Устройство идентификации параметров динамических звеньев информационно-управляющих систем

Устройство идентификации параметров динамических звеньев информационно-управляющих систем содержит тринадцать блоков формирования функций, шестнадцать блоков умножения, два блока транспонирования, пять блоков формирования разности, шесть блоков интегрирования, блок дифференцирования, блок формирования суммы, соединенные определенным образом. Обеспечивается увеличение быстродействия в процессе идентификации параметров динамических звеньев информационно-управляющих систем. 5 ил.

 

Изобретение относится к измерительной технике и предназначено для определения параметров динамических звеньев информационно-управляющих систем и может быть использовано для уточнения динамики модели конкретного динамического звена в реальном масштабе времени.

Известно устройство идентификации параметров динамических систем, в основе которого лежит фильтр Калмана [1]. Его эффективное функционирование возможно в случае априорной определенности законов распределения внешних воздействий, что является существенным недостатком.

Наиболее близким по технической сущности к заявленному изобретению можно отнести устройство идентификации параметров динамических систем на основе вариационных принципов [2]. Однако известное устройство имеет сложную схемную реализацию, что объясняется задействованием функциональных блоков одновременно для реализации всех четырех уравнений алгоритма идентификации, что приводит к последовательной обработке данных и как следствие уменьшению быстродействия в процессе идентификации указанным устройством.

Цель изобретения - увеличить быстродействие в процессе идентификации параметров динамических звеньев информационно-управляющих систем.

Указанный технический результат достигается за счет декомпозиции уравнений идентификации на подсистемы, каждая из которых реализуется параллельно и отдельными блоками в составе устройства. Устройство идентификации параметров сообщений информационно-управляющих систем содержит следующие блоки: первый блок формирования функции z, второй блок формирования функции Р, третий блок формирования функции G, четвертый блок формирования функции х, пятый блок формирования функции , шестой блок формирования функции , седьмой блок формирования функции , восьмой блок формирования функции , девятый блок формирования функции , десятый блок формирования функции , одиннадцатый блок формирования функции , двенадцатый блок формирования функции и тринадцатый блок формирования функции ; первый, второй, третий, четвертый, пятый, шестой, седьмой, восьмой, девятый, десятый, одиннадцатый, двенадцатый, тринадцатый, четырнадцатый, пятнадцатый и шестнадцатый блоки умножения; первый и второй блоки транспонирования; первый, второй, третий, четвертый и пятый блоки формирования разности; первый, второй, третий, четвертый, пятый и шестой блоки интегрирования; первый блок дифференцирования по ∂х; первый блок формирования суммы.

Сущность изобретения поясняется фиг. 1-фиг. 5, где представлены: первый, второй, третий и четвертый блоки формирования функций z, P, G, х соответственно.

На фигуре 1 представлена система функций z, P, G, х, формирующих процедуру идентификации, которая содержит: первый блок хранения констант 1.1; первый блок формирования функции z 2.1; второй блок формирования функции Р 2.2; третий блок формирования функции G 2.3; четвертый блок формирования функции х 2.4. При этом на информационный вход первого блока хранения констант, который является входом устройства, поступает значение наблюдаемой величины, первый информационный выход которого соединен с информационным входом первого блока формирования функции z, второй информационный выход соединен с информационным входом второго блока формирования функции Р, третий информационный выход соединен с информационным входом третьего блока формирования функции G, четвертый информационный выход соединен с информационным входом четвертого блока формирования функции х; информационный выход первого блока формирования функции z, который является выходом устройства, соединен с информационным входом первого блока хранения констант; информационные выходы второго, третьего и четвертого блоков формирования функции P, G, x соответственно соединены с информационным входом первого блока хранения констант.

На фигуре 2 представлена структурная схема первого блока формирования функции z, который содержит: первый блок транспонирования 4.1; пятый блок формирования функции 2.5; первый блок умножения 3.1; второй блок умножения 3.2; шестой блок формирования функции 2.6; первый блок формирования разности 5.1; третий блок умножения 3.3; четвертый блок умножения 3.4; первый блок интегрирования 6.1. При этом информационный вход первого блока формирования функции z соединен с первым информационным входом первого блока транспонирования, информационным входом пятого блока формирования функции , информационным входом шестого блока формирования функции , информационным входом первого блока формирования разности, со вторым информационным входом третьего блока умножения; информационный выход первого блока транспонирования соединен со вторым информационным входом первого блока умножения, выход которого соединен с первым информационным входом второго блока умножения; информационный выход пятого блока формирования функции соединен со вторым информационным входом второго блока умножения; информационный выход шестого блока формирования функции соединен со вторым информационным входом первого блока формирования разности, информационный выход которого соединен с первым информационным входом третьего блока умножения; информационные выходы второго и третьего блоков умножения соединены с первым и вторым информационными входами четвертого блока умножения соответственно, выход которого соединен с информационным входом первого блока интегрирования; с выхода первого блока интегрирования снимается значение .

На фигуре 3 представлена структурная схема второго блока формирования функции Р 2.2, который содержит: пятый блок умножения 3.5; шестой блок умножения 3.6; второй блок транспонирования 4.2; седьмой блок формирования функции 2.7; седьмой блок умножения 3.7; восьмой блок формирования функции 2.8; восьмой блок умножения 3.8; первый блок дифференцирования по ∂х 7.1; девятый блок умножения 3.9; десятый блок умножения 3.10; одиннадцатый блок умножения 3.11; третий блок формирования разности 5.3; второй блок формирования разности 5.2; второй блок интегрирования 6.2. При этом информационный вход блока формирования функции Р соединен с информационными входами седьмого и восьмого блоков формирования функций и соответственно, вторым блоком транспонирования, первым и вторым информационными входами пятого и десятого блоков умножения, первым информационным входом шестого блока умножения и второго блока разности, вторым информационным входом седьмого блока умножения; информационный выход седьмого блока формирования функции соединен со вторым информационным входом второго блока формирования разности, выход которого соединен с первым информационным входом седьмого блока умножения, выход которого соединен с информационным входом восьмого блока умножения; информационный выход восьмого блока формирования функции соединен со вторым информационным входом восьмого блока умножения; информационный выход второго блока транспонирования соединен со вторым информационным входом шестого блока умножения, выход которого соединен с первым информационным входом девятого блока умножения; информационный выход десятого блока умножения соединен с первым информационным входом одиннадцатого блока умножения; информационный выход пятого блока умножения соединен с первым информационным входом третьего блока формирования разности; информационный выход восьмого блока умножения соединен с информационным входом первого блока дифференцирования по ∂х, выход которого соединен со вторым информационным входом девятого блока умножения, выход которого соединен со вторым информационным входом одиннадцатого блока умножения, выход которого соединен со вторым информационным входом третьего блока формирования разности, выход которого соединен с информационным входом второго блока интегрирования; с выхода второго блока интегрирования снимается значение P.

На фигуре 4 представлена структурная схема третьего блока формирования функции G 2.3, который содержит: девятый блок формирования функции 2.9; двенадцатый блок умножения 3.12; десятый блок формирования функции 2.10; тринадцатый блок умножения 3.13; первый блок формирования суммы 8.1; третий блок интегрирования 6.3; четвертый блок интегрирования 6.4. При этом информационный вход третьего блока формирования функции G соединен с информационным входом девятого и десятого блоков формирования функции и соответственно, вторыми информационными входами двенадцатого и тринадцатого блоков умножения, третьим информационным входом первого блока формирования суммы; информационный выход девятого блока формирования соединен с первым информационным входом двенадцатого блока умножения, выход которого соединен с первым информационным входом первого блока формирования суммы; информационный выход десятого блока формирования функции соединен с первым информационным входом тринадцатого блока умножения, выход которого соединен со вторым информационным входом первого блока формирования суммы, информационный выход которого соединен с информационным входом третьего блока интегрирования, выход которого соединен с информационным входом четвертого блока интегрирования; с выхода четвертого блока интегрирования снимается значение G.

На фигуре 5 представлена структурная схема четвертого блока формирования функции 2.4, который содержит: одиннадцатый блок формирования функции 2.11; двенадцатый блок формирования функции 2.12; четвертый блок формирования разности 5.4; тринадцатый блок формирования функции 2.13; четырнадцатый блок умножения 3.14; пятнадцатый блок умножения 3.15; шестнадцатый блок умножения 3.16; пятый блок формирования разности 5.5; пятый блок интегрирования 6.5; шестой блок интегрирования 6.6. При этом информационный вход четвертого блока формирования функции соединен с информационными входами одиннадцатого, двенадцатого и тринадцатого блоков формирования функций , , соответственно, первым информационным входом четвертого блока формирования разности, вторыми информационными входами четырнадцатого и шестнадцатого блоков умножения; первый информационный выход тринадцатого блока формирования функции соединен со вторым информационным входом четвертого блока формирования разности, а второй информационный выход соединен с первым информационным входом четырнадцатого блока умножения, выход которого соединен с первым информационным входом пятнадцатого блока умножения; информационный выход двенадцатого блока формирования функции соединен со вторым информационным входом пятнадцатого блока умножения, выход которого соединен с первым информационным входом шестнадцатого блока умножения, выход которого соединен со вторым информационным входом пятого блока формирования разности; информационный выход одиннадцатого блока формирования функции соединен с первым информационным входом пятого блока формирования разности, выход которого соединен с информационным входом пятого блока интегрирования, выход которого соединен с информационным входом шестого блока интегрирования; с выхода шестого блока интегрирования снимается значение .

Пояснить работу устройства позволяют следующие математические выкладки [3-5]:

Пусть уравнение состояния динамической системы известно и имеет следующий вид

где - аналог обобщенной координаты и скорости динамической системы,

z∈Rm - вектор неизвестных постоянных параметров,

- вектор-функция, непрерывная вместе со своими частными производными,

n, m - натуральные числа.

Динамика идентифицируемых параметров z описывается уравнением

где η∈Rm - вектор неизвестных неслучайных возмущений, удовлетворяющий требованиям физической реализуемости .

Уравнение наблюдения имеет вид

y=H(x, t)+n(t),

где y∈Rk - вектор наблюдения,

H(x, t) - непрерывная вместе с частными производными вектор-функция,

k - натуральное число,

n(t) - вектор белого гауссовского шума.

Поставим задачу определения оценки вектора z из условия минимума функционала невязки

Согласно [5] для рассмотренной постановки задачи получены рекуррентные уравнения последовательной идентификации, которые имеют вид

где N - матрица односторонней спектральной плотности шума наблюдения,

G - матрица чувствительности системы по вектору параметров z,

Р - некоторая матрица размера m×m.

Устройство работает следующим образом. В исходном состоянии на информационный вход блока 1.1 поступает значение y(t0) (см. фиг. 1). В блоке 1.1 хранятся начальные значения и константы величин μ-1, x(t0), , z(t0), N-1, P(t0), G(t0), , α-1, I. В момент времени t0 с информационного выхода блока 1.1 соответствующие значения поступают на блоки 2.1, 2.2, 2.3, 2.4 на информационных выходах которых формируются оценки , P(t1), G(t1), . Полученные оценки с информационных выходов блоков 2.1, 2.2, 2.3, 2.4 поступают на информационный вход блока 1.1.

В следующий момент времени t1 на информационный вход блока 1.1 поступает значение y(t1), при этом в блоке 1.1 хранятся значения μ-1, x(t1), , z(t1), N-1, P(t1), G(t1), . С информационного выхода блока 1.1 соответствующие значения поступают на блоки 2.1, 2.2, 2.3, 2.4, на информационный выходах которых формируются оценки функций , P(t2), G(t2), .

Описанная процедура идентификации осуществляется до момента времени Т.

Блок формирования функции z работает следующим образом (см. фиг. 2). В момент времени t0 на информационный вход блока 2.1 поступает значение y(t0), μ-1, P(t0), G(t0), x(t0), N-1, z(t0). При этом на первый информационный вход 3.1 поступает значение P(t0), на второй информационный вход блока 3.1 поступает значение GT(t0), на информационный вход блока 4.1 поступает значение G(t0), на информационном выходе блока 3.1 формируется выражение P(t0), GT(t0) и поступает на первый информационный вход блока 3.2; на информационный вход блока 2.5 поступает значение x(t0), на информационном выходе которого формируется функция и поступает на второй информационный вход блока 3.2, на информационном выходе которого формируется выражение P(t0), G(t0), и поступает на первый информационный вход блока 3.4; на информационный вход блока 2.3 поступает значение x(t0), z(t0), на информационном выходе которого формируется функция и поступает на второй информационный вход блока 5.1, на первый информационный вход блока 5.1 поступает значение y(t0), на выходе которого формируется выражение и поступает на первый информационный вход блока 3.3, на второй информационный вход блока 3.3 поступает значение N-1, на информационном выходе которого формируется выражение и поступает на второй информационный вход блока 3.4, на информационном выходе которого формируется выражение и поступает на информационный вход блока 6.1, на выходе которого формируется оценка z(t0).

В следующий момент времени t1 на информационный вход блока 2.1 поступает значение y(t1), P(t1), G(t1), x(t1), N-1 и повторяется описанная процедура формирования оценки до момента времени Т.

Блок формирования функции Р работает следующим образом (см. фиг. 3). В момент времени t0 на информационный вход блока 2.2 поступает значение y(t0), α-1, I, P(t0), G(t0), x(t0), z(t0). При этом на информационный вход блока 2.7 поступает значение x(t0), z(t0) на информационном выходе которого формируется значение H(x(z),t) и поступает на второй информационный вход блока 5.2, на первый информационный вход блока 5.2 поступает значение y(t0), на информационном выходе которого формируется выражение и поступает на первый информационный вход блока 3.7, на второй информационный вход блока 3.7 поступает значение N-1, на выходе которого формируется выражение и поступает на первый информационный вход блока 3.8; на информационный вход блока 2.8 поступает значение x(t0), на выходе которого формируется выражение и поступает на второй информационный вход блока 3.8, на выходе которого формируется выражение и поступает на информационный вход блока 7.1, на выходе которого формируется значение и поступает на второй информационный вход блока 3.9; на информационный вход блока 4.2 и первый информационный вход блока 3.10 поступает значение G(t0); на первый информационный вход блока 3.6 и второй информационный вход блока 3.10 поступает значение P(t0); на информационном выходе блока 4.2 формируется выражение GT(t0) и поступает на второй информационный вход блока 3.6, на выходе которого формируется выражение P(t0)GT(t0) и поступает на первый информационный вход блока 3.9, на выходе которого формируется выражение и поступает на второй информационный вход блока 3.11; на информационном выходе блока 3.10 формируется выражение P(t0)G(t0) и поступает на первый информационный вход блока 3.11, на информационном выходе которого формируется выражение и поступает на второй информационный вход блока 5.3; на первый информационный вход блока 3.5 поступает значение α-1, на второй информационный вход блока 3.5 поступает значение I, на информационном выходе которого формируется выражение α-1I и поступает на первый информационный вход блока 5.3, на информационном выходе которого формируется выражение и поступает значение 6.2, на информационном выходе которого формируется оценка P(t0).

В следующий момент времени t1 на информационный вход блока 2.2 поступает значение y(t1), α-1, I, P(t1), x(t1), z(t1) и повторяется описанная процедура формирования оценки Р до момента времени Т.

Блок формирования функции , G работает следующим образом (см. фиг. 4). В момент времени t0 на информационный вход блока 2.3 поступает значение , G(t0), , x(t0), z(t0). При этом на информационный вход блока 2.9 поступают значение , на выходе которого формируется значение функции и поступает на первый информационный вход блока 3.12; на второй информационный вход блока 3.12 поступает значение на выходе которого формируется значение и поступает на первый информационный вход блока 8.1; на информационный вход блока 2.10 поступает значение x(t0), на выходе которого формируется значение функции и поступает на первый информационный вход блока 3.13; на второй информационный вход блока 3.13 поступает значение G(t0), на выходе которого формируется значение и поступает на второй информационный вход блока 8.1; на третий информационный вход блока 8.1 поступает значение , на выходе которого формируется значение и поступает на информационный вход блока 6.3, на выходе которого формируется значение и поступает на информационный вход блока 6.4, на выходе которого формируется значение G(t0).

В следующий момент времени t1, на информационный вход блока 2.3 поступает значение , G(t1), , x(t1), z(t1) и повторяется описанная процедура формирования оценки G до момента времени Т.

Блок формирования функции х работает следующим образом (см. фиг. 5). В момент времени t0 на информационный вход блока 2.4 поступает значение P(t0), , x(t0), y(t0), μ-1, z(t0), x(t0), N-1. При этом на первый информационный вход блока 2.11 поступают значение , x(t0), z(t0), на выходе которого формируется значение функции и поступает на первый информационный вход блока 5.5; на информационный вход блока 2.12 поступает значение x(t0) на выходе которого формируется значение и поступает на второй информационный вход блока 3.15; на информационный вход блока 2.13 поступает значение x(t0), z(t0), t0 на выходе которого формируется значение функции и поступает на второй информационный вход блока 5.4; на первый информационный вход блока 5.4 поступает значение y(t0), на выходе которого формируется значение и поступает на первый информационный вход блока 3.14; на второй информационный вход блока 3.14 поступает значение N-1, на выходе которого формируется значение и поступает на первый информационный вход блока 3.15, на выходе которого формируется значение и поступает на первый информационный вход блока 3.16; на второй информационный вход блока 3.16 поступает значение μ-1, на выходе которого формируется значение и поступает на второй вход блока 5.5 на выходе которого формируется значение и поступает на вход блока 6.5, с выхода которого полученное значение поступает на вход блока 6.6, на выходе которого формируется оценка x(t1).

В следующий момент времени t1 на информационный вход блока 2.5 поступает значение P(t1), , x(t1), y(t1), μ-1, z(t1), x(t1), N-1 и повторяется описанная процедура формирования оценки х до момента времени Т.

Литература

1. Браммер К., Зиффлинг Г. Фильтр Калмана - Бьюси. М.: Наука, 1982, 210 с.

2. Патент РФ №2464615 от 20.10.2012 г. Устройство идентификации параметров динамических систем на основе вариационных принципов. // Андрашитов Д.С., Костоглотов А.А., Кузнецов А.А., Лазаренко С.В., Сметанникова Н.А.

3. Костоглотов А.А. Метод идентификации параметров голономных систем на основе аппарата асинхронного варьирования. / Изв. РАН. Теория и системы управления. 2003 г. №2. - С. 86-92.

4. Андрашитов Д.С., Костоглотов А.А., Лазаренко С.В. Регуляризированный алгоритм многопараметрической вариационной идентификации динамических систем. // Сервис в России и за рубежом, №8 (27) http://www.rguts.ru/electronic_journal/number27/contents.

5. Андрашитов Д.С., Костоглотов А.А., Лазаренко С.В., Дерябкин И.В. Вариационный метод многопараметрической идентификации динамических систем на основе итерационной регуляризации. // Успехи современной радиоэлектроники. №6, 2012, С. 67-72.

Устройство идентификации параметров динамических звеньев информационно-управляющих систем содержит следующие блоки: первый блок формирования функции z, второй блок формирования функции Р, третий блок формирования функции G, четвертый блок формирования функции х, пятый блок формирования функции , шестой блок формирования функции , седьмой блок формирования функции , восьмой блок формирования функции , девятый блок формирования функции , десятый блок формирования функции , одиннадцатый блок формирования функции , двенадцатый блок формирования функции и тринадцатый блок формирования функции ; первый, второй, третий, четвертый, пятый, шестой, седьмой, восьмой, девятый, десятый, одиннадцатый, двенадцатый, тринадцатый, четырнадцатый, пятнадцатый и шестнадцатый блоки умножения; первый и второй блоки транспонирования; первый, второй, третий, четвертый и пятый блоки формирования разности; первый, второй, третий, четвертый, пятый и шестой блоки интегрирования; первый блок дифференцирования по ∂х; первый блок формирования суммы; при этом первый информационный вход первого блока хранения констант является входом устройства, а информационный выход первого блока формирования функции z является выходом устройства, отличающееся тем, что в устройство введены первый, второй, третий и четвертый блоки формирования функции z, P, G, x, причем информационный вход первого блока формирования функции z соединен с первым информационным входом первого блока транспонирования, информационным входом пятого блока формирования функции , информационным входом шестого блока формирования функции , информационным входом первого блока формирования разности, со вторым информационным входом третьего блока умножения; информационный выход первого блока транспонирования соединен со вторым информационным входом первого блока умножения, выход которого соединен с первым информационным входом второго блока умножения; информационный выход пятого блока формирования функции соединен со вторым информационным входом второго блока умножения; информационный выход шестого блока формирования функции соединен со вторым информационным входом первого блока формирования разности, информационный выход которого соединен с первым информационным входом третьего блока умножения; информационные выходы второго и третьего блоков умножения соединены с первым и вторым информационными входами четвертого блока умножения соответственно, выход которого соединен с информационным входом первого блока интегрирования; с выхода первого блока интегрирования снимается значение ; информационный вход блока формирования функции Р соединен с информационными входами седьмого и восьмого блоков формирования функций и соответственно, вторым блоком транспонирования, первым и вторым информационными входами пятого и десятого блоков умножения, первым информационным входом шестого блока умножения и второго блока разности, вторым информационным входом седьмого блока умножения; информационный выход седьмого блока формирования функции соединен со вторым информационным входом второго блока формирования разности, выход которого соединен с первым информационным входом седьмого блока умножения, выход которого соединен с информационным входом восьмого блока умножения; информационный выход восьмого блока формирования функции соединен со вторым информационным входом восьмого блока умножения; информационный выход второго блока транспонирования соединен со вторым информационным входом шестого блока умножения, выход которого соединен с первым информационным входом девятого блока умножения; информационный выход десятого блока умножения соединен с первым информационным входом одиннадцатого блока умножения; информационный выход пятого блока умножения соединен с первым информационным входом третьего блока формирования разности; информационный выход восьмого блока умножения соединен с информационным входом первого блока дифференцирования по ∂х, выход которого соединен со вторым информационным входом девятого блока умножения, выход которого соединен со вторым информационным входом одиннадцатого блока умножения, выход которого соединен со вторым информационным входом третьего блока формирования разности, выход которого соединен с информационным входом второго блока интегрирования; с выхода второго блока интегрирования снимается значение Р; информационный вход третьего блока формирования функции G соединен с информационным входом девятого и десятого блоков формирования функции и соответственно, вторыми информационными входами двенадцатого и тринадцатого блоков умножения, третьим информационным входом первого блока формирования суммы; информационный выход девятого блока формирования соединен с первым информационным входом двенадцатого блока умножения, выход которого соединен с первым информационным входом первого блока формирования суммы; информационный выход десятого блока формирования функции соединен с первым информационным входом тринадцатого блока умножения, выход которого соединен со вторым информационным входом первого блока формирования суммы, информационный выход которого соединен с информационным входом третьего блока интегрирования, выход которого соединен с информационным входом четвертого блока интегрирования; с выхода четвертого блока интегрирования снимается значение G; информационный вход четвертого блока формирования функции соединен с информационными входами одиннадцатого, двенадцатого и тринадцатого блоков формирования функций , , соответственно, первым информационным входом четвертого блока формирования разности, вторыми информационными входами четырнадцатого и шестнадцатого блоков умножения; первый информационный выход тринадцатого блока формирования функции соединен со вторым информационным входом четвертого блока формирования разности, а второй информационный выход соединен с первым информационным входом четырнадцатого блока умножения, выход которого соединен с первым информационным входом пятнадцатого блока умножения; информационный выход двенадцатого блока формирования функции соединен со вторым информационным входом пятнадцатого блока умножения, выход которого соединен с первым информационным входом шестнадцатого блока умножения, выход которого соединен со вторым информационным входом пятого блока формирования разности; информационный выход одиннадцатого блока формирования функции соединен с первым информационным входом пятого блока формирования разности, выход которого соединен с информационным входом пятого блока интегрирования, выход которого соединен с информационным входом шестого блока интегрирования; с выхода шестого блока интегрирования снимается значение .



 

Похожие патенты:

Устройство идентификации параметров акселерометра содержит блок хранения констант, пять блоков формирования суммы, девять блоков формирования разности, двадцать один блок произведения, три блока деления, три блока возведения в минус первую степень, три блока возведения в квадрат, блок формирования sin, соединенные определенным образом.

Группа изобретений относится к контролю элементов систем управления. Устройство контроля работоспособности беспроводного датчика содержит блок опроса, блок памяти, блок анализа и блок контроля.

Группа изобретений относится к контролю элементов систем управления. Устройство контроля работоспособности датчика содержит блок приема, блок памяти, блок анализа и блок контроля.

Изобретение относится к удаленному мониторингу объектов. В способе для удаленного мониторинга и прогнозирования состояния технологических объектов, относящихся к турбоагрегатам, получают данные от объекта контроля; формируют на основании этих данных эталонную выборку показателей работы и строят матрицы состояния из компонентов точек выборки.

Изобретение относится к области железнодорожного транспорта, для управления надежностью и технического экспресс-диагностирования оборудования локомотива. Способ включает запрос и получение данных диагностирования от бортовой микропроцессорной системы управления локомотива в виде параметров текущего технического состояния оборудования, их статистическую обработку на основе корреляционного анализа и формирование предупреждающего сигнала в случае прогнозирования отказа оборудования.

Изобретение относится к области телекоммуникаций, а именно к области диагностирования и контроля технического состояния информационно-телекоммуникационных сетей связи в условиях ведения компьютерных и сетевых атак.

Изобретение относится к способу определения оптимальной периодичности контроля состояния процессов. Для определения оптимальной периодичности контроля оценивают условия функционирования объекта контроля, определяют интенсивность отказов, задают множество аппроксимирующих функций, удовлетворяющих заданным требованиям, задают точность аппроксимации, пределы и шаг изменения параметров аппроксимирующих функций, формируют множество данных о времени и характере воздействия дестабилизирующих факторов, фиксируют их и разделяют на однородные группы, аппроксимируют значения параметров дестабилизирующих факторов каждой из однородных групп аппроксимирующими функциями с заданной точностью, определяют частоту каждой полученной функции, строят вариационный ряд значений частот всех полученных функций, определяют наибольшее значение частоты и оптимальный период контроля.

Группа изобретений относится к способу и системе динамической частотной идентификации объектов управления. Для идентификации объектов управления подают испытательный сигнал на вход объекта управления или добавляют его к уставке замкнутой системы управления, формируют в памяти вычислительного устройства массив измеренных значений выходного сигнала объекта управления и значений сигнала управления с испытательным сигналом определенным образом, вычисляют комплексные интегралы на интервале времени фильтрации измеренных значений выходного сигнала и сигнала управления определенным образом, формируют и решают системы линейных алгебраических уравнений для получения идентифицированных оценок коэффициентов объекта управления, проверяют выполнение условия их сходимости определенным образом, при выполнении которой считается, что идентификация объекта выполнена, в противном случае увеличивают время фильтрации и повторяют все действия.

Изобретение относится к способу проверки аппаратуры носителя. Для проверки аппаратуры носителя с контролем линий связи и регистрацией информационного обмена подают напряжение питания на преобразователь питания пусковой установки носителя, преобразованное напряжение от преобразователя питания подают на центральный управляющий модуль, коммутирующий модуль и встроенный имитатор, задают режим проверки линий связи с помощью центрального управляющего модуля, осуществляют проверку всех линий связи коммутирующих модулей с ракетой и транспортно-пусковым контейнером на короткое замыкание, измеряют разности потенциалов и сопротивления между линиями связи, передают результаты проверки в центральный управляющий модуль, задают режим имитации и задействованные каналы, тип имитируемых ракет, наличие и типы имитируемых ошибок информационного обмена, осуществляют имитацию, передают результаты в центральный управляющий модуль, задают режим регистрации, осуществляют информационный обмен в соответствии с определенным протоколом информационного обмена, передают результаты работы и записанный информационный обмен в центральный управляющий модуль, делают заключение об исправности аппаратуры носителя на основе полученных данных.

Изобретение относится к области диагностики технических систем и может быть использовано при формировании эффективных диагностических тестов технических систем различной степени сложности.

Изобретение относится к системам и способам защиты объектов критической инфраструктуры путем контроля состояния такого объекта критической инфраструктуры, как технологическая система, посредством кибернетической системы контроля. Изобретение предназначено для тестирования кибернетической системы контроля на наличие ошибок моделирования. Тестирование кибернетической системы контроля, определяющей идеальные состояния технологической системы, осуществляют путем признания идеального состояния технологической системы, определенного кибернетической системой для момента времени и отклоняющегося от реального состояния технологической системы, ошибкой моделирования на основании подтвержденного сохранения функциональной взаимосвязи элементов технологической системы. В результате повышается качество тестирования кибернетической системы контроля, определяющей идеальные состояния технологической системы. 2 н. и 17 з.п. ф-лы, 8 ил.

Изобретение относится к технологическим процессам. Способ мониторинга устройства управления процессом, реализуемый в системе мониторинга устройства управления процессом, включает измерение параметров рабочих состояний устройства управления процессом. Связь метки времени с параметрами рабочего состояния устройства управления процессом осуществляют в ответ на сигнал, основывающийся на измерениях возможных рабочих состояний. Сигнал указывает на неконтролируемый выброс в окружающую атмосферу. Передают метку времени и указания о рабочих состояниях мониторинга. Клапанная сборка управления процессом содержит клапан для управления процессом; датчик положения части клапана и систему мониторинга. Система мониторинга клапана содержит процессор, энергонезависимый накопитель памяти и интерфейс связи для передачи данных от системы мониторинга клапана. Повышается точность расчета выбросов. 2 н. и 22 з.п. ф-лы, 5 ил.

Изобретение относится к области испытаний и контроля систем управления ракет-носителей и может быть использовано при проведении предпусковой подготовки и наземных испытаний ракет-носителей. Прибор управления формированием команд и сигналов содержит модуль преобразования информации, блок релейных команд и сигналов, модуль контроля цепей, модуль параметрического контроля, взаимодействующие между собой и объектом проверки по кодовой линии связи, и источник внутреннего электропитания, который подключен к элементам прибора посредством проводной связи. В результате повышается точность проверок аппаратуры систем управления, расширяются функциональные возможности устройства. 1 ил.

Изобретение относится к управлению технологическим процессом. В способе использования данных о вибрациях для определения состояния устройства управления собирают первые данные о вибрациях от первого датчика, связанного с устройством управления технологическим процессом, во время калибровки; рассчитывают эксплуатационный порог устройства управления на основании первых данных о вибрациях; собирают данные об эксплуатации относительно устройства управления. Данные об эксплуатации указывают на ресурс, связанный с устройством управления. Обновляют эксплуатационный порог на основании указанных данных об эксплуатации. Обновленный эксплуатационный порог указывает на уменьшенный оставшийся ресурс, связанный с устройством управления. Собирают вторые данные о вибрациях от первого датчика после калибровки цепи вибрационного мониторинга и определяют состояние устройства управления технологическим процессом, если вторые данные о вибрациях превышают обновленный эксплуатационный порог. Улучшаются эксплуатационные качества устройства управления. 4 н. и 19 з.п. ф-лы, 7 ил.

Настоящее изобретение относится к способам и устройству для анализа влияния трения на управляющие устройства для управления процессом. Согласно одному из способов анализа влияния трения на управляющее устройство, определяют первое усилие или крутящий момент, соответствующий трению управляющего устройства для управления процессом и устройства приведения в действие, функционально соединенного с указанным управляющим устройством посредством штока или вала, в ответ на первое усилие или крутящий момент определяют первую команду на приведение в действие указанного управляющего устройства посредством штока или вала для получения первой реакции устройства приведения в действие, и определяют второе усилие или крутящий момент, соответствующий трению управляющего устройства для управления процессом и устройства приведения в действие, и в ответ на второе усилие или крутящий момент определяют вторую команду на приведение в действие указанного управляющего устройства посредством штока или вала для получения второй реакции устройства приведения в действие. В результате достигается стабильность характеристик штока или вала в процессе работы. 3 н. и 17 з.п. ф-лы, 4 ил.

Изобретение относится к методам обнаружения неисправностей в сложных системах. Система обработки данных для контроля сложной системы получает элементы информации состояния и объединения в единую информацию о неисправности. Одному из указанных элементов информации состояния соответствует индикатор достоверности. Информации о неисправности также соответствует индикатор достоверности. Элементы информации состояния получают в составе сообщений, содержащих идентификатор подсистемы или идентификатор компонента. Объединение осуществляют применяя метод нечеткой логики для создания информации о неисправности с учетом соответствующих индикаторов достоверности элементов информации состояния и для создания индикатора достоверности, соответствующего информации о неисправности. Повышается достоверность контроля. 2 н. и 7 з.п. ф-лы, 16 ил.

Изобретение относится к средствам осмотра технической установки. Технический результат – создание системы осмотра для осмотра технической установки. Для этого предложена система осмотра для осмотра технической установки, которая содержит: шкаф (1), который имеет по меньшей мере один выдвижной отсек (3) с интерфейсом (21) данных, размещенным в выдвижном отсеке (3), по меньшей мере один подогнанный к выдвижному отсеку (3) портативный терминал (19) с интерфейсом (27) данных, совместимым с интерфейсом (21) данных в выдвижном отсеке (3), вычислитель (5), соединенный с интерфейсом (21) данных каждого выдвижного отсека, устройство (11) считывания носителя данных, соединенное с вычислителем (5), и по меньшей мере один носитель (15) данных, совместимый с устройством (11) считывания носителя данных, который содержит индивидуализированное для осмотра программное обеспечение и инсталлятор для инсталлирования индивидуализированного программного обеспечения на вычислителе (5) и каждом портативном терминале (19), находящемся в выдвижном отсеке (3). 12 з.п. ф-лы, 2 ил.

Группа изобретений относится к испытанию и контролю систем управления устройств. Способ удаленного взаимодействия с изделием включает в себя использование программы, загруженной на смартфон пользователя. Устанавливают первый канал беспроводной связи между смартфоном и процессором изделия. Устанавливают второй канал беспроводной связи посредством глобальной сети между смартфоном и центром обслуживания, ответственным за выполнение ремонта и технического обслуживания изделия. Используют второй канала связи для обеспечения возможности передачи команд и информации от центра обслуживания на процессор изделия посредством каналов связи. Выполняют диагностику неисправности изделия и обеспечивают обновление встроенного программного обеспечения для изделия. Каналы связи обеспечивают возможность идентификации центром обслуживания неисправного компонента изделия на основании диагностики изделия. Создают центром обслуживания заявки на заменяющую деталь на основании неисправного компонента. Также заявлены система технического обслуживания оборудования и смартфон, используемый в качестве коммуникационного звена между оборудованием и центром обслуживания. Технический результат изобретения заключается в повышении эффективности устранения неисправности бытовых приборов. 3 н. и 11 з.п. ф-лы, 3 ил.

Изобретение относится к способу оценки способности узла компьютерной сети функционировать в условиях информационно-технических воздействий. Для осуществления способа формируют имитационную модель компьютерной сети, ранжируют все ее узлы, определяют весовые коэффициенты каждого узла, измеряют время вскрытия сетевой компьютерной разведкой, а также время начала и окончания работы каждого узла и время квазистационарного состояния, максимальное и минимальное значение времени поиска злоумышленником каждого узла, а также максимальное и минимальное время его распознавания, время принятия решения на его вскрытие, время на его воздействие, объем цифрового потока информации, количество связей узла, прогнозируют количество средств вскрытия, имеющихся у злоумышленника, измеряют количество поврежденных узлов сети, фиксируют информационно-технические воздействия на узлы сети, моделируют эти воздействия, моделируют совместное функционирование моделей компьютерной сети и информационно-технических воздействий, вычисляют достоверность вскрытия и достоверность воздействия, сравнивают их с пороговыми значениями, реконфигурируют сеть при превышении и производят перекоммутацию каналов связи. Обеспечивается повышение защищенности компьютерного узла от информационно-технических воздействий. 1 ил.

Устройство идентификации параметров динамических звеньев информационно-управляющих систем содержит тринадцать блоков формирования функций, шестнадцать блоков умножения, два блока транспонирования, пять блоков формирования разности, шесть блоков интегрирования, блок дифференцирования, блок формирования суммы, соединенные определенным образом. Обеспечивается увеличение быстродействия в процессе идентификации параметров динамических звеньев информационно-управляющих систем. 5 ил.

Наверх