Способ получения водорода на основе химической реакции алюминиевого сплава и щелочного раствора воды



Способ получения водорода на основе химической реакции алюминиевого сплава и щелочного раствора воды
Способ получения водорода на основе химической реакции алюминиевого сплава и щелочного раствора воды
Способ получения водорода на основе химической реакции алюминиевого сплава и щелочного раствора воды
Способ получения водорода на основе химической реакции алюминиевого сплава и щелочного раствора воды
Способ получения водорода на основе химической реакции алюминиевого сплава и щелочного раствора воды
C25B1/04 - Электролитические способы; электрофорез; устройства для них (электродиализ, электроосмос, разделение жидкостей с помощью электричества B01D; обработка металла воздействием электрического тока высокой плотности B23H; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод электрохимическими способами C02F 1/46; поверхностная обработка металлического материала или покрытия, включающая по крайней мере один способ, охватываемый классом C23 и по крайней мере другой способ, охватываемый этим классом, C23C 28/00, C23F 17/00; анодная или катодная защита C23F; электролитические способы получения монокристаллов C30B; металлизация текстильных изделий D06M 11/83; декоративная обработка текстильных изделий местной

Владельцы патента RU 2632815:

Федеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова Российской академии наук (ИМАШ РАН) (RU)

Изобретение относится к способу получения водорода на основе химической реакции электролиза алюминиевого сплава и щелочного раствора воды в заполненном электролитом электролизере, в котором расположены анод и катод. Способ характеризуется тем, что в качестве катода используют пористый алюминий с содержанием окиси кальция 1,5%, помещают его в раствор с содержанием щелочи от 0,2% до 1% и ведут реакцию при температуре от 15°C до 70°C, с использованием воды с pН от 7 до 12. Использование предложенного способа позволяет увеличить производство водорода более чем в 1,5 раза по сравнению с известным способом. 5 пр., 5 табл.

 

Изобретение относится к способам получения водорода для различных потребностей народного хозяйства: для сухопутного и водного транспорта.

Известен способ получения водорода на основе химической реакции электролиза алюминиевого сплава и щелочного раствора воды в заполненном электролитом электролизере, в котором расположены анод и катод (Патент РФ №2532561, МПК С25В 1/04, 2012 г.).

Согласно этому способу в качестве электролита использована морская вода с содержанием соли от 3,5 до 40 г/л, а катод электролизера выполнен из активированного алюминиевого сплава. Изобретение позволяет повысить эффективность получения водорода и уменьшить габариты и массу электролизера.

Недостаток этого способа в его низкой производительности.

Техническим результатом разработки является увеличение производительности процесса.

Заявленный результат достигается способом получения водорода на основе химической реакции электролиза алюминиевого сплава и щелочного раствора воды в заполненном электролитом электролизере, в котором расположены анод и катод, в качестве которого используют пористый алюминий с содержанием окиси кальция 1,5%, помещают его в раствор с содержанием щелочи от 0,2% до 1% и ведут реакцию при температуре от 15°C до 70°C, с использованием воды с pН от 7 до 12.

В предложенном способе увеличение производительности процесса получения водорода достигается за счет использования пористого алюминия, получаемого при использовании в шихте порошкообразного алюминия в смеси с добавками окиси кальция, наличие которой в оптимизированных режимах проведения реакции способствует коррозии, и как следствие этого выделению водорода.

Изобретение поясняют примерами.

Пример 1

Испытание проведено на образце размером 1,5×1,5×1,5 см с поверхностью 13,5 см без учета пористости. Вес такого образца 1 г. Для испытания был приготовлен раствор 4 г NaOH на 1 л воды с pН=7,2. После растворения щелочи pН=11,6. Начальная температура раствора 21°C.

Неожиданным является результат по образованию водорода от 0,6 г израсходованного образца, который составил: 0,925 л/0,6 г=1,541 л/г вместо теоретических 1,244 л/г для чистого А1. Примечательным является и скорость выделения водорода в начале и в конце опыта. В начале - 125 мл за полтора часа, а в конце - за те же полтора часа всего 5 мл. Это говорит о почти полном расходовании реакционной части образца в конце опыта.

Пример 2

Испытание проведено на образце массой 7,3 г. В образце такого же размера, как в примере 1, с четырех сторон сделаны сверления, в которые поместили сухую щелочь в количестве 2,76 г на 0,5 л воды.

Выделение водорода происходит плавно с постепенным уменьшением. В данном испытании опыт прекратили через 2 часа с выделением водорода 6 мл/мин.

Пример 3

Испытание проведено на недоиспользованном образце по примеру 2, где сухая щелочь была помещена в порах. На этом испытании образец выполнял роль катода при электролизе. Роль анода выполняла медная пластина. В качестве электролита применена обычная водопроводная вода. После опыта: G=600 μS, pH=8,5. Напряжение между анодом и катодом Uвх=120 В.

Результаты данного испытания представлены в таблице 1,

где Q - количество водорода, выделившееся к данному моменту времени,

ΔQ - количество водорода, выделившееся за данный промежуток времени.

По сравнению с результатами испытаний по примеру 2 выход водорода примерно в 2 раза выше.

Пример 4

Испытание проведено на образце массой 1,92 г с поверхностью 20,5 см2 в растворе щелочи 4 г/л. В течение опыта раствор нагревался до 70°C при pH=11,6; в конце опыта масса образца равнялась 0,98 г, т.е. израсходовано 0,94 г образца. Испытание закончено на 19 минуте при переполнении измерительного цилиндра до 1150 мл.

Результаты испытаний представлены в таблице 2.

Полнота выделения водорода составила 98%. Из представленных в таблице 2 результатов видно, как газовыделение зависит от температуры раствора.

Пример 5

Испытание было проведено на образце, в качестве которого использовали пористый алюминий с содержанием окиси кальция 1,5%, весом 5,38 г размером 30×30×24,5 мм и с поверхностью 48 см2. При этом электролиз проводился в электролите с концентрацией щелочи 4 г/л и с подогревом до 70°C с использованием воды с pН от 7 до 12.

Так как выделение водорода происходило очень интенсивно, то при каждом максимальном наполнении мерного цилиндра водорода до 1200 мл пришлось каждый раз прерывать испытание и по новой снаряжать измерительную аппаратуру для следующего испытания. Таких испытаний на одном и том же образце было три, что представлено на таблицах 3-5.

Таким образом, при оптимальном режиме проведения способа (пример 5) за время испытаний выделилось 4,03 л водорода. Согласно известному способу с такого количества алюминиевого сплава максимум должно выделиться 2,6 л водорода, а согласно изобретению выделилось на 1,43 л больше.

Использование предложенного способа позволяет увеличить производство водорода для промышленных целей.

Способ получения водорода на основе химической реакции электролиза алюминиевого сплава и щелочного раствора воды в заполненном электролитом электролизере, в котором расположены анод и катод, отличающийся тем, что в качестве в качестве катода используют пористый алюминий с содержанием окиси кальция 1,5%, помещают его в раствор с содержанием щелочи от 0,2% до 1% и ведут реакцию при температуре от 15°C до 70°C, с использованием воды с pН от 7 до 12.



 

Похожие патенты:

Изобретение относится к области химической технологии, в частности к способам электрохимического окисления железа для получения реагента-окислителя феррата (VI) FeO42-.

Изобретение относится к способу получения альфа-оксида алюминия высокой чистоты. Способ включает анодное растворение алюминия высокой чистоты в водном растворе нитрата аммония, рафинирование электролита путем удаления 50-100% первой партии гидроксида алюминия с предварительным отстаиванием в электролите в течение 12-24 ч, разделение последующих партий гидроксида алюминия и электролита, промывку последующих партий гидроксида алюминия дистиллированной водой и их термическую обработку, которая осуществляется посредством предварительной сушки в течение 12-24 ч при температуре 200-250°С и окончательного прокаливания в течение 15-18 ч при температуре не менее 1100°С, при этом при прокаливании каждые 3 ч производится перемешивание продукта.

Изобретение относится к электролизеру, содержащему корпус с электролитом с размещенными в нем электролизной ячейкой с анодом, катодом и мембраной, разделяющей объем электролизной ячейки на анодное и катодное пространства, анодный контур циркуляции электролита, включающий емкость с электролитом и теплообменник, сепараторы водорода и кислорода, магистрали подвода воды и отвода кислорода и водорода, отличающемуся тем, что электролизер содержит катодный контур циркуляции, совмещенный с анодным контуром циркуляции таким образом, что катодная емкость с электролитом соединена через анодный теплообменник с анодным пространством, а анодная емкость с электролитом соединена с катодным пространством через катодный теплообменник, и байпасную линию, соединяющую катодную емкость с электролитом через кран-регулятор и катодный теплообменник с катодным пространством.
Изобретение относится к электрохимическому способу получения порошка силицида вольфрама, включающий электролиз расплава при температуре 850-950°С, содержащего хлорид натрия, вольфрамат натрия и диоксид кремния.
Изобретение относится к электрохимическому синтезу борида молибдена, включающему электролиз расплава, содержащего хлорид калия, молибдат натрия и оксид бора, хлорид натрия.

Изобретение относится к электролитическому способу получения наноразмерных порошков силицидов лантана, включающему синтез силицидов редкоземельного элемента из расплавленных сред в атмосфере очищенного и осушенного аргона.
Изобретение относится к углеродистой композиции, пригодной для изготовления электрода суперконденсатора в контакте с водным ионным электролитом, причем композиция основана на угольном порошке, способном сохранять и высвобождать электроэнергию, и включает гидрофильную связующую систему.

Изобретение относится к способу отслеживания отказных ситуаций, связанных с потоком сырьевого газа и/или очистительным потоком в электролитических элементах, батареях или системах, причем указанный процесс отслеживания сочетают с предупредительными мерами, которые должны быть приняты в случае таких отказных ситуаций.

Изобретение относится к электролизеру для получения водорода и кислорода из воды, состоящему из корпуса с размещенными в нем катодом в виде полого цилиндра из пористого гидрофобизированного материала и анодом в виде трубы из металла, находящегося между ними сепаратора в виде газозапорной мембраны, с образованием катодной газовой полости между внешней стенкой катода и внутренней стенкой корпуса, анодной полости внутри анода, с нанесенными на поверхность анода и поверхность катода катализатором.

Изобретение относится к катоду для электролиза, содержащему покрытие из никеля толщиной 300-1000 нм, нанесенное методом магнетронного распыления на матрицу пористого оксида алюминия с размерами пор 40-120 нм и расстоянием между стенками пор 10-20 нм.

Изобретение относится к электроду для устройства для разложения воды, содержащего: газопроницаемый материал; второй материал; разделительный слой, расположенный между газопроницаемым материалом и вторым материалом, где разделительный слой расположен рядом с внутренней стороной газопроницаемого материала, причем данный разделительный слой предоставляет газосборный слой, способен к перемещению газа внутри в электроде по меньшей мере к одной зоне выпуска газа, где перемещаемый газ является продуктом реакции разложения воды, и где газ мигрирует через газопроницаемый материал; и проводящий слой расположен рядом с внешней стороной газопроницаемого материала, на ней или частично внутри внешней стороны. Использование предлагаемого изобретения позволяет повысить энергетический КПД. 21 з.п. ф-лы, 6 пр., 19 ил.

Изобретение относится к электролитической ячейке для выработки неразделенных анодных и катодных продуктов, состоящая из литографически структурируемой подложки, имеющей поверхность, множество анодных и катодных микроэлектродов, сформированных на упомянутой поверхности, причем упомянутые анодные и катодные микроэлектроды взаимно вставлены один в другой с межэлектродным промежутком менее 100 микрометров и имеют среднюю шероховатость Ra поверхности менее 0,05 мкм. Также изобретение относится к способу изготовления ячейки, способу изготовления растворов смешанных окислителей переменного состава и устройству для дозирования стерилизующих, дезинфицирующих или моющих веществ. Предлагаемая ячейка обладает повышенной скоростью выработки продукта при его меньших потерях. 4 н. и 11 з.п. ф-лы, 2 ил., 3 пр.

Изобретение относится к способу электросинтеза циклогексантиола, включающему взаимодействие циклогексена с сероводородом в апротонных органических растворителях в присутствии фонового электролита при температуре 20-25°C и атмосферном давлении. Способ характеризуется тем, что электросинтез проводят в деаэрированных условиях при потенциале восстановления сероводорода на платиновом катоде. Использование предлагаемого способа позволяет уменьшить энергозатраты на проведение электросинтеза циклогексантиола за счет снижения значения потенциала электролиза на 0,2 В ввиду более легкой склонности сероводорода к катодной активации (или восстановлению) по сравнению с анодной активацией (или окислением), а также снижение выхода дициклогексилдисульфида благодаря генерированию в электрохимической системе атомарного водорода и исключению стадии окисления циклогексантиола как целевого продукта реакции. 1 пр.
Изобретение относится к способу получения концентрата адипиновой кислоты и натриевой щелочи из щелочных стоков производства капролактама, включающему электролиз стоков в мембранном электролизере с получением в катодном пространстве натриевой щелочи. Способ характеризуется тем, что электролиз проводят в двухкамерном электролизере, перед электролизом стоки смешивают с серной кислотой для разделения на водную и органическую фазы, при достижении кислотности водной фазы 20-30 г/л в пересчете на серную кислоту водную фазу отделяют и подают в анодную камеру двухкамерного электролизера, а органическую фазу используют в качестве концентрата адипиновой кислоты. Технический результат - повышение содержания адипиновой кислоты в ее концентрате при одновременном снижении эксплуатационных затрат за счет уменьшения потребляемой электроэнергии и расхода катионообменных мембран при регенерации щелочи. 2 пр.

Изобретение относится к установке для электрохимического разложения водных растворов хлоридов, включающей проточные электрохимические реакторы, состоящие из внутреннего трубчатого титанового катода, внешнего трубчатого титанового анода и размещенной между ними трубчатой керамической ионопроницаемой диафрагмы, нижнего и верхнего анодных коллекторов, сепаратора, нижнего и верхнего катодных коллекторов и насосов. Установка характеризуется тем, что она дополнительно содержит программируемый контроллер, обеспечивающий корректировку режима работы каждого электрохимического реактора с помощью датчиков, при этом контроллер обеспечивает возможность регулирования скорости подаваемого водного раствора хлорида, регулирования электропитания каждого электрохимического реактора и корректировки избыточного давления в анодных камерах, кроме того, каждый электрохимический реактор имеет отдельный источник электропитания, а анодные камеры электрохимических реакторов выполнены с возможностью поддержания в них избыточного давления по отношению к давлению в катодных камерах. Технический результат заключается в повышении эффективности работы устройства за счет экономии потребляемой электрической энергии. 5 з.п. ф-лы, 2 ил.

Изобретение может быть использовано в химической промышленности. Способ получения гипохлорита кальция из пересыщенного природного поликомпонентного рассола хлоридного кальциево-магниевого типа включает выделение из рассола кристаллогидрата хлорида кальция и отделение маточного рассола, обогащенного литием и бромом. Проводят мембранный или диафрагменный электролиз водного раствора хлорида натрия для производства хлора и католита. Получают раствор гипохлорита натрия путем эжектирования анодного хлора потоком католита - раствором NaOH. Гипохлорит кальция получают обменной реакцией между гидроксидом кальция и гипохлоритом натрия. Полученный гипохлорит кальция отделяют от маточного раствора и сушат. Маточный раствор перерабатывают с возвратом NaCl в производство. Сначала природный пересыщенный поликомпонентный рассол охлаждают до 0…-1°С, получая твердую фазу кристаллогидрата CaCl2⋅6Н2О с примесью кристаллогидрата MgCl2⋅6H2O и жидкую фазу. Кристаллогидраты отделяют от жидкой фазы, нагревают в присутствии NaOH и перемешивают, отделяя CaCl2⋅6Н2О от твердой фазы MgCl2⋅6H2O и образовавшейся твердой фазы Mg(OH)2. Очищенный от магния CaCl2⋅6Н2О приводят в контакт с католитом. Образующуюся пульпу центрифугируют с получением кека в виде Са(ОН)2 и фугата в виде раствора NaCl, который после очистки от кальция возвращают на операцию мембранного электролиза для получения католита и хлора. Изобретение позволяет осуществить процесс получения гипохлорита кальция в непрерывном режиме, снизить энергоемкость процесса, сократить затраты греющего пара, повысить выход гипохлорита кальция. 2 з.п. ф-лы, 3 ил., 5 пр.

Изобретение относится к получению порошкообразного оксида алюминия высокой чистоты. Устройство содержит электролизер для электролиза водных растворов с окислением металлического алюминия, соединенный трубопроводом с обратноосмотической установкой для подготовки исходной технической воды и приемной емкостью для продуктов окисления, причем в нижнем отверстии приемной емкости выполнено выходное отверстие, соединенное с верхним ситом промывного сепаратора, при этом нижнее сито промывного сепаратора соединено линией подачи продукта с блоком термической обработки продуктов окисления алюминия. Обеспечивается повышение безопасности устройства и снижение содержания основных примесных металлов воды в оксиде алюминия. 4 з.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к энергетике, а именно к способу получения водорода при разложении воды. Способ включает подачу нагретой воды из водяного котла в устройство разложения воды на кислород и водород, содержащее катод и анод. При этом перфорированные катод и анод представляют собой цилиндрические коаксиально расположенные обкладки водяного конденсатора, причем анод содержит по меньшей мере два трансформатора с индуктивностями, образующие магнитный поток, проходящий через воду, при этом слагаемые магнитных потоков каждого трансформатора образуются за счет намотки изолированного провода. Направления векторов магнитных напряженностей, образованных одним трансформатором совместно с нагрузочной индуктивностью, совпадают, а направление суммарного вектора магнитной напряженности одного трансформатора, за счет переключения полярности питающего напряжения, отличается от направления суммарного вектора магнитной напряженности другого трансформатора. При этом на перфорированную изолированную со всех сторон обкладку меньшего диаметра, внутренний объем которой служит для накопления и транспортировки ионов кислорода, подается положительный потенциал, а на перфорированную обкладку большого диаметра, на которой происходит нейтрализация ионов водорода, который транспортируется через отверстия корпуса устройства разложения воды, подается отрицательный потенциал. Технический результат заключается в повышении КПД устройств разложения воды. 4 з.п. ф-лы, 2 ил., 1 пр.

Изобретение относится к получению пузырьков и пен, содержащих пузырьки. Устройство содержит: первый блок, выполненный с возможностью определять по меньшей мере одну характеристику газа в пузырьках; второй блок, выполненный с возможностью вырабатывать пузырьки, содержащий: электролизер, выполненный с возможностью проводить электролиз электролита, чтобы вырабатывать газ в электролите, тем самым вырабатывая пузырьки; контроллер выполнен с возможностью регулировать второй блок, чтобы вырабатывать пузырьки согласно по меньшей мере одной характеристике газа. Изобретение позволяет регулировать характеристику газа в пузырьке на основе практических требований к газу, а также снизить уровень шума и габариты устройства для вырабатывания пузырьков и пен. 2 н. и 11 з.п. ф-лы, 11 ил.

Изобретение относится к способу формирования барьерного покрытия на паяных алюминиевых электродах генератора озона, включающий подготовку поверхности деталей электрода к пайке, сборку конструкции в сборочно-паяльном приспособлении, выравнивание плоских поверхностей электрода за счет направленного термического удлинения ребер теплообменной насадки при температуре ниже температуры плавления припоя, пайку, в процессе которой при соответствующих температурах производят гомогенизацию металла и вакуумное травление рабочих поверхностей электрода для последующего создания на них диэлектрического барьера. Способ характеризуется тем, что формирование диэлектрического барьера в виде упорядоченной наноразмерной ячеисто-пористой структуры оксида алюминия с высокими показателями диэлектрической проницаемости и тангенса угла диэлектрических потерь производят электрохимическим путем в 3-5% растворе щавелевой кислоты при плотности анодного тока 2 А/дм2, времени оксидирования 3 ч и температуре 20-25°С. Изобретение решает задачу повышения качества, надежности и экономичности генератора озона в производстве и эксплуатации на основе применения при синтезе озона паяных алюминиевых электродов с диэлектрическим барьерным покрытием, сформированным электрохимическим путем. 1 з.п. ф-лы, 3 ил.

Изобретение относится к способу получения водорода на основе химической реакции электролиза алюминиевого сплава и щелочного раствора воды в заполненном электролитом электролизере, в котором расположены анод и катод. Способ характеризуется тем, что в качестве катода используют пористый алюминий с содержанием окиси кальция 1,5, помещают его в раствор с содержанием щелочи от 0,2 до 1 и ведут реакцию при температуре от 15°C до 70°C, с использованием воды с pН от 7 до 12. Использование предложенного способа позволяет увеличить производство водорода более чем в 1,5 раза по сравнению с известным способом. 5 пр., 5 табл.

Наверх