и обработки указанного осадка при температуре от 450°С до 1200°С.

Изобретение относится к катализаторам для очистки газовых смесей от токсичных примесей, в частности от оксидов азота и углерода, и может быть использовано для удаления их из газовых технологических выбросов и выхлопных газов двигателей внутреннего сгорания.

Изобретение относится к сложным оксидам, которые могут использоваться в катализаторах очистки выхлопного газа транспортных средств. Предложен кремнийсодержащий сложный оксид церия, состоящий из церия, кремния и кислорода, содержащий 2-20 мас.% кремния в пересчете на SiO2, охарактеризованный способом его получения, имеющий удельную площадь поверхности не менее 40 м2/г, как измерено методом БЭТ с использованием адсорбции газообразного азота после прокаливания при 1000°C в течение 5 ч, и восстанавливаемость, представляющую собой процент трехвалентного церия в сложном оксиде, восстановленном из четырехвалентного церия, не ниже 30%, как рассчитано по измерению температурного программированного восстановления от 50 до 900°C после прокаливания при 1000°C в течение 5 ч.

Изобретение относится к способу извлечения церия из железокалиевых катализаторов дегидрирования олефиновых углеводородов или других материалов аналогичного состава.
Изобретение относится к сложному оксиду, который можно применять для катализаторов, функциональной керамики, твердых электролитов для топливных элементов, абразива и подобного, в частности для катализаторов для очистки отработавшего газа автомобиля, а также к способу получения сложного оксида.

Изобретение относится к способу получения железо-калиевых катализаторов для дегидрирования метилбутенов в изопрен. Способ получения железо-калиевого катализатора для дегидрирования метилбутенов осуществляют следующим образом: проводят смешение компонентов катализатора в следующем соотношении, мас.

Изобретение относится к химической промышленности, а именно к получению лантансодержащего металлоорганического каркасного соединения формулы La2(ВDС)3(Н2O)4 трехмерной структуры на основе терефталевой кислоты, которое можно использовать в качестве катализатора различных процессов, в том числе фотокатализатора.

Изобретение относится к композиции на основе оксидов церия, циркония и по меньшей мере одного редкоземельного металла, отличного от церия, к способу ее получения и ее применению в области катализа.
Изобретение относится к способу получения обожженного смешанного оксида, содержащего оксиды Al, Се и Zr. Способ включает следующие стадии: (a) предоставление водной суспензии, содержащей гидроксиды церия и циркония и дополнительно содержащей один или несколько гидроксидов редкоземельных металлов, иных, чем церий, (b) приведение гидроксидов церия и циркония в контакт с бемитом формулы (AlO(ОН)×Н2О), чтобы получить водную суспензию твердотельных частиц, (c) отделение твердотельных частиц от водной суспензии и сушка, чтобы получить твердотельную композицию, и (d) обжиг твердотельной композиции со стадии (с) при температуре от 450 до 1200°С в течение по меньшей мере одного часа, чтобы получить обожженный смешанный оксид.

Изобретение относится к пористому неорганическому композитному оксиду, предназначенному для использования в качестве материала подложки для катализатора, включающему оксиды алюминия и церия, или оксиды алюминия и циркония, или оксиды алюминия, церия и циркония и необязательно один или более оксидов допирующих элементов, выбранных из переходных металлов, редкоземельных металлов и их смесей, причем указанный неорганический композитный оксид имеет: (a) удельную площадь поверхности после прокаливания при 1100°C в течение 5 часов, больше или равную площади, вычисленной согласно уравнению SA=0,8235[Al]+11,157, в котором: SA представляет собой удельную площадь поверхности неорганического композитного оксида по БЭТ, в квадратных метрах на грамм, и [Al] представляет собой количество оксидов алюминия в композитном оксиде, выраженное в виде массовых долей Al2O3 на 100 массовых долей композитного оксида, и (b) общий объем пор после прокаливания при 900°С в течение 2 часов, больше или равный объему, вычисленному согласно уравнению PV=0,0097[Al]+0,0647 в котором PV представляет собой объем пор неорганического композитного оксида, в кубических сантиметрах на грамм, при этом композитный оксид включает, в каждом случае в количестве, выраженном в виде массовой доли отдельного бинарного оксида соответствующего элемента на 100 массовых долей композитного оксида: (a) примерно от 20 до 98 массовых долей Al2O3, и (b) (i) примерно от 2 до 80 массовых долей ZrO2, или (b)(ii) примерно от 2 до 80 массовых долей CeO2, или (b) (iii) примерно от 2 до менее чем 78 массовых долей ZrO2 и от 2 до 78 массовых долей CeO2 при условии, что объединенное количество ZrO2 и CeO2 не превышает 80 массовых долей, и (c) необязательно вплоть до примерно 15 массовых долей оксидов одного или более допирующих элементов, выбранных из переходных металлов, редкоземельных металлов и их смесей.
В данном документе раскрыты способы и составы, применимые для снижения количества серы в содержащем серу составе, который содержит нефть. Способ снижения количества серы в содержащем серу составе, содержащем нефть, включает этапы: a) получения содержащего серу состава; и b) приведения содержащего серу состава в контакт с окислителем и окислительным катализатором, при этом окислительный катализатор имеет формулу M11-xM3xM2O3, где M1 представляет собой редкоземельный элемент, M2 - переходный металл, M3 - Са или Sr, а х принадлежит диапазону от 0,01 до 0,80. Состав, применимый для снижения количества серы, содержит окислитель и окислительный катализатор, при этом окислительный катализатор имеет формулу M11-xSrxM2O3, где М1 представляет собой редкоземельный элемент, М2 - переходный металл, а х принадлежит диапазону от 0,01 до 0,80, а окислитель содержит Н2О2, уксусную кислоту, трет-бутилгидрогенфосфат (ТВНР), муравьиную кислоту, серную кислоту, азотную кислоту или их комбинацию. Технический результат – эффективное снижение содержания серы в содержащем нефть составе. 2 н. и 18 з.п. ф-лы, 2 табл., 5 пр.
Наверх