Способ получения 10,14-бис(о,м,п-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов



Способ получения 10,14-бис(о,м,п-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов
Способ получения 10,14-бис(о,м,п-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов
Способ получения 10,14-бис(о,м,п-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов
Способ получения 10,14-бис(о,м,п-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов
Способ получения 10,14-бис(о,м,п-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов
Способ получения 10,14-бис(о,м,п-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов
Способ получения 10,14-бис(о,м,п-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов
Способ получения 10,14-бис(о,м,п-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов
Способ получения 10,14-бис(о,м,п-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов
Способ получения 10,14-бис(о,м,п-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов
Способ получения 10,14-бис(о,м,п-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов
Способ получения 10,14-бис(о,м,п-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов
Способ получения 10,14-бис(о,м,п-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов
Способ получения 10,14-бис(о,м,п-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов
Способ получения 10,14-бис(о,м,п-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов
Способ получения 10,14-бис(о,м,п-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов
Способ получения 10,14-бис(о,м,п-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов
Способ получения 10,14-бис(о,м,п-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов
Способ получения 10,14-бис(о,м,п-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов
Способ получения 10,14-бис(о,м,п-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов
Способ получения 10,14-бис(о,м,п-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов
Способ получения 10,14-бис(о,м,п-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов

 


Владельцы патента RU 2632667:

Федеральное государственное бюджетное учреждение науки Институт нефтехимии и катализа Российской академии наук (RU)

Изобретение относится к способу получения 10,14-бис(о,м,n-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов общей формулы (1):

, которые могут найти применение в качестве препаратов, обладающих противомалярийной, противоопухолевой и антигельминтной активностью. Технический результат: разработан новый способ получения 10,14-бис(о,м,n-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов, который позволяет получать индивидуальные продукты. 2 табл., 1 пр.

 

Предлагаемое изобретение относится к области органической химии, конкретно, к способу получения 10,14-бис(о,м,n-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов (1):

N-Содержащие тетраоксаны применяются в медицине в качестве препаратов, обладающих противомалярийной (Opsenica I., Opsenica D., Lanteri C.A., Anova L., Milhous W.K., Smith K.S., Solaja B.A. // J. Med. Chem. - 2008. - Vol. 51. - P. 2261-2266), противоопухолевой и антигельминтной активностью (Vennerstrom J.L., Arbe-Barnes S., Brun R., Chavman S.A., Chiv F.C.K. // Nature. - 2004. - Vol. 430. - P. 900-904).

Известен способ (Hye-Sook Kim, Yasuharu Shibata, Yusuke Wataya, Kaoru Tsuchiya, Araki Masuyama, Masatomo Nojima // J. Med. Chem. - 1999. - Vol. 42. - P. 2604-2609) получения 1,2,4,5,7-пентаоксаканов формулы (2) с выходом 12% ацидолизом смеси 1-фенилциклопентена с перекисью водорода и бензальдегидом по схеме:

Известный способ не позволяет получать 10,14-бис(о,м,n-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканы общей формулы (1).

Известен способ (Kevin J. McCullough, Yoshihiro Ushigoe, Shogo Tanaka, Shin-ichi Kawamura, Araki Masuyama, Masatomo Nojiama // J. Chem. Soc., Perkin Trans. - 1998 - Vol. 1. - P. 3059-3064) получения производного 1,2,4,6,8-пентаоксакана формулы (3) с выходами 23-34% взаимодействием α-алкоксигидропероксидов с алифатическими альдегидами в условиях кислотного катализа с последующим добавлением формальдегида по схеме:

Известным способом не могут быть получены 10,14-бис(о,м,n-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканы общей формулы (1).

Известен способ (Hye-Sook Kim, Kaoru Tsuchiya, Yasuharu Shibata, Yusuke Wataya, Yoshihiro Ushigoe, Araki Masuyama, Masatomo Nojima, Kevin J. McCullough // J. Chem. Soc., Perkin Trans. - 1999 - Vol. 1. - P. 1867-1870) получения 1,2,4,5,7-пентаоксакана формулы (3) с выходом 15% озонолизом производного индена с образованием бис-гидропероксида, который превращают в бис-силилидизохроман, последний подвергают взаимодействию с бензальдегидом по схеме:

Таким образом, в литературе отсутствуют сведения о селективном получении 10,14-бис(о,м,n-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов формулы (1).

Предлагается новый способ селективного получения 10,14-бис(о,м,n-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов общей формулы (1).

Сущность способа заключается во взаимодействии 1,1-бис-[N-(пероксиметил)-N-(о,м,n-галоген(хлор-, бром-)фенил)]циклогексана с формальдегидом в присутствии катализатора Sm(NO3)3⋅6H2O, взятыми в мольном соотношении 1,1-бис-[N-(пероксиметил)-N-(о,м,n-галогенфенил)]циклогексан : формальдегид : Sm(NO3)3⋅6H2O = 10:20:(0.3-0.7), предпочтительно 10:20:0.5, при комнатной температуре (20°C) и атмосферном давлении в тетрагидрофуране (ТГФ) в качестве растворителя в течение 4-6 ч. Выход 10,14-бис(о,м,n-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов (1) составляет 80-91%. Реакция протекает по схеме:

10,14-Бис(о,м,n-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканы (1) образуются только лишь с участием формальдегида и 1,1-бис-[N-(пероксиметил)-N-(о,м,n-галогенфенил)]циклогексана. В присутствии других альдегидов (например, уксусный альдегид, бензальдегид) целевые продукты (1) не образуются. Без катализатора реакция не идет.

Проведение указанной реакции в присутствии катализатора Sm(NO3)3⋅6H2O больше 7 мол. % не приводит к существенному увеличению выхода целевого продукта (1). Использование катализатора Sm(NO3)3⋅6H2O менее 3 мол. % снижает выход (1), что связано, возможно, со снижением каталитически активных центров в реакционной массе. Реакции проводили при температуре 20°C. При температуре выше 20°C (например, 60°C) снижается селективность реакции и увеличиваются энергозатраты, а при температуре ниже 20°C (например, -10°C) снижается скорость реакции. Опыты проводили в ТГФ, т.к. в нем хорошо растворяются исходные реагенты.

Существенные отличия предлагаемого способа

В известном способе реакция идет с участием в качестве исходных соединений озонида, перекиси водорода, силильных производных, бензальдегида. Известный способ не позволяет получать пентаоксаспироалканы общей формулы (1).

В предлагаемом способе в качестве исходных реагентов применяются 1,1-бис-[N-(пероксиметил)-N-(о,м,n-галогенфенил)]циклогексаны и формальдегид, a Sm(NO3)3⋅6H2O применяется в каталитических количествах. В отличие от известных способов предлагаемый способ позволяет синтезировать индивидуальные 10,14-бис(о,м,n-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканы (1).

Способ поясняется следующими примерами.

ПРИМЕР 1. Способ получения 1,1-бис-[N-(пероксиметил)-N-(o-хлорфенил)]циклогексана

В сосуд Шленка, установленный на магнитной мешалке, при температуре ~20°C помещают 5 мл H2O, 1.46 мл (20 ммоль) водного раствора (37%) формальдегида и 1.48 г (10 ммоль) 1,1-дигидропероксициклогексана, перемешивают в течение 30 мин, добавляют 1.27 (10 ммоль) о-хлоранилина. Реакционную смесь перемешивают при температуре ~20°C в течение 2 ч, экстрагируют хлороформом, выделяют 1,1-бис-[N-(пероксиметил)-N-(о-хлорфенил)]циклогексан с выходом 85%.

Другие примеры, подтверждающие способ, приведены в табл. 1.

ПРИМЕР 2. В сосуд Шленка, установленный на магнитной мешалке, при температуре ~20°C помещают 5 мл тетрагидрофурана, 1.46 мл (20 ммоль) водного раствора (37%) формальдегида и 4.27 г (10 ммоль) 1,1-бис-[N-(пероксиметил)-N-(о-хлорфенил)]циклогексана, затем добавляют 0.062 г (0.5 ммоль) Sm(NO3)2⋅6H2O. Реакционную смесь перемешивают при температуре ~20°C в течение 5 ч, выделяют 10,14-бис(о-хлорфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадекан с выходом 86%.

Другие примеры, подтверждающие способ, приведены в табл. 2.

Все опыты проводили в ТГФ при комнатной температуре (~20°C).

Спектральные характеристики 1,1-бис-[N-(пероксиметил)-N-(о-хлорфенил)]циклогексана:

Спектр ЯМР 1H (δ, м.д., DMSO-d6, J/Гц): 1.32-1.39 (м, 3Н, H2C); 1.62-1.68 (м, 2Н, H2C); 5.55 (д, 4Н, J=10 Гц, H2C); 6.94-7.08 (м, 8Н, HC). Спектр ЯМР 13C (δ, м.д., J/Гц): 22.44, 25.32, 30.54, 78.66, 110.85, 111.42, 113.55, 118.10, 121.31, 135.84, 146.91.

Спектральные характеристики 1,1-бис-[N-(пероксиметил)-N-(м-хлорфенил)]циклогексана:

Спектр ЯМР 1H (δ, м.д., DMSO-d6, J/Гц): 1.30-1.38 (м, 3H, H2C); 1.60-1.66 (м, 2Н, H2C); 5.03 (д, 4Н, J=10 Гц, H2C); 6.90-7.04 (м, 8Н, HC). Спектр ЯМР 13C (δ, м.д., J/Гц): 22.33, 25.42, 30.56, 80.06, 109.87, 111.55, 113.39, 119.40, 122.51, 131.35, 146.48.

Спектральные характеристики 1,1-бис-[N-(пероксиметил)-N-(n-хлорфенил)]циклогексана:

Спектр ЯМР 1H (δ, м.д., DMSO-d6, J/Гц): 1.31-1.37 (м, 3H, H2C); 1.61-1.68 (м, 2Н, H2C); 5.04 (д, 4Н, J=10 Гц, H2C); 6.66-6.98 (м, 8Н, HC). Спектр ЯМР 13C (δ, м.д., J/Гц): 22.64, 25.04, 30.02, 81.28, 108.82, 111.23, 113.16, 119.40, 124.23, 130.82, 146.68.

Спектральные характеристики 1,1-бис-[N-(пероксиметил)-N-(о-бромфенил)]циклогексана:

Спектр ЯМР 1H (δ, м.д., DMSO-d6, J/Гц): 1.33-1.40 (м, 3H, H2C); 1.65-1.70 (м, 2Н, H2C); 5.05 (д, 4Н, J=10 Гц, H2C); 6.60-6.90 (м, 8Н, HC). Спектр ЯМР 13C (δ, м.д., J/Гц): 22.52, 24.29, 33.27, 76.22, 106.52, 110.54, 114.46, 120.40, 128.63, 136.80, 148.58.

Спектральные характеристики 1,1-бис-[N-(пероксиметил)-N-(м-бромфенил)]циклогексана:

Спектр ЯМР 1H (δ, м.д., DMSO-d6, J/Гц): 1.31-1.39 (м, 3H, H2C); 1.61-1.69 (м, 2Н, H2C); 5.06 (д, 4Н, J=10 Гц, H2C); 6.80-7.15 (м, 8Н, HC). Спектр ЯМР 13C (δ, м.д., J/Гц): 23.32, 25.49, 35.76, 78.20, 107.12, 111.44, 114.55, 121.90, 128.65, 137.14, 148.66.

Спектральные характеристики 1,1-бис-[N-(пероксиметил)-N-(n-бромфенил)]циклогексана:

Спектр ЯМР 1H (δ, м.д., DMSO-d6, J/Гц): 1.31-1.39 (м, 3H, H2C); 1.61-1.69 (м, 2Н, H2C); 5.04 (д, 4Н, J=10 Гц, H2C); 6.77-7.06 (м, 8Н, HC). Спектр ЯМР 13C (δ, м.д., J/Гц): 23.30, 25.40, 35.21, 79.11, 108.13, 112.23, 115.66, 121.90, 128.98, 136.66, 147.81.

Спектральные характеристики 10,14-бис(о-хлорфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадекана:

Спектр ЯМР 1H (δ, м.д., DMSO-d6, J/Гц): 1.30-1.38 (м, 3H, H2C); 1.64-1.65 (м, 2Н, H2C); 5.35-5.38 (м, 4Н, H2C); 5.73 (д, 4Н, J=10 Гц, H2C); 6.64-6.86 (м, 8Н, HC). Спектр ЯМР 13C (δ, м.д., J/Гц): 22.44, 25.32, 30.54, 77.86, 85.66, 109.43, 110.85, 111.42, 118.10, 121.31, 135.84, 146.91.

Спектральные характеристики 10,14-бис(м-хлорфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадекана:

Спектр ЯМР 1H (δ, м.д., DMSO-d6, J/Гц): 1.34-1.42 (м, 3H, H2C); 1.68-1.69 (м, 2Н, H2C); 5.35-5.41 (м, 4Н, H2C); 5.74 (д, 4Н, J=10 Гц, H2C); 6.62-7.10 (м, 8Н, HC). Спектр ЯМР 13C (δ, м.д., J/Гц): 22.51, 25.34, 30.62, 78.92, 86.17, 110.77, 114.07, 118.91, 129.16, 138.32, 146.78.

Спектральные характеристики 10,14-бис(n-хлорфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадекана:

Спектр ЯМР 1H (δ, м.д., DMSO-d6, J/Гц): 1.34-1.42 (м, 3H, H2C); 1.68-1.69 (м, 2Н, H2C); 5.32-5.37 (м, 8Н, H2C); 5.73 (д, 4Н, J=10 Гц, H2C); 7.71-7.49 (м, 4Н, HC). Спектр ЯМР 13C (δ, м.д., J/Гц): 22.62, 24.92, 29.49, 78.55, 88.13, 106.47, 111.11, 114.07, 119.34, 130.45, 138.32, 148.94.

Спектральные характеристики 10,14-бис(о-бромфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадекана:

Спектр ЯМР 1H (δ, м.д., DMSO-d6, J/Гц): 1.32-1.40 (м, 3H, H2C); 1.68-1.76 (м, 2Н, H2C); 5.33-5.34 (м, 8Н, H2C); 5.70 (д, 4Н, J=10 Гц, H2C); 6.60 (т, 2Н, J=10 Гц HC); 6.69 (т, 2Н, J=10 Гц HC); 7.13 (т, 2Н, J=10 Гц HC); 7.27 (д, 2Н, J=10 Гц HC). Спектр ЯМР 13C (δ, м.д., J/Гц): 22.46, 25.33, 30.54, 78.38, 88.05, 109.35, 113.44, 118.42, 119.02, 128.18, 129.42, 142.64.

Спектральные характеристики 10,14-бис(м-бромфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадекана:

Спектр ЯМР 1H (δ, м.д., DMSO-d6, J/Гц): 1.32-1.40 (м, 3H, H2C); 1.67-1.69 (м, 2Н, H2C); 5.33-5.34 (м, 8Н, H2C); 5.70 (д, 4Н, J=10 Гц, H2C); 6.56-7.02 (м, 8Н, HC). Спектр ЯМР 13C (δ, м.д., J/Гц): 22.44, 25.30, 30.57, 78.44, 87.54, 109.01, 110.27, 112.94, 116.92, 130.81, 134.03, 148.54.

Спектральные характеристики 10,14-бис(n-бромфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадекана:

Спектр ЯМР 1H (δ, м.д., DMSO-d6, J/Гц): 1.30-1.38 (м, 3H, H2C); 1.65-1.68 (м, 2Н, H2C); 5.33-5.36 (м, 8Н, H2C); 5.73 (д, 4Н, J=10 Гц, H2C); 6.62-6.74 (м, 8Н, HC). Спектр ЯМР 13C (δ, м.д., J/Гц): 22.26, 25.46, 30.98, 78.36, 86.94, 109.00, 111.37, 113.89, 117.88, 125.80, 133.41, 148.50.

Способ получения 10,14-бис(о,м,n-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов общей формулы (1):

отличающийся тем, что 1,1-бис-[N-(пероксиметил)-N-(о,м,n-галоген(хлор-, бром-)фенил)]циклогексаны подвергают взаимодействию с формальдегидом в присутствии катализатора Sm(NO3)3⋅6H2O, при мольном соотношении 1,1-бис-[N-(пероксиметил)-N-(о,м,n-галоген]циклогексан : формальдегид : Sm(NO3)3 ⋅ 6H2O = 10:20:(0.3-0.7), при комнатной температуре (20°C) и атмосферном давлении в тетрагидрофуране в качестве растворителя в течение 4-6 ч.



 

Похожие патенты:

Настоящее изобретение относится к соединениям, образующим комплексы, общей формулы ,а также их применению и получению. Технический результат: получены новые соединения формулы (I), а также их комплексы, которые могут применяться для получения фармацевтической композиции для профилактики и лечения отравления стронцием, оловом или свинцом.

Изобретение относится к композиции на основе полимера, включающей сложный полиэфир и циклический карбодиимид. Предложена композиция на основе полимера для формованных изделий, включающая сложный полиэфир (компонент А), концевая группа которого модифицирована, и соединение, включающее циклическую структуру только с одной карбодиимидной группой, первый атом азота и второй атом азота которой связаны вместе с помощью связующей группы в циклической структуре (компонент В).

Настоящее изобретение относится к области органической химии, а именно к новым 4-замещенным-N-фенил-1,8-нафталимидам, содержащим в N-арильном ядре остаток краун-эфира (с различной комбинацией атомов кислорода, азота и серы) общей формулы (I), где R1=NO2, Br, NH2, OCH3, NHCOCH3, Ia: Rl=NO2, X=S, n=1; Ib: R1=NO2, x=NCH3, n=1; Ic: R1=NO2, X=NCH3, n=2; Id: R1=Br, X=NCH3, n=2; Ie: R1=NH2, X=S, n=1; If: R1=NHCOCH3, X=S, n=1; Ig: R1=OMe, X=S, n=1; Ih: R1=OMe, X=NCH3, n=1; Ii: R1=OMe, X=NCH3, n=2, где соединения If-Ii проявляют свойства флуоресцентных сенсоров на катионы щелочно-земельных, переходных и тяжелых металлов, а соединения Ia-Ie являются промежуточными соединениями в процессе синтеза соединений If-Ii.

Изобретение относится к новому циклическому карбодиимидному соединению, представленному следующей формулой (i): (где X представляет собой любую из двухвалентных групп, представленных следующими формулами (i-1)-(i-3), или четырехвалентную группу, представленную следующей формулой (i-4), когда X является двухвалентным, q имеет значение 0, и когда X является четырехвалентным, q имеет значение 1, и Ar1-Ar4, каждый независимо, представляют собой ароматическую группу и могут быть замещены алкильной группой, содержащей от 1 до 6 атомов углерода, или фенильной группой) (i-1), где n представляет собой целое число, имеющее значение от 1 до 6, где m и n, каждый независимо, представляют собой целое число, имеющее значение от 0 до 3, где R1 и R2, каждый независимо, представляет собой алкильную группу, содержащую от 1 до 6 атомов углерода, или фенильную группу, которое является полезным в качестве агента замыкания конца цепи полимерных соединений, а именно агента захвата для кислотной группы.

Изобретение относится к новому криптофициновому соединению формулы 1, в которой Аr представляет метил, или фенил, или любую простую незамещенную, или замещенную ароматическую, или гетероароматическую группу; R1 представляет галоген; R2 представляет ОН или R1 и R2 могут объединяться вместе с образованием эпоксидного кольца, азиридинового кольца; R1 и R2 могут объединяться вместе с образованием двойной связи между C18 и С19; R3 представляет низшую алкильную группу; R4 и R5 представляют Н; или R4 и R5 могут объединяться вместе с образованием двойной связи между С13 и С14; R6 представляет бензильную, гидроксибензильную (оксибензильную), алкоксибензильную, галоидоксибензильную, дигалоидоксибензильную, галоидалкоксибензильную или дигалоидалкоксибензильную группу; R7, R8, R9 и R10 каждый независимо представляют Н или низшую алкильную группу; и Х и Y каждый независимо представляют О, NH.

"6, 7 // 1363797

Изобретение относится к гетероциклическим соединениям, в частности к получению 1,7-диаза-4,10,13-триоксациклопентадекана (I), которьш используется в качестве промежуточного соединения в синтезе различных макроциклических систем.
Наверх