Устройство и способ исследования горизонтальной или наклонной скважины

Группа изобретений относится к оборудованию для добычи нефти и газа, в частности к оборудованию для исследования и освоения наклонных и горизонтальных скважин, оборудованных компоновками для проведения многостадийного гидроразрыва пласта. Устройство содержит колонну НКТ, насосную установку, пакер, средство измерения параметров скважины и по меньшей мере один герметизирующий элемент, соприкасающийся со стенками обсадной колонны. В качестве насосной установки использована установка электроцентробежного насоса перевернутого типа с блоком телеметрической системы, которая спущена в колонну НКТ на грузонесущем кабеле и размещена в исследуемой горизонтальной или наклонной скважине. Герметизирующий элемент установлен снаружи НКТ за пределами установки электроцентробежного насоса. Способ включает предварительный спуск колонны НКТ в обсадную колонну с прохождением горизонтальной или наклонной скважины, спуск на грузонесущем кабеле и размещение внутри НКТ установки электроцентробежного насоса с присоединенным к нему блоком телеметрической системы на исследуемой участке с последующим поэтапным перемещением их вдоль скважины, откачку жидкости с одновременным замером параметров на каждом этапе и обработку полученных результатов. Повышается надежность и точность измерения параметров расхода, давления, температуры, обводненности, обеспечивающие возможность проведения исследований на длинных участках горизонтальных скважин. 2 н. и 2 з.п. ф-лы, 2 ил.

 

Группа изобретений относится к оборудованию для добычи нефти и газа, в частности к оборудованию для исследования и освоения наклонных и горизонтальных скважин, оборудованных компоновками для проведения многостадийного гидроразрыва пласта (МГРП).

Из уровня техники известно устройство для исследования наклонных и горизонтальных скважин, состоящее из струйного насоса, спущенного на колонне насосно-компрессорных труб (НКТ) выше кровли исследуемого пласта, пакера с центральным проходным каналом, разобщающего горизонтальный и вертикальный стволы, хвостовика с герметизирующими элементами, между которыми расположен перфорированный приемный участок, автономных манометров, размещенных на наружной части хвостовика, заглушенного со стороны забоя скважины [Патент RU №2248471 C1, МПК F04F 5/54, опубл. 20.03.2005].

Устройство работает следующим образом. На колонне НКТ устройство спускают на требуемый интервал перфорации горизонтальной скважины, затем запускают струйный насос, при помощи которого производят откачку жидкости через перфорированный участок в хвостовике, изолированный с обеих сторон при помощи герметизирующих элементов. Во время откачки автономные манометры на хвостовике фиксируют забойное давление и сохраняют показания в память, далее откачку на данном участке жидкости останавливают, перемещают хвостовик на другой участок, где повторяют процедуру откачки скважинной жидкости, фиксируя при этом изменение давления на внешней части хвостовика. После серии проведенных замеров производят подъем установки и снятие с автономных манометров показаний, по которым строят кривую восстановления давления.

Основным недостатком данного изобретения является отсутствие связи в режиме реального времени с автономными манометрами и ограниченный круг измеряемых параметров скважины.

Наиболее близким к заявляемому по технической сущности является устройство для исследования скважин, состоящее из струйного насоса с внутренним проходным каналом, спущенного на колонне НКТ, пакера с проходным каналом, хвостовика с воронкой, каротажного кабеля с герметизирующим узлом, геофизического прибора с системой датчиков для измерения параметров скважины и приспособления для его доставки с фиксирующими элементами в виде выдвигающихся элементов вращения [Патент RU №129987 U1, МПК E21B 47/01, опубл. 10.07.2013].

Исследование скважины осуществляют следующим образом. В вертикальную обсадную колонну спускают колонну НКТ с последовательно соединенными струйным насосом, пакером, хвостовиком и воронкой. Производят установку пакера в обсадной колонне, после этого на каротажном кабеле спускают геофизический прибор, пропуская его через проходной канал в струйном насосе, пакере, хвостовике и воронке, и после размещения с помощью приспособления для доставки геофизического прибора с системой датчиков в горизонтальном участке скважины герметизируют геофизический кабель внутри струйного насоса при помощи специального узла герметизации. После чего посредством струйного насоса создают разрежение в зоне под пакером, вызывая тем самым приток скважинной жидкости из горизонтального участка скважины, и фиксируют во время этого параметры температуры, давления, расхода жидкости на данном горизонтальном участке, которые передают на поверхность по геофизическому кабелю. Последовательно перемещая устройство по длине скважины, производят замеры на разных отметках.

Основными недостатками этого устройства и реализуемого с его помощью способа исследования скважины являются низкая надежность конструкции из-за необходимости использования приспособления доставки геофизического прибора с системой датчиков в скважину, а также низкая точность получаемых данных по расходу, давлению и другим параметрам, обусловленная тем, что датчики в скважине не изолированы друг от друга, а из-за ограничения по высоте подвески струйного насоса создаваемое им разрежение падает по длине горизонтального участка, что не позволяет получить достоверные данные, особенно при исследовании скважин с длинными горизонтальными участками, где снижение разрежения на горизонтальном участке будет наибольшим.

Задачей настоящего изобретения является создание надежного устройства и способа исследования горизонтальной или наклонной скважины и повышение точности измерения параметров расхода, давления, температуры, обводненности, обеспечивающее возможность проведения исследований на длинных участках скважины.

Для решения указанной задачи устройство для исследования горизонтальной или наклонной скважины, содержащее колонну НКТ, насосную установку, пакер, средство измерения параметров скважины и по меньшей мере один герметизирующий элемент, соприкасающийся со стенками обсадной колонны, согласно изобретению в качестве насосной установки содержит установку электроцентробежного насоса (УЭЦН) перевернутого типа с блоком телеметрической системы (ТМС), спущенную на грузонесущем кабеле в горизонтальный участок скважины в колонне НКТ, а герметизирующий элемент установлен снаружи НКТ за пределами установки электроцентробежного насоса.

Обсадная колонна может быть оборудована муфтами с портами гидроразрыва пласта.

В некоторых вариантах исполнения устройство может быть снабжено приемным устройством, размещенным в хвостовой части НКТ за установкой электроцентробежного насоса между двумя герметизирующими элементами, а конец НКТ заглушен.

Способ исследования скважины с помощью предлагаемого устройства предусматривает предварительный спуск колонны НКТ в обсадную колонну с прохождением горизонтальной или наклонной скважины, спуск в НКТ на грузонесущем кабеле установки электроцентробежного насоса с присоединенным к нему блоком телеметрической системы, служащим средством измерения, и размещение их внутри НКТ на исследуемом участке с последующим поэтапным совместным перемещением вдоль скважины, откачку жидкости с одновременным замером параметров на каждом этапе и обработку полученных результатов.

В отличие от прототипа в заявляемых устройстве и способе доставка устройства для исследования в горизонтальную или наклонную скважину осуществляется внутри НКТ, что исключает возможность повреждения УЭЦН в процессе исследования скважины, и в целом повышает надежность устройства. Наличие герметизирующих элементов позволяет проводить исследование конкретного участка исследуемой скважины, что существенно повышает точность измеряемых данных, а непосредственное расположение УЭЦН рядом с приемным устройством позволяет создать необходимое разрежение во время измерений на каждом участке скважины.

Сущность изобретения поясняется чертежами, где на фиг. 1 показано устройство для исследования скважины во время работы с двумя герметизирующими элементами, на фиг. 2 - то же, с одним герметизирующим элементом.

Устройство для исследования горизонтальной или наклонной скважины содержит установку электроцентробежного насоса 1 перевернутого типа с присоединенным к ней блоком ТМС 2, спущенную на грузонесущем кабеле 3 в колонну НКТ 4 (фиг. 1, 2), которая может быть выполнена гибкой (ГНКТ). Снаружи хвостовой части НКТ 4, расположенной в области горизонтальной или наклонной скважины за пределами УЭЦН 1, размещены два герметизирующих элемента 5, между которыми расположено приемное устройство 6, представляющее собой перфорированный участок НКТ 4 (фиг. 1). Герметизирующие элементы 5 опираются на стенки обсадной колонны 7 в горизонтальной скважине 8 и изолируют исследуемый участок скважины 8 с двух сторон, при этом на конце колонны НКТ 4 имеется заглушка 9. В некоторых вариантах исполнения колонна НКТ 4 может быть выполнена с одним герметизирующим элементом 5 (фиг. 2), в этом случае роль приемного устройства 6 выполняет конец колонны НКТ 4, который остается открытым.

Колонна НКТ 4 проходит вдоль обсадной колонны 7 по вертикальной скважине 10 и по горизонтальной скважине 8 в продуктивном пласте 11, которые разделены пакером 12. Обсадная колонна 7 может быть оборудована муфтами с портами ГРП 13.

Данное устройство реализует следующий способ исследования горизонтальной или наклонной скважины.

В вертикальную скважину 10 по обсадной колонне 7 спускают колонну НКТ 4, пропускают ее через пакер 12, проводят через горизонтальную скважину 8, расположенную в продуктивном пласте 11, до размещения приемного устройства 6 напротив муфты с портом ГРП 13 или зоны перфорации, через которые скважинная жидкость из пласта 11 поступает в обсадную колонну 7. После установки на НКТ герметизирующих элементов 5, изолирующих муфту с портом ГРП 13 с двух сторон, в колонну НКТ 4 спускают УЭЦН 1 с присоединенным блоком ТМС 2 на грузонесущем кабеле 3 до размещения их в непосредственной близости от приемного устройства 6. После чего запускают УЭЦН 1 для откачки жидкости и создания разрежения, и при помощи блока ТМС 2 начинают производить измерение расхода, давления, температуры, обводненности и прочих параметров, данные полученных замеров по грузонесущему кабелю 3 передаются на поверхность. По завершению комплекса замеров в области изолированного порта ГРП производят подъем УЭЦН 1 с блоком ТМС 2 на грузонесущем кабеле 3 и перемещают колонну НКТ 4 к следующей муфте с портом ГРП 13, после чего повторяют операцию спуска УЭЦН 1 с блоком ТМС 2 на грузонесущем кабеле 3 в колонну НКТ 4, запуск УЭЦН 1 и измерение параметров с помощью блока ТМС 2 и передачей их по грузонесущему кабелю 3 на поверхность. Таким же образом вышеописанные операции повторяют для последующих муфт ГРП 13.

При реализации второго варианта (фиг. 2) колонну НКТ 4 при спуске доводят до самой дальней муфты с портом ГРП 13 с возможностью размещения герметизирующего элемента 5 слева от исследуемого участка и производят установку герметизирующего элемента 5, изолирующего муфту с портом ГРП 13 с одной стороны. После этого в колонну НКТ 4 спускают УЭЦН 1 с блоком ТМС 2 на грузонесущем кабеле 3 и аналогично первому варианту при запуске УЭЦН 1 блоком ТМС 2 производят измерение параметров расхода, давления, температуры, обводненности и прочих параметров с последующей передачей их на поверхность и поэтапным размещением УЭЦН 1 с блоком ТМС 2 на уровне более близких муфт с портом ГРП 13. Переданные данные с каждой муфты ГРП 13 обрабатываются на поверхности.

Таким образом, за счет того, что доставка устройства для исследования в горизонтальную или наклонную скважину осуществляется в НКТ, надежность существенно увеличивается, а за счет изолирования исследуемого участка скважины по меньшей мере с одной стороны точность и достоверность получаемых данных улучшаются. Расположение УЭЦН непосредственно в зоне добычи позволяет создать необходимое разрежение на любом участке скважины, не зависимо от его удаленности.

1. Устройство для исследования горизонтальной или наклонной скважины, содержащее колонну НКТ, насосную установку, пакер, средство измерения параметров скважины и по меньшей мере один герметизирующий элемент, соприкасающийся со стенками обсадной колонны, отличающееся тем, что в качестве насосной установки оно содержит установку электроцентробежного насоса перевернутого типа с блоком телеметрической системы, спущенную в колонне НКТ на грузонесущем кабеле и размещенную на горизонтальном участке скважины, а герметизирующий элемент установлен снаружи НКТ за пределами установки электроцентробежного насоса.

2. Устройство по п. 1, отличающееся тем, что обсадная колонна оборудована муфтами с портами гидроразрыва пласта.

3. Устройство по п. 1, отличающееся тем, что снабжено приемным устройством, размещенным в хвостовой части НКТ за установкой электроцентробежного насоса между двумя герметизирующими элементами, при этом на конце НКТ установлена заглушка.

4. Способ исследования горизонтальной или наклонной скважины, включающий спуск насосной установки в обсадную колонну, размещение средства измерения параметров в районе исследуемого участка с последующим поэтапным перемещением вдоль скважины, откачку жидкости на каждом этапе при одновременном замере параметров и обработку полученных результатов, отличающийся тем, что через исследуемую горизонтальную или наклонную скважину в обсадной колонне предварительно пропускают колонну НКТ, в которой затем размещают насосную установку со средством измерения параметров, средство измерения параметров поэтапно перемещают вдоль скважины на исследуемый участок вместе с насосной установкой, при этом в качестве насосной установки используют установку электроцентробежного насоса перевернутого типа, а средством измерения параметров служит присоединенный к ней блок телеметрической системы.



 

Похожие патенты:

Группа изобретений относится к устройствам для установки датчиков на участки трубы в нефтегазодобывающих скважинах. Устройство включает механический зажим.

Группа изобретений относится к обнаружению подводных утечек углеводородов на морских объектах. Система содержит по меньшей мере один детектор (5) утечки, функционально подсоединенный к контроллеру (9), расположенному на подводном узле (14), система снабжена плавучим элементом (1), на котором закреплен детектор (5) утечки.

Изобретение относится к оборудованию для добычи нефти установками электроцентробежных насосов, спускаемыми в скважину на грузонесущем кабеле, и может быть использовано при промыслово-геофизических исследованиях в скважинах и каротажных работах.

Группа изобретений относится к нефтегазодобывающей отрасли, в частности к зондам, используемым при проведении подземных операций. Зонд предназначен для применения в подземном инструменте, содержащем корпус, имеющий подземную полость, подверженную воздействию внешнего давления среды, окружающей инструмент.

Группа изобретений относится к скважинным электромагнитным телеметрическим системам и способам нанесения изолирующих покрытий на элементы узлов электромагнитных телеметрических антенн.

Изобретение относится к области бурения скважин и предназначено для фиксации забойного блока телеметрической системы (ЗТС) в ориентирующем переводнике, используемого для ориентации направленного бурения.

Группа изобретений относится к нефтяной промышленности и может быть применена для доставки скважинных приборов. Способ доставки скважинных приборов к забоям бурящихся скважин сложного профиля и проведения геофизических исследований характеризуется тем, что каротажные приборы подсоединяют к приборному мосту, в верхнюю часть которого ввинчивают нижнюю трубу бурильной колонны и, посредством их наращивания, приборы опускают на заданную глубину.

Изобретение предназначено для размещения скважинного датчика давления и температуры, входящего в состав подземного скважинного оборудования. Конструкция объединяет в себе корпус, блок подвода погружного кабеля и переходник.

Группа изобретений относится к нефтегазодобывающей отрасли, в частности к инструментам, управляемым на подземном месте работы. При осуществлении способа обеспечивают возможность обнаружения по меньшей мере одного сигнала закрепляющему устройству, связанному с инструментом, применяют закрепляющее устройство для автоматической работы инструмента после задержки времени, спускают инструмент на заданное место работы в подземном пласте, вручную останавливают закрепление инструмента закрепляющим устройством с помощью по меньшей мере одного сигнала до истечения времени задержки, вручную повторно обеспечивают автоматическую работу закрепляющего устройства для закрепления в нужном положении инструмента после остановки в ответ на указанный по меньшей мере один сигнал.

Изобретение относится к области промысловой геофизики, а именно к устройствам для измерений геофизических и технологических параметров в процессе бурения и передачи их на поверхность.

Изобретение относится к области бурения скважин и предназначено для фиксации корпуса скважинных приборов забойной телеметрической системы (ЗТС) внутри вставки в колонне бурильных труб. Устройство включает крестовину со срезными штифтами, изготовленную с выступами, входящими в пазы, выполненные внутри вставки в колонне бурильных труб, и зафиксированную от осевого и радиального перемещения резьбовой поджимной гайкой. Крестовина выполнена из двух составных частей и состоит из установочного кольца с выступами, входящими в пазы, выполненные внутри указанной вставки в колонне бурильных труб и корпуса скважинных приборов ЗТС. Корпус скважинных приборов ЗТС, выполненный с выступами и отверстиями в указанных выступах, установлен внутри установочного кольца с выступами, выполненного с отверстиями, соосными отверстиям, выполненным в выступах корпуса скважинного прибора ЗТС. В указанные соосные отверстия установлены срезные штифты. Обеспечивается возможность неоднократного монтажа и демонтажа скважинных приборов в колонну бурильных труб без нарушения целостности устройства фиксации, что снижает трудозатраты. 1 з.п. ф-лы, 2 ил.

Группа изобретений относится к горному делу и может быть применена для проведения геофизических исследований без извлечения бурового инструмента из скважины. Устройство по первому варианту включает сборку скважинных приборов, снабженную транзитной линией электронной связи, установленную в колонне бурильной или насосно-компрессорной труб, включающую соосно установленные кожух для защиты и транспортировки сборки приборов и направляющую трубу с расположенным в нижней части ограничителем хода и отверстиями над ним, камеру управления в виде полости, образованной между кожухом и направляющей трубой, сборку приборов, выполненную в верхней части с плечом и хвостовиком и жестко скрепленную в нижнем окончании с бурильной трубой, отстыковочно-стыковочное устройство с цанговым захватом, установленное в верхней части в кожух посредством муфты с отверстиями, жестко скрепленной с бурильной трубой, конусную втулку, установленную в направляющей трубе для возможности взаимодействия с цанговым захватом. По второму варианту устройство включает соосно установленные защитный кожух, с возможностью перемещения вдоль колонны, направляющую трубу с каналами внутри для прохода промывочной жидкости к бурильному инструменту и каналами для управления перемещением кожуха, сборку приборов, закрепленную в верхней части к направляющей трубе, а в нижней - посредством муфты - к бурильной трубе. Муфта выполнена с подпружиненными шариками для фиксации защитного кожуха при спуске и каналами для прохода промывочной жидкости во время бурения. На внутренней поверхности кожуха выполнены кольцевые выступы, образующие верхнее и нижнее плечо. Площадь нижнего плеча больше, чем площадь верхнего плеча. Обеспечивается возможность исследования без извлечения бурового инструмента, сокращается время на проведение исследований, снижается аварийность, повышается информативность. 2 н.п. ф-лы, 2 ил.

Группа изобретений относится к горному делу и может быть применена для проведения геофизических исследований без извлечения бурового инструмента из скважины. Устройство по первому варианту включает сборку скважинных приборов, снабженную транзитной линией электронной связи, установленную в колонне бурильной или насосно-компрессорной труб, включающую соосно установленные кожух для защиты и транспортировки сборки приборов и направляющую трубу с расположенным в нижней части ограничителем хода и отверстиями над ним, камеру управления в виде полости, образованной между кожухом и направляющей трубой, сборку приборов, выполненную в верхней части с плечом и хвостовиком и жестко скрепленную в нижнем окончании с бурильной трубой, отстыковочно-стыковочное устройство с цанговым захватом, установленное в верхней части в кожух посредством муфты с отверстиями, жестко скрепленной с бурильной трубой, конусную втулку, установленную в направляющей трубе для возможности взаимодействия с цанговым захватом. По второму варианту устройство включает соосно установленные защитный кожух, с возможностью перемещения вдоль колонны, направляющую трубу с каналами внутри для прохода промывочной жидкости к бурильному инструменту и каналами для управления перемещением кожуха, сборку приборов, закрепленную в верхней части к направляющей трубе, а в нижней - посредством муфты - к бурильной трубе. Муфта выполнена с подпружиненными шариками для фиксации защитного кожуха при спуске и каналами для прохода промывочной жидкости во время бурения. На внутренней поверхности кожуха выполнены кольцевые выступы, образующие верхнее и нижнее плечо. Площадь нижнего плеча больше, чем площадь верхнего плеча. Обеспечивается возможность исследования без извлечения бурового инструмента, сокращается время на проведение исследований, снижается аварийность, повышается информативность. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области роторного бурения скважин и может быть использовано при бурении наклонно направленных и горизонтальных скважин. Устройство обеспечения геостационарности навигационного оборудования телеметрической системы мониторинга траектории ствола скважины включает пустотелый цилиндрический герметичный корпус, содержащий основание, выполненное с возможностью вращения. На основании установлены навигационные датчики. В корпусе установлены датчик частоты вращения, моментный двигатель, в статоре моментального двигателя выполнено цилиндрическое отверстие, в которое установлены токопровод и первая втулка, соединенная с основанием. С обеих сторон корпуса расположены два амортизатора с прокладками. Первый амортизатор с одной стороны закреплен на моментном двигателе, а с другой стороны выполнен с возможностью жесткого соединения, например, с оборудованием телеметрической системы. Вторая втулка содержит подшипник вращения, жестко связана со вторым амортизатором и через подшипник вращения соединена с основанием. Второй амортизатор выполнен с возможностью жесткого соединения, например, с силовой частью компоновки низа бурильной колонны. Жесткость амортизационных прокладок в поперечном направлении превышает продольную. Техническим результатом является повышение надежности работы устройства, повышение стабильности геостационарного положения навигационных датчиков, повышение точности определения пространственного положения бурового инструмента. 1 ил.

Изобретение относится к области роторного бурения скважин и может быть использовано при бурении наклонно направленных и горизонтальных скважин. Устройство обеспечения геостационарности навигационного оборудования телеметрической системы мониторинга траектории ствола скважины включает пустотелый цилиндрический герметичный корпус, содержащий основание, выполненное с возможностью вращения. На основании установлены навигационные датчики. В корпусе установлены датчик частоты вращения, моментный двигатель, в статоре моментального двигателя выполнено цилиндрическое отверстие, в которое установлены токопровод и первая втулка, соединенная с основанием. С обеих сторон корпуса расположены два амортизатора с прокладками. Первый амортизатор с одной стороны закреплен на моментном двигателе, а с другой стороны выполнен с возможностью жесткого соединения, например, с оборудованием телеметрической системы. Вторая втулка содержит подшипник вращения, жестко связана со вторым амортизатором и через подшипник вращения соединена с основанием. Второй амортизатор выполнен с возможностью жесткого соединения, например, с силовой частью компоновки низа бурильной колонны. Жесткость амортизационных прокладок в поперечном направлении превышает продольную. Техническим результатом является повышение надежности работы устройства, повышение стабильности геостационарного положения навигационных датчиков, повышение точности определения пространственного положения бурового инструмента. 1 ил.
Наверх