Волоконно-оптическая линия связи и устройство для ее прокладки в трубе канала подземной кабельной канализации

Группа изобретений относится к волоконно-оптическим линиям связи и предназначена для передачи потоков информации. Волоконно-оптическая линии связи, содержащей размещенные в трубе канала подземной кабельной канализации микрокабели, при этом микрокабели протянуты внутри микротрубок, которые сгруппированы в один или несколько пакетов. Микротрубки выполнены из полиэтилена высокой плотности с применением дополнительного средства снижения трения скольжения, при этом в качестве дополнительного средства снижения трения скольжения применены продольные бороздки на внутренней поверхности микротрубок, с образованием выступов, при этом глубина продольных бороздок выполнена из условия:

h=(0,05…0,2)δст,

где:

h - глубина продольных бороздок,

δст - толщина стенки микротрубки, при этом толщина стенки микротрубки выбрана из условия:

δст=(0,17…0,28)dмк,

где dмк - внутренний диаметр микротрубки.

Технический результат - уменьшение трения между микротрубками и стенками трубы канала подземной кабельной канализации и между микротрубками и волоконно-оптическими микрокабелями, и между пакетами микротрубок и трубой подземной кабельной канализации. 2 н. и 2 з.п. ф-лы, 35 ил., 4 табл.

 

Группа изобретений относится к волоконно-оптическим линиям связи и предназначена для обеспечения передачи потоков информации.

Известна волоконно-оптическая линия связи по патенту РФ на изобретение №2199142, МПК G04B 6/44, опубл. 20.02.2004 г.

Это волоконно-оптическая линия связи может быть использована в конструкциях подвесных оптических кабелей при сооружении волоконно-оптических линий связи на линиях электропередачи. Кабель содержит центральный диэлектрический элемент, оптические волокна в полимерных модулях, гидрофобный заполнитель, внутреннюю диэлектрическую оболочку, компенсирующую скручивание кабеля, и внешнюю диэлектрическую оболочку. Внешняя диэлектрическая оболочка по всей внешней поверхности выполнена гофрированной с разной высотой и шагом гофрирования.

Недостатки:

- линия связи не приспособлена для прокладки под землей,

- не предусмотрено мероприятий по ускорению монтажа.

Известна волоконно-оптическая линия связи, содержащая волоконно-оптические микрокабели, размещенные в канале подземной телефонной канализации, монтажные муфты, смотровые колодцы (см. например, описание полезной модели к патенту RU №2099755, МПК G02B 6/46, дата публикации 20.12.1997 г).

Недостатком этого аналога является малая эффективность при эксплуатации, обусловленная низкой ремонтопригодностью.

Известна волоконно-оптическая линия связи, раскрытая в учебном пособии «Проектирование, строительство и эксплуатация ВОЛС», В.И. Ефанов, Томск, 2012 год, которая состоит из размещенных в трубе канала подземной кабельной канализации микрокабелей, при этом микрокабели протянуты внутри микротрубок, сгруппированы в один из пакетов (см. стр. 29, 36), микротрубки выполнены из полиэтилена высокой

твердости с применением дополнительного средства снижения трения скольжения, см.стр. 29, рис. 2.17, прототип волоконно-оптической линии связи.

Недостаток: большие усилия при протягивании микрокабелей в микротрубках.

Известно устройство для прокладки волоконно-оптической линии связи, описанное в сайте Интернет http://www.microduct.ru/htmlpages/Show/technology/zaduvka-optovolokna (Приложение 1).

Это устройство для прокладки волоконно-оптической линии связи включает катушку с микрокабелем и компрессор с приводом, соединенный трубопроводом с микротрубкой, расположенной в трубе подземной кабельной канализации.

Этот способ прокладки волоконно-оптической линии связи методом пневмозадувки включает подачу сжатого воздуха от компрессора в микротрубку, в которой установлен кабеленаправляющий наконечник.

Современное состояние подземной инфраструктуры связи в условиях высоко конкурентного рынка с большим числом операторов связи, строящих и владеющих линейно-кабельными сооружениями связи, не отвечает запросам рынка. Ресурсы телефонной канализации в основном исчерпаны - каналы телефонной канализации хаотично заполнены кабелями связи различного типа и конструктивных особенностей, при этом пучки кабелей 1 создают порой непреодолимые трудности при прокладке новых или замене существующих кабелей без возможного повреждения других кабелей.

Высокая стоимость работ по строительству новой кабельной канализации, необходимость получать разрешение на землеотвод и оформление разрешительной документации, связанной с работами в подземной канализации, негативно сказываются на темпах развития и вынуждают операторов связи размещать телефонные кабели на крышах домов и опорах электросетей. Паутина из телефонных кабелей связи затянула архитектурный облик российских городов.

Известно устройство для прокладки волоконно-оптической линии связи из статьи «О методах пневмопрокладки кабелей связи» к журналу «Фотон-экспресс», К.К. Никольский, 2006 г. стр. 20-21, прототип устройства для прокладки волоконно-оптической линии связи.

Это устройство для прокладки волоконно-оптической линии связи содержит катушку с волоконно-оптическим микрокабелем и компрессор с приводом, соединенный трубопроводом с трубой канала подземной кабельной канализации.

Недостаток: большие усилия при протягивании микрокабелей в микротрубках.

Задачей создания группы изобретений является уменьшение усилий при прокладке волоконно-оптической линии связи, ускорение процесса и, как следствие, снижение затрат на строительство волоконно-оптического кабеля в телефонной канализации (финансовых, трудовых).

Сущность технического решения заключается в том, что оно содержит волоконно-оптические микрокабели, размещенные в каналах подземной структурированной телефонной канализации - СТК, монтажные муфты, смотровые колодцы, и отличается от ближайшего аналога тем, что СТК представляет собой канализацию, состоящую из одного или нескольких пакетов микротрубок из полиэтилена высокой плотности, имеющих внутреннее покрытие с низким коэффициентом трения.

Достигнутый технический результат: уменьшение трения с внешней стороны пакета микротрубок и стенками подземной кабельной канализации или с внутренней стороны микротрубки и волоконно-оптическим микрокабелем.

Решение указанных задач достигнуто в волоконно-оптической линии связи, содержащей размещенные в трубе канала подземной кабельной канализации микрокабели, при этом микрокабели протянуты внутри микротрубок, которые сгруппированы в один или несколько пакетов, микротрубки выполнены из полиэтилена высокой плотности с применением дополнительного средства снижения трения скольжения, тем, что в качестве дополнительного средства снижения трения скольжения применены продольные бороздки на внутренней поверхности микротрубок, с образованием выступов, при этом глубина продольных бороздок выполнена из условия:

h=(0,05…0,2)δст,

где:

h - глубина продольных бороздок,

δст - толщина стенки микротрубки, при этом толщина стенки микротрубки выбрана из условия:

δст=(0,17…0,28)dмк,

где: dмк - внутренний диаметр микротрубки.

Решение указанных задач достигнуто в устройстве для прокладки волоконно-оптической линии связи, включающем катушку с волоконно-оптическим микрокабелем и компрессор с приводом, соединенный трубопроводом с трубой канала подземной кабельной

канализации, тем, что оно содержит датчик давления воздуха на выходе из компрессора, датчик измерения натяжения волоконно-оптического микрокабеля и средство управления давлением и расходом воздуха, также устройство содержит управляющий компьютер, контроллер управления и контроллер датчиков, при этом контроллер управления соединен каналом связи со средством управления давлением и расходом воздуха и приводом тормоза.

Привод компрессора может быть выполнен в виде электропривода, с подведенными к нему электропроводами, средство управления давлением и расходом воздуха выполнено в виде реостата в разрыве одного из электропроводов.

Средство управления давлением и расходом воздуха может быть выполнено в виде дроссельной заслонки, установленной в трубопроводе на выходе из компрессора.

Сущность изобретения поясняется чертежами (фиг. 1…35), где:

- на фиг. 1 приведено размещение одной микротрубки с одним микрокабелем в трубе канала подземной кабельной канализации,

- на фиг. 2 приведено размещение одного пакета микротрубок в трубе канала подземной кабельной канализации,

- на фиг. 3 приведено размещение нескольких пакетов микротрубок в трубе канала подземной кабельной канализации,

- на фиг. 4 показан пакет микротрубок,

- на фиг. 5 приведен пакет из двух микротрубок,

- на фиг. 6 приведен пакет из 6 микротрубок,

- на фиг. 7 приведен пакет из 7 микротрубок,

- на фиг. 8 приведен поперечный разрез В-В микрокабеля,

- на фиг. 9 приведена микротрубка с антифрикционным покрытием на внутренней поверхности,

- на фиг. 10 приведена микротрубка с антифрикционной смазкой на внутренней поверхности,

- на фиг. 11 приведена микротрубка с антифрикционным покрытием и антифрикционной смазкой на внутренней поверхности,

- на фиг. 12 приведена микротрубка с антифрикционным покрытием на внешней поверхности,

- на фиг. 13 приведена микротрубка с антифрикционной смазкой на внешней поверхности,

- на фиг. 14 приведена микротрубка с антифрикционным покрытием и антифрикционной смазкой на внешней поверхности,

- на фиг. 15 приведена микротрубка с антифрикционным покрытием на внутренней и наружной поверхностях,

- на фиг. 16 приведена микротрубка с антифрикционной смазкой на внутренней и внешней поверхностях,

- на фиг. 17 приведена микротрубка с антифрикционным покрытием и антифрикционной смазкой на внутренней и внешней поверхностях,

- на фиг. 18 приведена микротрубка с продольными бороздками,

- на фиг. 19 приведен фрагмент С, первый вариант,

- на фиг. 20 приведен фрагмент С, второй вариант,

- на фиг. 21 приведен фрагмент D,

- на фиг. 22 приведен пакет из 6-ти и из 2-х микротрубок в кожухе,

- на фиг. 23 приведен пакет из 7 микротрубок в кожухе,

- на фиг. 24 приведена микротрубка в разрезе,

- на фиг. 25 приведены графики изменения относительной толщины стенок микротрубок в зависимости от их диаметра,

- на фиг. 26 приведена схема прокладки пакета микротрубок в трубе подземной кабельной канализации,

- на фиг. 27 приведена схема прокладки микрокабеля в микротрубке пакета,

- на фиг. 28 показана схема наконечника для пневматической прокладки микрокабеля,

- на фиг. 29 показаны графики зависимости длины ввода кабеля от диаметра микротрубки и от диаметра микрокабеля,

- на фиг. 30 приведена схема прокладки оптико-волоконного микрокабеля, первый вариант с датчиком осевой силы на микрокабеле,

- на фиг. 31 приведена схема прокладки оптико-волоконного микрокабеля, первый вариант с датчиком крутящего момента,

- на фиг. 32 приведена схема измерения осевого усилия на оптико-волоконном микрокабеле,

- на фиг. 33 приведена схема прокладки оптико-волоконного микрокабеля, второй вариант,

- на фиг. 34 приведена схема размещения пакетов микротрубок с микрокабелями в свободной трубе подземной кабельной канализации,

- на фиг. 35 приведена схема размещения пакета микротрубок с микрокабелями в ранее проложенной трубе подземной кабельной канализации, в которой уже установлен кабель проводного канала связи.

Условные обозначения, используемые на фиг. 1…35:

1. - волоконно-оптический микрокабель,

2. - микротрубка,

3. - труба подземной кабельной канализации,

4. - пакет,

5. - внешняя оболочка пакета микротрубок,

6. - оптическое волокно,

7. - антифрикционное покрытие,

8. - внутренняя поверхность,

9. - антифрикционная смазка,

10. - внешняя поверхность,

11. - продольные борозды,

12. - продольные выступы,

13. - контактные площадки,

14. - смотровой колодец,

15. - катушка,

16. - тормоз,

17. - привод,

18. - платформа,

19. - поверхность,

20. - ролик,

21. - ролик,

22. - ролик,

23. - ролик,

24. - катушка,

25. - компрессор,

26. - привод,

27. - трубопровод,

28. - средство управления давлением и расходом воздуха,

29. - кабеленаправляющий наконечник,

30. - пневморегулирующее устройство,

31. - кабелезакрепляющее устройство,

32. - управляющий компьютер,

33. - монитор,

34. - канал связи,

35. - контроллер управления,

36. - контроллер датчиков,

37. - канал управления,

38. - электропровод,

39. - реостат,

40. - дистанционно-управляемый привод,

41. - датчик давления,

42. - линия связи,

43. - датчик измерения натяжения волоконно-оптического микрокабеля,

44. - линия связи,

45. - датчик длины микрокабеля,

46. - линия связи,

47. - канал управления,

48. - линия связи,

49. - линия связи,

50. - датчик крутящего момента,

51. - линия связи,

52. - дроссельная заслонка,

53. - муфта,

54. - кабель проводного канала связи.

Сущность предложенных устройств и способа поясняется на фиг. 1…35.

Основу волоконно-оптической связи составляют волоконно-оптические микрокабели 1, проложенные в микротрубке 2, в свою очередь, проложенные в трубе канала подземной кабельной канализации 3 (фиг. 1).

Волоконно-оптическая линия связи в наиболее оптимальном варианте (фиг. 1…4) представляет собой пакет 4, который состоит из одной или нескольких микротрубок 2 диаметром, например: 7, 10 или 12 мм и др. (строительная длина в среднем до 2 км), выполненных из полиэтилена высокой плотности.

На фиг. 5…7 показаны три варианта пакета 4 в поперечном разрезе А-А.

Видно, что пакет 4 состоит из нескольких микротрубок 2, внутри которых проложены волоконно-оптические микрокабели 1. Пакет 4 имеет оболочку 5. Волоконно-оптический микрокабель 1 содержит оптические волокна 6 (Фиг. 8).

Особенностью волоконно-оптической линии связи является наличие дополнительного средства снижения коэффициента трения между волоконно-оптическим микрокабелем 1 и внутренней поверхности микротрубки 2 и между микротрубками 2 или пакетом 4 микротрубок 2 с трубой канала поземной кабельной канализации 3.

Это средство может быть выполнено в виде антифрикционного покрытия 7.

Антифрикционное покрытие 7 (фиг. 9) может быть выполнено на внутренней поверхности 8 микротрубки 2, что обеспечивает снижение коэффициента трения при протягивании волоконно-оптического микрокабеля 1 внутри микротрубки 2 примерно вдвое по сравнению с поверхностью из обычных композиций полиэтилена.

На фиг. 10 приведена микротрубка 2 с антифрикционной смазкой 9 на внутренней поверхности 8, а на фиг. 11 приведена микротрубка 2 с антифрикционным покрытием 7 и антифрикционной смазкой 9 на внутренней поверхности 8.

Возможно применение антифрикционного покрытия 7 и антифрикционной смазки 9 на наружной поверхности 10 микротрубок 2. На фиг. 12 приведена микротрубка 2 с антифрикционным покрытием 7 на наружной поверхности 10, а на фиг. 13 приведена микротрубка 2 с антифрикционной смазкой 9 на наружной поверхности 10. На фиг. 14 приведена микротрубка 2 с антифрикционным покрытием 7 и антифрикционной смазкой 9 на наружной поверхности 10.

Возможно применение антифрикционного покрытия 7 и антифрикционной смазки 9 одновременно на внутренней 8 и наружной 10 поверхностях микротрубок 2. На фиг. 15 приведена микротрубка 2 с антифрикционным покрытием 7 на внутренней 8 и наружной 10 поверхностях, на фиг. 16 приведена микротрубка 2 с антифрикционной смазкой 9 на внутренней 8 и наружной 10 поверхностях, на фиг. 17 приведена микротрубка 2 с антифрикционным покрытием 7 и антифрикционной смазкой 9 на внутренней 8 и наружной 10 поверхностях,

На фиг. 18…21 приведена микротрубка 2 с продольными бороздками 11 и выступами 12 между ними, образующими контактные площадки 13.

Оптимальная высота продольных бороздок 11:

h=(0,05…0,2)δст, где:

h - глубина продольных бороздок 11,

δст - толщина микротрубки 2 (фиг. 24).

Применение меньшей глубины продольных бороздок 11 не дает эффекта, а при большей глубине резко уменьшается прочность микротрубок 2.

На фиг. 24 приведен поперечный разрез микротрубки 2.

На фиг. 25 приведены графики зависимости относительной толщины микротрубок δст/dмк и то же самое для трубок диаметром dтр более 12 мм.

Из графиков, приведенных на фиг. 25, следует, что микротрубки 2 имеют относительную толщину в 2…3 раза больше, чем относительная толщина трубок (трубки имеют диаметр более 12 мм). Для трубок относительная толщина составляет от 0,06 до 0,1 диаметра, а для микротрубок 2 от 0,17 до 0,28.

Это необходимо, потому, что прокладку микрокабеля 1 в микротрубках 2 выполняют методом пневмозадувки и она ни при каких условиях не должна терять свою круглую форму.

На фиг. 26 приведен процесс протягивания пакета 4 микротрубок 2, а на фиг. 27 - процесс протягивания волоконно-оптического микрокабеля 1. Далее процесс протягивания пакета 4 микротрубок 2 и волоконно-оптического микрокабеля 1 будет описан подробнее.

Пакеты 4 размещены в трубе подземной канализации 3, которая соединяет смотровые колодцы 14 (фиг. 26). При выборе материала микротрубок 2 в первую очередь руководствовались получением минимального коэффициента трения.

Микротрубки из полиэтилена высокой плотности

Отличие технологии прокладки волоконно-оптического кабеля в подземную кабельную канализацию, изготовленную из структурированного пакета 4 микротрубок 2 от традиционной подземной кабельной (телефонной) канализации, сделанной из асбоцементных или полиэтиленовых труб ∅ до 110 мм заключается в том, что в первом случае прокладка кабеля осуществляется методом пневмозадувки, а во втором - механическим затягиванием.

При задувке кабеля воздушный поток и конструктивные особенности микротрубок 2 из полиэтилена высокой плотности (их внутренняя поверхность изготавливается либо рифленой, либо гладкой) формируют непрерывную скользящую поверхность, снижающую коэффициент трения кабеля о микротрубку 2 до значения не более 0,1. На кабель действует минимальное растягивающее усилие, не происходит его скручивания.

При затягивании оптического кабеля в подземную кабельную канализацию необходимо постоянно контролировать растягивающую нагрузку, которая может негативно повлиять на физические и оптические параметры оптического волокна. Коэффициент трения между оболочкой оптического кабеля и каналом кабельной канализации в этом случае может составлять для полиэтиленовых труб 0,29, для асбоцементных - 0,32, для бетонных - 0,38, что существенно превышает коэффициент трения для указанных выше микротрубок 2.

Соответственно скорость «задувки» может составлять до 90 м/мин на расстояние в среднем около 1400-1500 м в одну сторону, что в 3 раза быстрее метода механического затягивания кабеля в подземную кабельную канализацию.

Производятся микротрубки 2 из сырья высшего качества со следующими характеристиками (табл. 1).

Микротрубки 2 изготовлены из материалов, не поддерживающих горение. Радиус изгиба микротрубок 2 зависит от окружающей температуры. Минимальный радиус изгиба трубок составляет 20-кратный внешний диаметр при температуре 20°C. При 0°C радиус изгиба повышается в 2,5 раза.

Технические требования при монтаже микротрубок 2 приведены в табл. 2.

Коэффициент трения для полиэтилена высокого давления 0,1.

Тем не менее, существуют материалы, имеющие коэффициент трения 0,05 и меньше.

Например, исследования показали, что фторопласт имеет очень низкий коэффициент трения, который зависит от скорости относительного движения скользящей пары образцов.

Данные о зависимости коэффициента трения от нагрузки статической и динамической (при малых скоростях) для фторопласта-4 без смазки приведены ниже:

При наличии смазки коэффициент трения примерно в 2 раза меньше.

Динамический коэффициент трения фторопласта-4 по стали без смазки при нагрузке ~20 кгс/см зависит от скорости скольжения (табл. 4):

Наличие смазки позволяет получить коэффициент трения 0,025 и менее. Виды смазок широко известны в технике. Могут быть применены жидкие смазки, консистентные и твердые в виде порошка.

Устройства для прокладки волоконно-оптической линии связи показано на фиг. 26…33. На фиг. 26 приведена схема прокладки пакета 4 микротрубок 2 в трубе подземной кабельной канализации 3, соединяющей смотровые колодцы 14. Устройство (первый вариант) для прокладки волоконно-оптической линии связи содержит катушку 15, установленную на оси и имеющую тормоз 16 с приводом 17 и платформу 18. Платформа 18 установлена на поверхности 19. В состав устройства входят ролики 20…23.

На фиг. 27 приведена схема прокладки волоконно-оптического микрокабеля 1 с катушки 24 методом пневмозадува. Устройство для прокладки волоконно-оптического микрокабеля 1 содержит компрессор 25 с приводом 26. Выход из компрессора 25 трубопроводом 27 соединен с входом в микротрубку 2. На конце волоконно-оптического микрокабеля 1 закреплен кабеленаправляющий наконеник 29. С приводом 26 соединено средство управления давлением и расходом воздуха 28, идущего по трубопроводу 27.

Конструкция кабеленапраляющего наконечника 29 приведена на фиг. 28. Кабеленаправляющий наконечник 29 выполнен из 2-х частей:

30 - пневморегулирующее устройство,

31 - кабелезакрепляющее устройство.

На фиг. 29 приведены графики изменения длины ввода волоконно-оптического микрокабеля 1 Lмах в зависимости от диаметра канала микротрубки dтр и диаметра микрокабеля 1 - dмк без смазки при коэффициенте трения скольжения m=0,1.

Видно, что в лучшем случае можно достичь длины ввода волоконно-оптического микрокабеля 1 без смазки около 1500 м. В то же время со смазкой можно достичь длины ввода микрокабеля L до 2300 м.

На фиг. 30 показана схема автоматизированной пневматической прокладки волоконно-оптической линии связи, которая содержит компрессор 25 с приводом 26, управляющий компьютер 32 с монитором 33, соединенным с ним каналом связи 34. Компрессор 25 соединен трубопроводом 27 с микротрубкой 2.

В систему входят два контроллера: контроллер управления 35 и контроллер датчиков 36, соединенные каналом управления 37 с компьютером 32. Средство управления давлением и расходом воздуха 28 в первом варианте (фиг. 30) выполнено в виде реостата 39 с дистанционно-управляемым приводом 40. Привод 26 электропроводами 38, содержащими реостат 39, соединен с сетью. Реостат 39 оборудован дистанционно-управляемым приводом 40, например, механически соединенным с ним. В трубопроводе 27 установлен датчик давления 41 (или манометр), который линией связи 42 соединен с контроллером датчиков 36. С волоконно-оптическим микрокабелем 1 связан датчик измерения натяжения волоконно-оптического микрокабеля 43 на волоконно-оптическом микрокабеле 1, который линией связи 44 соединен с контроллером датчиков 36.

С волоконно-оптическим микрокабелем 1 связан датчик длины микрокабеля 45, который линией связи 46 соединен контроллером датчиков 36.

Выход контроллера управления 35 линией связи 47 соединен с дистанционно-управляемым приводом 40 и линией связи 48 - с приводом 17 тормоза 16. Вход контроллера управления 35 соединен линией связи 49 с управляющим компьютером 32. Возможна схема управления прокладкой волоконно-оптического микрокабеля 1, когда вместо датчика измерения натяжения волоконно-оптического микрокабеля 43 применен датчик крутящего момента 50, соединенный линией связи 51 с контроллером датчиков 36 (фиг. 31).

На фиг. 32 приведена схема измерения осевого усилия Fос на волоконно-оптическом микрокабеле 1 для этого варианта.

Управляющий компьютер 32, используя данные датчика длины микрокабеля 45, пересчитывает радиус Ri и используя показания датчика крутящего момента 51 рассчитывает осевое усилие, действующее на волоконно-оптический микрокабель 1 по формуле:

Fос=Мкр /Ri.

На фиг. 33 приведен третий вариант устройства, в котором в качестве средства управления давлением и расходом воздуха 28 применена дроссельная заслонка 52, установленная в трубопроводе 27 и соединенная линией связи 47 с контроллером датчиков 36.

На фиг. 34 приведена схема размещения пакетов 4 микротрубок 2 с волоконно-оптическими микрокабелями 1 во вновь установленной трубе подземной кабельной канализации 3. Соединение волоконно-оптических микрокабелей 1 выполнено муфтами 53.

На фиг. 35 приведена схема размещения пакета 4 микротрубок 2 с волоконно-оптическими микрокабелями 1 в ранее проложенной трубе подземной кабельной канализации 3, в которой уже установлен кабель проводного канала связи 54.

ПРОТЯГИВАНИЕ МИКРОКАБЕЛЯ МЕТОДОМ ПНЕВМОЗАДУВКИ

Протягивание волоконно-оптического микрокабеля 1 методом пневмозадувки выполняется (фиг. 27, 30 и 31) подачей воздуха из компрессора 25 в трубу 27 и далее в микротрубку 2. Давление воздуха действует на кабеленаправляющий наконечник 29.

Автоматическое протягивание волоконно-оптического микрокабеля 1 выполняют при помощи управляющего компьютера 32, контролируя крутящий момент датчиком крутящего момента 50 (фиг. 31), показания которого управляющий компьютер 32 пересчитывает в осевое усилие, действующее на волоконно-оптический микрокабель 1.

При превышении осевым усилием, действующего на волоконно-оптический микрокабель 1 предельно-допустимого значения (фиг. 30) подают сигнал с компьютера 32 по линии связи 49 на контроллер управления 35 и далее по каналу управления 47 на дистанционно-управляемый привод 40. Дистанционно-управляемый привод 40, воздействуя на реостат 39, уменьшает ток питания привода 26 и уменьшает производительность компрессора 25 по расходу воздуха и давлению воздуха на выходе из компрессора 25, что контролируется датчиком давления 41. Процесс идет до тех пор, пока осевое усилие не достигнет предельно-допустимого значения.

Для второго варианта средства управления давлением и расходом воздуха 28 (фиг. 33) применена дроссельная заслонка 52, установленная в трубопроводе 27 (фиг. 33). Для управления давлением и расходом воздуха из компрессора 25 с управляющего компьютера 32 подают сигнал на дроссельную заслонку 52.

Заявленная конструкция и способ позволят максимально повысить эффективность кабельной канализации, размещая большее число волоконно-оптических микрокабелей 1 в одной и той же трубе канала подземной кабельной канализации 3. Также применение группы изобретений позволит уменьшить капитальные расходы и сократить время и стоимость инсталляции, поскольку волоконно-оптические микрокабели 1 можно прокладывать постепенно, по мере необходимости.

Заявленное техническое решение создает условия для прокладки одного или нескольких волоконно-оптических микрокабелей 1 в СТК, а так же обеспечивает защиту этих волоконно-оптических микрокабелей 1 от возможных повреждений во время затяжки устройства заготовки канала (особенно металлическими палками) в трубе подземной кабельной канализации 3 для прокладки тяжелых массивных кабелей или при вытяжке уже проложенных ранее кабелей из трубы канала подземной кабельной канализации 3.

Применение группы изобретений позволило:

- уменьшить время на монтаж оптико-волоконной линии связи и уменьшить усилие протягивания пакета микротрубок СТК в канализации за счет применения антифрикционной смазки,

- уменьшить затраты на монтаж линии оптико-волоконной связи за счет снижения сил трения при протягивании волоконно-оптического микрокабеля.

Такая СТК может обеспечить n микроканалов (от одного и более), размещаемых в каналах стандартной подземной кабельной (телефонной) канализации, например, диаметром 110 мм.

Указанный технический результат достигается тем, что при строительстве волоконно-оптических линий связи в СТК для прокладки волоконно-оптического кабеля используется метод пневмопрокладки вместо механического затягивания кабеля. Скорость «задувки» может составлять до 90 м/мин, на расстояние до 1500 м в одну сторону, что в 3 раза быстрее метода механического затягивания кабеля в подземную кабельную (телефонную) канализацию.

При этом однократно выполнив прокладку СТК требуемой емкости, эффективное использование кабельной (телефонной) канализации многократно повышается, так как последующая прокладка оптического кабеля в свободные каналы СТК или по мере необходимости замена оптического кабеля на большую емкость выполняется без проведения земляных работ.

1. Волоконно-оптическая линия связи, содержащая размещенные в трубе канала

подземной кабельной канализации микрокабели, при этом микрокабели протянуты внутри микротрубок, которые сгруппированы в один или несколько пакетов, микротрубки выполнены из полиэтилена высокой плотности с применением дополнительного средства снижения трения скольжения, отличающаяся тем, что в качестве дополнительного средства снижения трения скольжения применены продольные бороздки на внутренней поверхности микротрубок, с образованием выступов, при этом глубина продольных бороздок выполнена из условия:

h=(0,05…0,2)δст,

где:

h - глубина продольных бороздок,

δст - толщина стенки микротрубки, при этом толщина стенки микротрубки выбрана из условия:

δст=(0,17…0,28)dмк,

где dмк - внутренний диаметр микротрубки.

2. Устройство для прокладки волоконно-оптической линии связи, включающее катушку с волоконно-оптическим микрокабелем и компрессор с приводом, соединенный трубопроводом с трубой канала подземной кабельной канализации, отличающееся тем, что оно содержит датчик давления воздуха на выходе из компрессора, датчик измерения натяжения волоконно-оптического микрокабеля и средство управления давлением и расходом воздуха, также устройство содержит управляющий компьютер, контроллер управления и контроллер датчиков, при этом контроллер управления соединен каналом связи со средством управления давлением и расходом воздуха и приводом тормоза.

3. Устройство для прокладки волоконно-оптической линии связи по п. 2, отличающееся тем, что привод компрессора выполнен в виде электропривода, с подведенными к нему электропроводами, средство управления давлением и расходом воздуха выполнено в виде реостата в разрыве одного из электропроводов.

4. Устройство для прокладки волоконно-оптической линии связи по п. 2, отличающееся тем, что средство управления давлением и расходом воздуха выполнено в виде дроссельной заслонки, установленной в трубопроводе на выходе из компрессора.



 

Похожие патенты:

Настоящее изобретение относится к распределительному модулю для оптических волокон в телекоммуникационных сетях и способу изготовления такого модуля. Заявленный волоконно-оптический распределительный модуль содержит основание корпуса и кожух корпуса, выполненные с возможностью соединения друг с другом с образованием корпуса модуля, приспособление для размещения запаса длины оптических волокон, расположенное внутри корпуса, когда основание корпуса и кожух корпуса соединены друг с другом, держатель кассет, расположенный внутри корпуса, когда основание корпуса и кожух корпуса соединены друг с другом, при этом держатель кассет выполнен с возможностью установки на нем одной или более волоконно-оптических кассет, при этом основание корпуса имеет плоскую поверхность, причем приспособление для размещения запаса длины оптических волокон и держатель кассет расположены на несущей панели, протяженной в перпендикулярном направлении от плоской поверхности основания корпуса, и сформированной совместно, как одна цельная деталь, с основанием корпуса, приспособлением для размещения запаса длины оптических волокон и держателем кассет.

Изобретение относится к устройствам волоконно-оптической связи и может быть использовано, в частности, в устройствах компенсации вариаций временной задержки информационных сигналов, переданных на конец многокилометровой волоконно-оптической линии.

Изобретение относится к области радиоэлектроники, а конкретно к системе связи на основе оптоволоконных кабелей. Оптические волокна в сростке расположены концентрично вокруг внутреннего грузонесущего элемента, на места сварки оптических волокон надеты защитные гильзы.

Изобретение относится к приемным устройствам для оптического волокна. Полностью автоматическое приемное устройство для оптического волокна соединено с резаком для оптического волокна.

Изобретения относится к системе обеспечения замкнутой камеры для сращивания оптических волокон в зонах повышенного риска. Система содержит замкнутую камеру и устройство продувки для продувки внутреннего пространства камеры под давлением.

Изобретение относится к системам и способам крепления волоконно-оптических кабелей к корпусам и другим конструкциям. Заявленная система крепления кабеля содержит блок крепления оболочки, имеющий участок для зажатия оболочки и блок крепления упрочняющих элементов, установленный на блоке крепления оболочки.

Изобретение относится к модульной системе крепления для волоконно-оптических кассет, набору частей для модульной системы. Технический результат - создание универсальной системы крепления для волоконно-оптических кассет с возможностью подбора ее размера и обеспечения требуемых функций управления оптическими волокнами.
Изобретение относится к области приборостроения и касается способа герметизации оптического волокна в корпусе. Способ заключается в нанесении анаэробного клея на место герметизации оптического волокна с последующим введением волокна в сквозное отверстие корпуса детали.

Изобретение относится к области устройств для установки и монтажа оптических волокон или оптических кабелей. Устройство для размещения кабеля содержит корпус, кабельную катушку и отрезок волоконно-оптического кабеля.

Изобретение относится к гибким конструкциям, предназначенным для укладки кабеля в кабелепровод. .

Изобретение относится к волоконно-оптическим устройствам. Двойная гибкая оптическая схема содержит: гибкую подложку, удерживающую множество оптических волокон; первый соединитель, оконцовывающий оптические волокна на первом конце двойной гибкой оптической схемы, и второй соединитель, оконцовывающий оптические волокна на втором конце двойной гибкой оптической схемы. Каждое из оптических волокон размещено в одном из множества отдельных выступов, сформированных гибкой подложкой, когда оптические волокна проходят от первого соединителя ко второму. Первый и второй соединители приспособлены для тестирования, когда они соединяются посредством двойной гибкой оптической схемы. Эта двойная оптическая схема способна делиться пополам после завершения тестирования для получения двух отдельных гибких оптических схем. Способ сборки гибкой оптической схемы, содержит следующие этапы: размещение множества наконечников в фиксаторе, размещение гибкой оптической схемы в фиксаторе, так чтобы оптические волокна этой гибкой оптической схемы проходили сквозь наконечники, отверждение и раскладывание оптических волокон, полировка наконечников, и удаление гибкой оптической схемы из фиксатора. Технический результат заключается в оптимизации допустимых пределов радиуса изгиба и требований к конфигурации кассеты. 3 н. и 17 з.п. ф-лы, 106 ил.

Группа изобретений относится к волоконно-оптическим линиям связи и предназначена для передачи потоков информации. Волоконно-оптическая линии связи, содержащей размещенные в трубе канала подземной кабельной канализации микрокабели, при этом микрокабели протянуты внутри микротрубок, которые сгруппированы в один или несколько пакетов. Микротрубки выполнены из полиэтилена высокой плотности с применением дополнительного средства снижения трения скольжения, при этом в качестве дополнительного средства снижения трения скольжения применены продольные бороздки на внутренней поверхности микротрубок, с образованием выступов, при этом глубина продольных бороздок выполнена из условия:hδст,где:h - глубина продольных бороздок,δст - толщина стенки микротрубки, при этом толщина стенки микротрубки выбрана из условия:δстdмк,где dмк - внутренний диаметр микротрубки.Технический результат - уменьшение трения между микротрубками и стенками трубы канала подземной кабельной канализации и между микротрубками и волоконно-оптическими микрокабелями, и между пакетами микротрубок и трубой подземной кабельной канализации. 2 н. и 2 з.п. ф-лы, 35 ил., 4 табл.

Наверх