Устройство и способ для передачи зондирующего опорного сигнала в системах беспроводной связи восходящей линии связи с множеством антенн и зондирующим опорным сигналом

Изобретение относится к системе связи, в частности к беспроводной телекоммуникационной системе с использованием множества антенн, и предназначено для передачи зондирующего опорного сигнала в соответствии с антенной диаграммой, в которой зондирующий опорный сигнал передается во всей ширине полосы передачи данных системы восходящей линии связи для каждой антенны терминала без дополнительной служебной нагрузки этой среде. Терминал, использующий метод множества антенн, оборудован множеством антенн, и базовая станция принимает зондирующий опорный сигнал, переданный от этих антенн, и оценивает состояние канала восходящей линии связи каждой антенны. Кроме того, зондирующий опорный сигнал осуществляет скачкообразное изменение частоты, так что базовая станция определяет условия канала для всей ширины полосы, в которой передаются данные в системе восходящей линии связи. 4 н. и 24 з.п. ф-лы, 14 ил.

 

Область техники

Настоящее изобретение относится к устройству и способу для формирования антенной диаграммы передачи SRS в беспроводной телекоммуникационной системе восходящей линии связи с использованием множества антенн и скачкообразного изменения зондирующего опорного сигнала (SRS).

Предшествующий уровень техники

В беспроводной телекоммуникационной системе метод множества антенн используется как один способ для улучшения характеристик восходящей линии связи. В качестве представительного примера, «Долгосрочное Развитие» (LTE), которое является системой мобильной связи следующего поколения группы стандарта асинхронной сотовой мобильной связи «Проект партнерства третьего поколения (3GGP)» также применяет антенно-избирательное разнесение передачи в восходящей линии связи, основанной на множественном доступе с частотным разделением с одной несущей (SC-FDMA), так что характеристики могут быть улучшены за счет выигрыша от пространственного разнесения в восходящей линии связи.

Кроме того, терминал передает SRS, для того чтобы базовая станция могла получить информацию восходящей линии связи. Базовая станция принимает SRS и получает информацию о состоянии канала полосы восходящей линии связи и, на основе этой информации осуществляет частотно-избирательное планирование, управление мощностью, оценку синхронизации и выбор уровня схемы модуляции и кодирования (MCS). В частности, в случае, когда терминал использует антенно-избирательный способ разнесения передачи, базовая станция выбирает антенну, имеющую лучшее состояние канала среди состояний канала восходящей линии связи, измеренных из SRS, переданного от каждой антенны терминала. Терминал получает выигрыш от разнесения, осуществляя передачу по восходящей линии связи через выбранную антенну. Чтобы осуществить вышеупомянутые процессы, базовая станция должна определить состояние канала всей полосы, на которой передаются данные восходящей линии связи, для каждой антенны терминала. Это становится возможным, когда терминал передает SRS по всей ширине полосы передачи данных восходящей линии связи для каждой антенны.

Фиг.1 иллюстрирует пример структуры передачи восходящей линии связи LTE. Как показано на Фиг.1 подкадр 100, имеющий длину 1 мс, который является основной единицей передачи восходящей линии связи LTE, состоит из двух 0.5 мс интервалов 101. Предполагая, что Циклический Префикс (CP) имеет обычную длину, каждый интервал состоит из семи символов 102, в то время как один символ соответствует одному символу SC-FDMA. Блок 103 ресурса (RB) является единицей выделения ресурсов, соответствующей двенадцати поднесущим в частотной области, и одному интервалу во временной области. Структура восходящей линии связи LTE классифицируется в область 104 данных и область 105 управления. Область данных является последовательностью ресурсов связи, включающей в себя данные, такие как речевая информация, пакетные данные, переданные к каждому терминалу, и соответствует ресурсам за исключением области управления в подкадре. Область управления является последовательностью ресурсов связи, включающей в себя отчет о качестве канала нисходящей линии связи от каждого терминала, Подтверждение/Отрицательное Подтверждение (ACK/NACK) приема для сигнала нисходящей линии связи и запрос планирования восходящей линии связи.

Как показано на Фиг.1, время, когда SRS может быть передан в одном подкадре, является длительностью символа SC-FDMA, которая является конечной длительностью, когда SRS передается в полосе передачи данных на частотной основе. SRS различных терминалов, переданные через конечный SC-FDMA того же подкадра, может быть классифицирован согласно местоположению частоты. Кроме того, SRS состоит из последовательности постоянной амплитуды нулевой автокорреляции (CAZAC), и SRS, переданные от различных терминалов, являются последовательностью CAZAC, которая имеет различное значение циклического сдвига. Каждая из последовательностей CAZAC, сгенерированных посредством циклического сдвига из одной последовательности CAZAC, имеет нулевое значение корреляции относительно последовательностей, имеющих различное значение циклического сдвига. Используя такие характеристики, SRS той же частотной области может быть классифицирован согласно значению циклического сдвига последовательности CAZAC. SRS каждого терминала выделяется в частотной области на основе древовидной структуры, установленной в базовой станции. Терминал осуществляет скачкообразное изменение SRS для передачи SRS по всей ширине полосы передачи данных восходящей линии связи в этой древовидной структуре.

Фиг.2 иллюстрирует пример способа выделения SRS для древовидной структуры, установленной базовой станцией в полосе передачи данных, соответствующей 40RB на частотной основе.

В этом примере, предполагая, что индекс уровня древовидной структуры равен b, самый верхний уровень (b=0) состоит из одного блока SRS ширины полосы (BW) с шириной полосы 40RB. На втором уровне (b=1), два BW SRS с шириной полосы 20RB сгенерированы из BW SRS уровня b=0. Поэтому, два BW SRS могут существовать в целой полосе передачи данных. На третьем уровне (b=2) пять 4RB BW SRS сгенерированы из одного 20RB BW SRS самого верхнего уровня (b=1), так что он имеет структуру, где десять 4RB BW SRS существуют в одном уровне. Конфигурация этой древовидной структуры может иметь много различных уровней, ширина полосы SRS и число BW SRS на один уровень устанавливаются согласно настройке базовой станции. Число BW SRS уровня b, сгенерированного из одного BW SRS верхнего уровня, задается как Nb, и индекс BW SRS Nbis, задается как nb = [0,...,Nb-1]. В примере, показанном на Фиг.2, пользователь 1 200 распределяется первому BW SRS (n1=0) из двух BW SRS имеющих ширину полосы 20RB на уровне b=1. Пользователь 2 201 и пользователь 3 202 распределяются в местоположение первого BW SRS (n2=0) и третьего BW SRS (n2=2) под вторым BW SRS в 20RB. Таким образом, можно избежать конфликта между SRS терминалов при распределении на основе древовидной структуры, показанной в примере.

Фиг.3 иллюстрирует структуру передачи скачкообразного изменения SRS для случая, в котором терминал не использует антенно-избирательное разнесение передачи.

nSRS является индексом момента времени передачи SRS, который имеет значение 0,1,2... Таким образом, передача SRS по всей полосе передачи данных восходящей линии связи становится возможной при выполнении скачкообразного изменения SRS в древовидной структуре, которая является определенной для соты. В случае, когда способ антенно-избирательного разнесения передачи поддерживается в системе восходящей линии связи LTE, терминал передает SRS к каждой антенне, так что базовая станция может предоставлять информацию о канале для определения передающей антенны терминала. Так как терминал осуществляет передачу восходящей линии связи, всегда используя единственную антенну в системе LTE, терминал поочередно использует две антенны в момент времени передачи SRS, одновременно выполняя скачкообразное изменение SRS, показанное на Фиг.3.

Фиг.4 иллюстрирует пример антенной диаграммы, которая передает SRS, когда терминал поддерживает антенно-избирательное разнесение передачи и осуществляет скачкообразное изменение SRS в системе LTE.

Как показано на Фиг.4, традиционная антенная диаграмма передачи SRS, которая использует антенну терминала для передачи SRS по очереди, приводит к передаче SRS в частотном местоположении, которое ограничено для каждой антенны. Соответственно, проблема заключается в том, что каждая антенна не может передавать SRS во всей полосе передачи данных восходящей линии связи. Например, подразумевая, что две антенны пользователя 1, распределенного согласно Фиг.3, являются Ant# 0 300 и Ant# 1 301, Ant#0 всегда передает SRS в левой половине полосы данных восходящей линии связи, в то время как Ant#1 передает SRS в правой половине. Подобные проблемы возникают по отношению к пользователям 2 и 3.

Раскрытие изобретения

Техническая проблема

Традиционная антенная диаграмма передачи SRS, которая использует антенну терминала для передачи SRS по очереди, приводит к передаче SRS в частотном местоположении, которое ограничено для каждой антенны. Соответственно, есть проблема, состоящая в том, что каждая антенна не может передать SRS по всей полосе передачи данных восходящей линии связи.

Техническое решение

Настоящее изобретение было создано ввиду вышеуказанных проблем, и предоставляет антенную диаграмму передачи SRS, в которой каждая антенна терминала способна передавать SRS по всей полосе передачи данных восходящей линии связи в среде восходящей линии связи, с использованием множества антенн, когда разрешено скачкообразное изменение SRS. Настоящее изобретение дополнительно предоставляет устройство и последовательность операций базовой станции и терминала для применения антенной диаграммы передачи SRS.

В соответствии с аспектом настоящего изобретения, способ передачи SRS терминала в системе мобильной связи, с использованием множества антенн и скачкообразного изменения SRS, включает в себя генерирование SRS, подлежащего передаче к базовой станции в момент времени передачи SRS, и назначение полосы передачи SRS для передачи сгенерированного SRS; определение первого участка передачи и второго участка передачи, чтобы соответствовать числу передачи SRS, и генерирование индекса антенны передачи SRS так, чтобы антенны, которые передают SRS, не перекрывались в одной полосе передачи SRS первого участка передачи и второго участка передачи; и передачу SRS путем выбора антенны для передачи SRS согласно сгенерированному индексу антенны передачи SRS, в каждый момент времени передачи первого участка передачи и второго участка передачи.

В соответствии с другим аспектом настоящего изобретения, способ передачи SRS терминала в системе мобильной связи с использованием множества антенн и скачкообразного изменения SRS включает в себя генерирование SRS, подлежащего передаче к базовой станции во время передачи SRS; и выбор антенны, используемой для передачи SRS, согласно антенной диаграмме 0110 и передачу SRS через выбранную антенну согласно антенной диаграмме 0110, в каждое время передачи SRS, причем "0" антенной диаграммы 0110 является индексом первой антенны, и "1" антенной диаграммы 0110 является индексом второй антенны.

В соответствии с другим аспектом настоящего изобретения, способ приема SRS базовой станции в системе мобильной связи, с использованием множества антенн и скачкообразного изменения SRS включает в себя отделение SRS для конкретного терминала в приеме SRS от терминала; и определение антенны терминала, которая передавала принимаемый SRS, с использованием индекса антенны передачи SRS для терминала, передающего SRS, причем индекс антенны передачи SRS формируется таким образом, что антенны, которые передают SRS, не перекрываются в одной полосе передачи SRS первого участка передачи и второго участка передачи, которые определены, чтобы соответствовать числу передачи SRS терминалов.

В соответствии с другим аспектом настоящего изобретения, способ приема SRS базовой станции в системе мобильной связи, с использованием множества антенн и скачкообразного изменения SRS включает в себя отделение SRS для конкретного терминала в приеме SRS от терминала, и определение антенны терминала, которая передавала принимаемый SRS, с использованием антенной диаграммы 0110, причем "0" антенной диаграммы 0110 является индексом первой антенны терминала, и "1" антенной диаграммы 0110 является индексом второй антенны терминала.

В соответствии с еще одним аспектом настоящего изобретения, устройство для передачи SRS в системе мобильной связи, с использованием множества антенн и скачкообразного изменения SRS включает в себя модуль назначения частот, который назначает SRS, сгенерированный в момент времени передачи SRS, для поднесущей; модуль обратного быстрого преобразования Фурье, который осуществляет обратное быстрое преобразование Фурье на последовательности SRS, назначенной каждой поднесущей; генератор шаблона скачкообразного изменения SRS, который назначает полосу передачи SRS для передачи сгенерированного SRS; селектор антенны передачи SRS, который выбирает антенну для передачи SRS, над которым было осуществлено обратное быстрое преобразование Фурье; и генератор индекса антенны передачи SRS, который предоставляет индекс антенны передачи SRS селектору антенны передачи SRS, причем индекс антенны передачи SRS формируется таким образом, что антенны, которые передают SRS, не перекрываются в одной полосе передачи SRS первого участка передачи и второго участка передачи, которые определены, чтобы соответствовать числу передачи SRS терминалов.

В соответствии с еще одним аспектом настоящего изобретения, устройство для передачи SRS в системе мобильной связи, с использованием множества антенн и скачкообразного изменения SRS включает в себя генератор последовательности SRS для генерирования SRS, подлежащего передаче к базовой станции во время передачи SRS; и селектор антенны передачи SRS, выбирающий антенну, используемую для передачи SRS согласно антенной диаграмме 0110 в каждое время передачи SRS, и передатчик для передачи SRS через выбранную антенну согласно антенной диаграмме 0110 в каждое время передачи SRS, причем "0" антенной диаграммы 0110 является индексом первой антенны, и "1" антенной диаграммы 0110 является индексом второй антенны.

В соответствии с еще одним аспектом настоящего изобретения, устройство для приема SRS в системе мобильной связи с использованием множества антенн и скачкообразного изменения SRS включает в себя модуль быстрого преобразования Фурье, который осуществляет быстрое преобразование Фурье SRS, переданного от терминала; модуль частотного отделения SRS, который отделяет SRS для множества терминалов, преобразованных в частотную область из частотной области, модуль кодового отделения SRS, который отделяет SRS, отделенный из частотной области, из кодовой области; и модуль определения антенны передачи SRS, который определяет антенну терминала, передающую SRS, используя индекс антенны передачи SRS, причем индекс антенны передачи SRS формируется таким образом, что антенны, которые передают SRS, не перекрываются в одной полосе передачи SRS первого участка передачи и второго участка передачи, которые определяются, чтобы соответствовать числу полосы передачи SRS.

В соответствии с еще одним аспектом настоящего изобретения, устройство для приема SRS в системе мобильной связи с использованием множества антенн и скачкообразного изменения SRS включает в себя модуль быстрого преобразования Фурье для быстрого преобразования Фурье SRS, переданного от терминала; и модуль частотного отделения SRS для отделения SRS для конкретного терминала, преобразованного в частотную область; и модуль кодового отделения SRS для отделения кода SRS, назначенного конкретному терминалу, из кодовой области; и модуль определения передающей антенны SRS для определения антенны терминала, которая передает SRS с использованием антенной диаграммы 0110, причем "0" антенной диаграммы 0110 является индексом первой антенны терминала, и "1" антенной диаграммы 0110 является индексом второй антенны терминала.

Положительные эффекты

Настоящее изобретение обеспечивает антенную диаграмму передачи SRS так, чтобы каждая антенна терминала могла передавать SRS во всей полосе для передачи данных, таким образом, становится возможным решить проблему традиционной технологии, в которой конкретная антенна передавала SRS только в конкретной полосе, так что базовая станция могла получать информацию о канале для ограниченной полосы каждой антенны терминала. Кроме того, так как функция, используемая для генерирования антенной диаграммы в настоящем изобретении, предварительно определяется между базовой станцией и терминалом, не требуется дополнительной сигнализации и служебных нагрузок. Наконец, настоящее изобретение предоставляет способ генерирования антенной диаграммы, который применим к терминалу, имеющему две или более антенн.

Краткое описание чертежей

Цели, признаки и преимущества настоящего изобретения станут более понятными из последующего подробного описания совместно с чертежами, на которых:

Фиг.1 иллюстрирует пример структуры передачи системы восходящей линии связи LTE;

Фиг.2 иллюстрирует пример способа распределения зондирующего опорного сигнала в системе восходящей линии связи LTE;

Фиг.3 иллюстрирует пример структуры скачкообразного изменения зондирующего опорного сигнала в системе восходящей линии связи LTE;

Фиг.4 иллюстрирует пример антенной диаграммы передачи зондирующего опорного сигнала, где антенно-избирательный способ разнесения передачи поддерживается с использованием двух антенн;

Фиг.5 иллюстрирует другой пример антенной диаграммы передачи зондирующего опорного сигнала согласно варианту осуществления настоящего изобретения в случае, когда терминал оборудован двумя антеннами;

Фиг.6 иллюстрирует пример структуры передачи зондирующего опорного сигнала согласно варианту осуществления настоящего изобретения в случае, когда терминал оборудован двумя антеннами;

Фиг.7 иллюстрирует терминальное устройство передачи согласно варианту осуществления настоящего изобретения;

Фиг.8 иллюстрирует устройство приема базовой станции согласно варианту осуществления настоящего изобретения;

Фиг.9 иллюстрирует последовательность операций терминала при передаче сигналов согласно варианту осуществления настоящего изобретения;

Фиг.10 иллюстрирует последовательность операций базовой станции при приеме сигнала согласно варианту осуществления настоящего изобретения;

Фиг.11 иллюстрирует антенную диаграмму передачи зондирующего опорного сигнала согласно варианту осуществления настоящего изобретения, когда терминал оборудован тремя антеннами;

Фиг.12 иллюстрирует антенную диаграмму передачи зондирующего опорного сигнала согласно варианту осуществления настоящего изобретения, когда терминал оборудован четырьмя антеннами;

Фиг.13 иллюстрирует пример по Фиг.5 согласно настоящему изобретению со структурой скачкообразного изменения зондирующего опорного сигнала древовидной структуры, когда терминал оборудован двумя антеннами; и

Фиг.14 иллюстрирует пример по Фиг.6 согласно настоящему изобретению со структурой скачкообразного изменения зондирующего опорного сигнала древовидной структуры, когда терминал оборудован двумя антеннами.

Варианты осуществления изобретения

Примерные варианты осуществления настоящего изобретения описываются со ссылкой на чертежи. Одинаковые ссылочные позиции, используемые на всех чертежах, обозначают одинаковые или сходные части. Подробные описания известных функций и структур, включенных в данный документ, могут быть опущены, чтобы избежать затенения предмета настоящего изобретения.

Настоящее изобретение не ограничивается системой LTE, и примеры, которые будут описаны здесь, могут быть применены ко всем системам восходящей линии связи, включая OFDMA, где терминал использует множество антенн. Кроме того, в настоящем изобретении принцип, что терминал использует множество антенн, включает в себя метод, который используется для пространственного разнесения и пространственного мультиплексирования, в котором информация о канале, полученная из SRS, который передается от каждой антенны терминала, принимается и передается к множеству антенн, помимо антенно-избирательного разнесения передачи. Наконец, данное изобретение не ограничивается определенной системой, упомянутой в спецификации, и применимо как решение для ситуации, в которой SRS, переданный антеннами терминала, ограничен частью ширины полосы системы восходящей линии связи, в методе зондирования через множество антенн.

Настоящее изобретение предоставляет эффективную антенную диаграмму передачи SRS, посредством которой базовая станция может получить информацию о канале всей полосы передачи данных восходящей линии связи для каждой антенны терминала в восходящей линии связи, используя множество антенн и скачкообразное изменение SRS. Настоящее изобретение устанавливает время, необходимое для передачи SRS для всей полосы передачи данных, каждой антенной как период антенной диаграммы, и генерирует антенную диаграмму, изменяя способ для применения индекса антенны передачи SRS к каждому участку, путем деления периода антенной диаграммы согласно числу антенн и числу BW SRS, когда разрешено скачкообразное изменение зондирующего опорного сигнала.

Здесь, индекс антенны передачи SRS является указателем, который указывает антенну терминала, которая передает SRS.

Настоящее изобретение преодолевает недостаток предшествующего уровня техники, описанного выше, то есть проблему, состоящую в том, что каждая антенна терминала передает SRS в конкретной ограниченной полосе, предоставляя антенную диаграмму передачи SRS. Кроме того, функция, которая определяет диаграмму антенны передачи SRS, предварительно определяется между базовой станцией и терминалом, используя антенно-избирательный способ разнесения передачи, в то время как число передающих антенн терминала и число BW SRS устанавливаются как входная переменная, так что дополнительная служебная нагрузка не требуется для работы настоящего изобретения. Технология, предложенная в настоящем изобретении, иллюстрируется подробно в последующих вариантах осуществления.

Первый вариант осуществления

В первом варианте осуществления, в случае, когда терминал имеет две антенны в системе LTE, иллюстрируется антенная диаграмма передачи SRS.

Фиг.5 иллюстрирует пример антенной диаграммы передачи SRS и иллюстрирует антенную диаграмму с индексом 500, 501 передачи SRS согласно моменту времени t, который передает SRS в случае, когда BW SRS для Nb (Nb=2,3,4,5,6) существуют на каждый один уровень в древовидной структуре. Если число антенн терминала равно М и число моментов времени передачи SRS, необходимое для передачи SRS по всей полосе передачи данных каждой антенной, равно K, получаем K=M*Nb.

На чертеже, если две антенны используются поочередно для передачи SRS согласно предшествующему уровню техники, можно легко предсказать, что определенный BW SRS всегда передается только через одну антенну. Например, в случае Nb=2, когда антенна используется по очереди, SRS BW0 всегда передается к антенне 0 и SRS BW1 передается к антенне 1. Здесь, t является моментом времени передачи SRS, имеющим значение t=0, 1, 2... и заданным как t'=t mod K. Таким образом, антенная диаграмма передачи SRS повторяется с периодом K. В настоящем изобретении момент времени передачи определяется как единица интервала, единица подкадра, множество единиц подкадра, единица кадра или множество единиц кадра, и может быть установлен между приемом и передачей как верхняя сигнализация, или и прием и передача могут сохранять предварительно заданное значение. Таким образом, на чертеже, согласно настоящему изобретению, для удобства иллюстрации, момент времени передачи представляется непрерывным. Момент времени передачи изолирован данным интервалом или может быть непрерывным согласно установке. Это задание момента времени передачи должно быть применимо в целом ко всем вариантам осуществления настоящего изобретения.

На Фиг.5 терминал передает SRS, используя две антенны 0, 1 по очереди для двух моментов времени передачи SRS, соответствующих числу полосы передачи SRS, то есть, для t'=0, 1 (первый участок передачи).

В следующие два момента времени передачи SRS t'=2, 3 (второй участок передачи), SRS передается путем замены порядка индекса антенны так, чтобы SRS не мог быть передан через ту же антенну в первом участке передачи той же полосы передачи SRS и втором участке передачи. Таким образом, момент времени передачи SRS группируется, соответствуя числу полосы передачи SRS, так, чтобы вышеупомянутая диаграмма повторялась на участке момента времени передачи SRS t'=0..., K/2-1, который является первым участком передачи.

В оставшихся участках передачи SRS t'=K/2..., K-1, что является вторым участком передачи, дополнительный индекс антенны применяется к индексу антенны, переданному из первого участка передачи предыдущего t'=0..., K/2-1 так, чтобы SRS не мог быть передан через ту же самую антенну в первом участке передачи той же самой полосы передачи SRS и втором участке передачи. На чертеже, значение, выраженное как "скачкообразное изменение" ниже BW SRS, означает значение индекса BW SRS, скачкообразно изменяющееся в соответствии с вышеописанным обычным шаблоном скачкообразного изменения SRS. Эта диаграмма T(t') передачи антенны выражается в уравнении (1).

(1)

Если используется антенная диаграмма передачи SRS T (t'), сгенерированная вышеописанным способом, терминал может передать SRS для каждой антенны во всей полосе передачи данных. Кроме того, как пример другой диаграммы передачи настоящего изобретения, новая диаграмма передачи может быть сгенерирована применением дополнительного индекса антенны к сгенерированному T(t'). Таким образом, новая диаграмма передачи T'(t') может быть сгенерирована как T'(t') = (T(t')+1)mod2. В то же время, если уравнение (1) выражается другим способом согласно другому варианту осуществления настоящего изобретения, оно становится уравнением (1-1). Здесь следует отметить, что уравнение (1) и уравнение (1-1) отличаются только в выражении, но идентичны в принципе генерирования антенной диаграммы передачи SRS

(1-1)

Здесь, ‘b hop’ является параметром для определения частотной области, в которой доступно скачкообразное изменение частоты SRS, в то время как скачкообразное изменение возможно в частотной области зондирования всех участков, когда 'b hop=0'. Кроме того, 'SRS B' является индексом уровня древовидной структуры и соответствует вышеописанному 'b'. Как описано выше, 'Nb' является числом BW SRS на уровне 'B_SRS' (или уровне b'). В дальнейшем, со ссылкой на Фиг.3 и Фиг.5, процесс генерирования индекса антенны передачи SRS посредством уравнения (1-1) иллюстрируется подробно. В этом случае, известно, что уравнение (1) и уравнение (1-1) генерируют одинаковый индекс антенны передачи SRS.

Сначала в UE1 по Фиг.3, так как 'b=1', когда он применяется к

,

становится

Соответственно, так как K не кратно 4 будучи четным числом, значение бета становится 0. Тогда, уравнение становится а(n_SRS)=(n_SRS+floor(n_SRS/2))mod2. По мере того как значение n_SRS увеличивается 0, 1, 2..., антенная диаграмма передачи определяется в порядке (0)=0, (1)=1, (2)=1, (3)=0, (4)=0, (5)=1, (6)=1, (7)=0. Как описано выше, UE1 указывает случай, в котором SRS делит всю полосу частот сканирования на две для передачи. Поэтому описание UE1 по Фиг.3 может быть тождественно применено к случаю 'Nb=2' по Фиг.5.

Таким образом, в UE2 и UE3 по Фиг.3, так как 'b=2', уравнение становится

Соответственно, так как K не кратно 4 будучи четным числом, значение бета становится 0. В этом случае, известно, что 0, 1, 1, 0 повторяется, когда вычисляется (n_SRS).

Согласно варианту осуществления настоящего изобретения, антенная диаграмма может быть "0110", когда число полосы SRS является четным числом, и антенная диаграмма может быть повторением "01", когда число полосы SRS является нечетным числом. "0" антенной диаграммы 0110 является индексом первой антенны, и, "1" антенной диаграммы 0110 является индексом второй антенны.

На Фиг.5, в случае 'Nb=4' и случае 'Nb=6', известно, что каждый случай имеет различную антенную диаграмму передачи. Число переданного SRS, то есть в случае, когда Nb является четным числом, будучи кратным 4, повторяется шаблон 0, 1, 1, 0, 1, 0, 0, 1, тогда как шаблон 0, 1, 1, 0 повторяется в случае, когда Nb является четным числом, не будучи кратным 4. Это следует из условия

которое указано в уравнении (1-1). Соответственно, можно подтвердить, что уравнение (1) и уравнение (1-1) отличаются только в выражении, но принцип генерирования антенной диаграммы передачи SRS идентичен.

Фиг.6 иллюстрирует второй пример, применимый к первому варианту осуществления настоящего изобретения.

В этом случае, антенная диаграмма для участка t'=0...,K/2-1 момента времени передачи SRS, который является первым участком момента времени передачи, использует антенну 0(600), 1(601) по очереди для передачи SRS тождественно с предшествующим уровнем техники. Таким образом, антенная диаграмма, используемая на первом участке момента времени передачи, повторяется 0, 1, 0, 1. Однако, на участке t'=K/2,... K-1, который является вторым участком момента времени передачи, индекс антенны, который является дополнением индекса антенны передачи предыдущего участка t'=0,...,K/2-1, применяется так, чтобы SRS не передавался через ту же антенну в той же полосе передачи SRS.

На чертеже может быть подтверждено, что каждая антенна передает SRS во всей полосе передачи данных. Эта диаграмма T(t')передачи антенны выражена в уравнении (2).

(2)

Кроме того, как пример другой диаграммы передачи настоящего изобретения, индекс антенны, который является дополнением для сгенерированного T(t') применяется для генерирования новой диаграммы передачи. Таким образом, новая диаграмма передачи T'(t') может быть сгенерирована как T'(t')=(T(t')+1)mod2.

Фиг.7 и Фиг.8 иллюстрируют передачу в терминале и прием в базовой станции станцию соответственно, когда применяется первый вариант осуществления настоящего изобретения.

На Фиг.7 показан генератор 701 последовательности SRS, который принимает индекс 700 последовательности SRS (последовательность CAZAC), который выделяется от базовой станции и генерирует последовательность SRS. Модуль 702 циклического сдвига принимает сгенерированную последовательность SRS от генератора 701 последовательности SRS и осуществляет сдвиг на значение циклического сдвига при использовании значения 700 циклического сдвига выделенного от базовой станции. Генератор 703 шаблона скачкообразного изменения SRS распределяет местоположение частоты для передачи SRS в полосе пропускания восходящей линии связи через произвольную антенну, то есть полосе передачи SRS согласно шаблону, предварительно определенному с базовой станцией. В то же время сгенерированный шаблон скачкообразного изменения SRS является шаблоном, который предварительно определяется между базовой станцией и терминалом. Распределенный SRS преобразуется в символ SC-FDMA посредством обратного быстрого преобразования Фурье (IFFT) 705 и затем осуществляется вставка 706 CP. Генератор 707 индекса антенны передачи SRS, в каждом моменте времени передачи, генерирует шаблон индекса антенны для передачи SRS в полосе передачи SRS, распределенной генератором 703 шаблона скачкообразного изменения SRS. Антенная диаграмма может быть 0110, причем "0" антенной диаграммы 0110 является индексом первой антенны, и "1" антенной диаграммы 0110 является индексом второй антенны. В этом случае, генератор 707 индекса антенны передачи SRS отображает произвольную антенну с установленной полосой передачи SRS во время первого участка передачи, чтобы последовательно передавать SRS в каждый момент времени передачи, генерируя индекс антенны так, чтобы SRS не мог быть передан через ту же антенну в той же полосе передачи SRS во время второго участка передачи. Модуль 708 выбора антенны передачи SRS выбирает антенну передачи SRS терминала согласно индексу антенны, определенному генератором 707 антенны передачи SRS. Затем SRS передается к базовой станции через одну из антенны 0 709 или антенны 1 710.

Согласно Фиг.8, после выполнения процесса удаления 800 CP для сигнала SRS, принятого от терминала, базовая станция преобразует сигнал SRS в частотную область посредством быстрого преобразования Фурье (FFT) 801. Базовая станция выделяет SRS различных терминалов 803 из частотной области через частотный разделитель 803 SRS с использованием шаблона скачкообразного изменения, который сгенерирован генератором 802 скачкообразного изменения частоты SRS и предварительно определен между базовой станцией и терминалом.

Затем базовая станция выделяет SRS от терминалов, который мультиплексирован в той же частотной области, посредством разделителя 805 кода SRS из кодовой области с использованием индекса последовательности SRS и значения 804 циклического сдвига, назначенного каждому терминалу. Оценщик 806 состояния канала оценивает состояние канала восходящей линии связи посредством SRS каждого выделенного терминала. Базовая станция определяет, какое число антенны использовалось для передачи SRS, который принимается текущей базовой станцией, от модуля определения антенны передачи SRS. Наконец, базовая станция сравнивает значение оценки канала, которое получается из SRS, принятого от каждой антенны терминала посредством селектора 808 антенны, и выполняет выбор антенны, которая имеет лучшее состояние канала, как передающей антенны терминала.

Фиг.9 иллюстрирует последовательность операций терминала при передаче сигналов согласно первому варианту осуществления настоящего изобретения.

Согласно Фиг.9, терминал принимает параметры сигнализации (например, период передачи SRS, местоположение распределения частоты), необходимые для передачи SRS от базовой станции на этапе 900. На основе этих параметров на этапе 901 терминал определяет, является ли текущая передача моментом времени передачи SRS. В случае если она не является моментом времени передачи SRS, терминал выключает генератор SRS на этапе 902 и осуществляет процесс передачи данных/управляющей информации на этапе 903. Если она определяется как момент времени передачи SRS, при использовании генератора 701 последовательности SRS и модуля 702 циклического сдвига, терминал генерирует SRS для передачи к базовой станции. Для этого, во-первых, терминал осуществляет на этапе 904 работу генератора последовательности SRS, на этапе 905 осуществляет циклический сдвиг последовательности SRS, которая сгенерирована здесь так, чтобы стало возможным мультиплексирование кодовой области с другим терминалом. Затем, генератор 703 шаблона скачкообразного изменения SRS терминала выделяет полосу передачи SRS для передачи сгенерированного SRS на этапе 906, но позиция выделения SRS определяется согласно начальной информации о выделении из шаблона скачкообразного изменения SRS и базовой станции. Затем генератор 707 индекса антенны передачи SRS терминала определяет первый участок передачи и второй участок передачи, чтобы соответствовать числу полосы передачи SRS, и генерирует индекс передающей антенны SRS таким образом, что антенна, которая передает SRS, не должна перекрываться в той же полосе передачи SRS первого участка передачи и второго участка передачи. Селектор антенны передачи SRS выбирает антенну для передачи соответствующего SRS из сгенерированного индекса антенны передачи SRS на этапе 907 и передает SRS к антенне 0 на этапе 908, если выбирается антенна 0, и передает SRS к антенне 1 на этапе 908, если антенна 0 не выбирается.

Фиг.10 иллюстрирует последовательность операций базовой станции при приеме сигнала согласно варианту осуществления настоящего изобретения.

Согласно Фиг.10, базовая станция на этапе 1000 определяет, является ли момент времени приема от терминала моментом времени, когда передается SRS. Если это не момент времени приема SRS, базовая станция осуществляет процесс приема данных/управляющей информации на этапе 1001. Если базовая станция определяет, что это момент времени приема SRS, во-первых, базовая станция выделяет SRS различных терминалов из частотной области с использованием шаблона скачкообразного изменения SRS и информации о распределении на этапе 1002. На этапе 1003 базовая станция также выделяет SRS терминалов, мультиплексированных в той же самой частотной области, из кодовой области с использованием циклического сдвига, который отличается для каждого терминала. Базовая станция осуществляет оценку канала из выделенного SRS на этапе 1004 и определяет, антенна с каким числом передала SRS, который в настоящий момент принимается, из индекса антенны передачи SRS. Как описано выше, базовая станция согласно настоящему изобретению может определить, какая антенна терминала передала SRS, который принимается от терминала в определенный момент времени передачи с использованием индекса антенны передачи SRS. Согласно настоящему изобретению, после определения антенны передачи SRS терминала посредством вышеописанного процесса, базовая станция может выбрать антенну, имеющую лучшее состояние канала, как передающую антенну терминала. Это будет описано ниже на этапе 1006. Этап 1006 последовательности операций будет описан подробно.

Когда базовая станция определяет, что SRS, принятый от терминала, был передан от антенны 0, базовая станция сохраняет текущее значение E оценки как значение (E0) оценки для антенны 0, и сохраняет как значение (E1) оценки для антенны 1, в противном случае. Затем базовая станция сравнивает два значения E0 и E1 оценки на этапе 1006 и определяет, какое значение оценки канала антенны лучше, на этапе 1007. Если определено, что E0 больше чем E1, выбирается антенна 0 как передающая антенна терминала на этапе 1008, и антенна 1 выбирается как передающая антенна терминала на этапе 1009.

Второй вариант осуществления

Второй вариант осуществления иллюстрирует антенную диаграмму передачи SRS по настоящему изобретению, когда терминал имеет более двух передающих антенн, как в усовершенствованной LTE системе.

Фиг.11 иллюстрирует антенную диаграмму передачи SRS, когда изобретение применяется в случае, когда терминал имеет три антенны. Когда значение Nb не может быть разделено на 3, что является числом антенн терминала, антенна 0 1100, антенна 1 1101, антенна 2 1102 используются для передачи SRS по очереди. Однако, когда значение Nb может быть разделено на 3, что является числом антенн терминала (Nb=3 на Фиг.11), терминал группирует, путем комбинирования, три момента времени передачи SRS соответственно числу полос передачи SRS. SRS передается в следующем порядке: антенна 0, антенна 1 и антенна 2 на первом участке передачи, который является периодом передачи для первой группы (t'=0, 1, 2). На втором участке передачи, который является периодом передачи для следующей группы (t'=3, 4, 5), применяется индекс, в котором значение [М/2]*[t'/Nb] добавляется к антенной диаграмме передачи первой группы и затем обрабатывается по модулю М. Следующая группа (t'=6, 7, 8) также применяет индекс, который вычисляется повторением вышеупомянутого процесса для антенной диаграммы передачи первой группы. Уравнение (3) иллюстрирует вышеописанную диаграмму антенны передачи SRS.

(3)

Фиг.12 иллюстрирует антенную диаграмму передачи SRS согласно настоящему изобретению в случае, когда терминал оборудован четырьмя антеннами.

Согласно Фиг.12, во-первых, если Nb является нечетным числом, антенна 0 1200, антенна 1 1201, антенна 2 1203 и антенна 3 1204 передают SRS, повторяясь по порядку. Относительно числа K момента времени передачи SRS (период антенной диаграммы передачи SRS), которое необходимо, чтобы SRS посылался во всей полосе передачи данных, если Nb является четным числом. Начальный участок t'=0,..., K/2-1 делится равным образом, и процесс, где антенна 0, антенна 1 и антенна 2, антенна 3 передают SRS по порядку повторяется в первом участке (t'=0,..., K/4-1). Во втором участке (t'=K/4,...,K/2-1) индекс передающей антенны применяется в порядке обратном индексу антенны передачи SRS первого участка. Кроме того, два добавляется к индексу передающей антенны начального участка t'=0,...,K/2-1, и операция по модулю М осуществляется так, что индекс антенны передачи SRS участка t'= K/2,...,K-1 может быть получен. Когда Nb равно двум, антенна 0, антенна 1, антенна 2 и антенна 3 передают SRS по порядку в начальном участке t'=0,...,K/2-1, и индекс антенны следующего участка t'=K/2,...,K-1 получается добавлением единицы к индексу антенны предыдущего участка t'=0,...,K/2-1. Это выражается в уравнении (4).

(4)

Базовая станция, структура приемопередающего терминала, и последовательность операций этого варианта осуществления подобна первому варианту осуществления упомянутому выше. Во втором варианте осуществления число оценки канала, полученное из SRS, увеличивается настолько, насколько число антенн терминала увеличивается по сравнению с первым вариантом осуществления, и соответственно, число операций сравнения для выбора антенны увеличивается.

Фиг.13 соответствует проиллюстрированной выше Фиг.5. Фиг.5 иллюстрирует индивидуально согласно числу полосы SRS, тогда как Фиг.13 комбинирует полосы SRS в одну категорию, так что это будет полезно для ясности объяснения принципа действия изобретения по осям частоты и времени. На Фиг.13, предполагая, что уровень, выделенный терминалу, есть b, Nb определяется как число BW SRS, сгенерированное от одного BW SRS верхнего уровня. В это время период K, который требуется, чтобы SRS был передан по всей полосе зондирования, определяется как

Например, как показано на Фиг.13, в случае, когда b=2 выделяется терминалу, и если N0=1, когда b=0 (один BW SRS в полосе зондирования), если N1=3, когда b=1 (три генерирования BW SRS на самом верхнем b=0, соответствующем зондирующей полосе пропускания, уровень b=1 понижается BW SRS, до светло-серого на Фиг.13), если N2=2, когда b=2 (два генерирования BW SRS в одном BW SRS уровня b=1, темно-серый на Фиг.13), соответствующий терминал имеет BW SRS N0N1N2=6 во всей полосе зондирования, и период передачи K, который требуется для передачи BW SRS по всей полосе зондирования, становится равным двенадцати. Соответственно, когда применяется вариант осуществления по Фиг.5 изобретения, как показано на Фиг.13, период передачи SRS в общей сложности из двенадцати раз делится пополам, так что он показывает шаблон индекса антенны передачи SRS, имеющий корреляцию, что дополняет друг друга. Кроме того, каждая антенна терминала передает SRS по всей полосе зондирования.

Фиг.14 иллюстрирует пример вышеописанной Фиг.6 со структурой скачкообразного изменения SRS древовидной структуры. Последовательность операций идентична операциям по Фиг.13.

Промышленная применимость

Хотя примерные варианты осуществления настоящего изобретения были описаны подробно выше, следует ясно подразумевать, что множество изменений и модификаций основных концепций изобретения, описанных в данной заявке, которые могут предположить специалисты в данной области техники, будут находиться в пределах объема и контекста настоящего изобретения, которые заданы приложенной формулой изобретения.

1. Способ передачи зондирующего опорного сигнала (SRS) в пользовательском устройстве (UE) в системе связи, использующей множество антенн и скачкообразное изменение SRS, причем способ содержит этапы на которых:

идентифицируют момент времени передачи SRS;

устанавливают полосу передачи для передачи SRS;

генерируют SRS, который будет передан к базовой станции;

определяют индекс антенны для передачи SRS; и

передают SRS к базовой станции в соответствии с определенным индексом антенны,

причем индекс антенны определяется функцией, основанной на моменте времени передачи, числе полос передачи SRS, выделенных для UE, и конфигурации ширины полосы SRS.

2. Способ по п. 1, в котором индекс антенны определяется так, что UE передает SRS для каждой антенны по всей полосе передачи данных.

3. Способ по п. 1, в котором число полос передачи SRS, выделенных для UE, является специфическим для UE параметром.

4. Способ по п. 1, в котором конфигурация ширины полосы SRS является специфическим для соты параметром.

5. Способ по п. 1, в котором индекс антенны генерируется посредством уравнения

β{ 1,гдеKmod4=0, 0,иначе   K= B= b _hop B SRS N b'    ,

где nSRS является моментом времени передачи, а(nSRS) является индексом антенны, B_SRS является индексом уровня для ширины полосы передачи данных восходящей линии связи, b_hop является параметром для определения частотной области, в которой разрешено скачкообразное изменение частоты SRS, и Nb' является числом SRS BandWidth (BW) на уровне b'.

6. Способ по п. 1, в котором индексом антенны является 0110,

причем "0" индекса 0110 антенны является индексом первой антенны и "1" индекса 0110 антенны является индексом второй антенны.

7. Способ по п. 1, в котором индекс 0110 антенны и индекс антенны, который является комплементарной формой индекса 0110 антенны, повторяются поочередно, когда число полос передачи является кратным 4, причем "0" индекса 0110 антенны является индексом первой антенны и "1" индекса 0110 антенны является индексом второй антенны.

8. Способ приема зондирующего опорного сигнала (SRS) в базовой станции в системе связи, использующей множество антенн и скачкообразное изменение SRS, причем способ содержит:

идентификацию момента времени приема SRS;

прием SRS в предопределенной полосе передачи в момент времени приема SRS; и

определение, какая антенна пользовательского устройства (UE) передавала SRS, с использованием индекса антенны,

причем индекс антенны определяется функцией, основанной на моменте времени передачи, числе полос передачи SRS, выделенных для UE, и конфигурации ширины полосы SRS.

9. Способ по п. 8, в котором индекс антенны определяется так, что UE передает SRS для каждой антенны по всей полосе передачи данных.

10. Способ по п. 8, в котором число полос передачи SRS, выделенных для UE, является специфическим для UE параметром.

11. Способ по п. 8, в котором конфигурация ширины полосы SRS является специфическим для соты параметром.

12. Способ по п. 8, в котором индекс антенны генерируется посредством уравнения

a[ n SRS ]={ [ n SRS + n SRS /2 +β n SRS /K ]mod2,еслиKчетное n SRS mod2,еслиKнечетное ,

β{ 1,гдеKmod4=0, 0,иначе   K= B= b _hop B SRS N b'    ,

где nSRS является моментом времени передачи, а(nSRS) является индексом антенны, B_SRS является индексом уровня для ширины полосы передачи данных восходящей линии связи, b_hop является параметром для определения частотной области, в которой разрешено скачкообразное изменение частоты SRS, и Nb' является числом SRS BandWidth (BW) на уровне b'.

13. Способ по п. 8, в котором индексом антенны является 0110,

причем "0" индекса 0110 антенны является индексом первой антенны и "1" индекса 0110 антенны является индексом второй антенны.

14. Способ по п. 8, в котором индекс 0110 антенны и индекс антенны, который является комплементарной формой индекса 0110 антенны, повторяются поочередно, когда число полос передачи является кратным 4, причем "0" индекса 0110 антенны является индексом первой антенны и "1" индекса 0110 антенны является индексом второй антенны.

15. Устройство для передачи зондирующего опорного сигнала (SRS) в системе мобильной связи, использующей множество антенн и скачкообразное изменение SRS, причем устройство содержит:

генератор скачкообразного изменения SRS для идентификации момента времени передачи и установки полосы передачи для передачи SRS;

генератор последовательности SRS для генерации SRS, подлежащего передаче к базовой станции;

генератор индекса антенны передачи SRS для определения индекса антенны для передачи SRS; и

селектор антенны передачи SRS для передачи SRS к базовой станции в соответствии с определенным индексом антенны,

причем индекс антенны определяется функцией, основанной на моменте времени передачи, числе полос передачи SRS, выделенных для UE, и конфигурации ширины полосы SRS.

16. Устройство по п. 15, в котором индекс антенны определяется так, что UE передает SRS для каждой антенны по всей полосе передачи данных.

17. Устройство по п. 15, в котором число полос передачи SRS, выделенных для UE, является специфическим для UE параметром.

18. Устройство по п. 15, в котором конфигурация ширины полосы SRS является специфическим для соты параметром.

19. Устройство по п. 15, в котором индекс антенны генерируется посредством уравнения

a[ n SRS ]={ [ n SRS + n SRS /2 +β n SRS /K ]mod2,еслиKчетное n SRS mod2,еслиKнечетное ,

β{ 1,гдеKmod4=0, 0,иначе   K= B= b _hop B SRS N b'    ,

где nSRS является моментом времени передачи, а(nSRS) является индексом антенны, B_SRS является индексом уровня для ширины полосы передачи данных восходящей линии связи, b_hop является параметром для определения частотной области, в которой разрешено скачкообразное изменение частоты SRS, и Nb' является числом SRS BandWidth (BW) на уровне b'.

20. Устройство по п. 15, в котором индексом антенны является 0110,

причем "0" индекса 0110 антенны является индексом первой антенны и "1" индекса 0110 антенны является индексом второй антенны.

21. Устройство по п. 15, в котором индекс 0110 антенны и индекс антенны, который является комплементарной формой индекса 0110 антенны, повторяются поочередно, когда число полос передачи является кратным 4,

причем "0" индекса 0110 антенны является индексом первой антенны и "1" индекса 0110 антенны является индексом второй антенны.

22. Устройство для приема зондирующего опорного сигнала (SRS) в системе мобильной связи, использующей множество антенн и скачкообразное изменение SRS, причем устройство содержит:

блок связи для приема SRS в предопределенной полосе передачи в момент времени приема SRS; и

блок решения относительно антенны передачи SRS для определения, какая антенна пользовательского устройства (UE) передавала SRS с использованием индекса антенны,

причем индекс антенны определяется функцией, основанной на моменте времени передачи, числе полос передачи SRS, выделенных для UE, и конфигурации ширины полосы SRS.

23. Устройство по п. 22, в котором индекс антенны определяется так, что UE передает SRS для каждой антенны по всей полосе передачи данных.

24. Устройство по п. 22, в котором число полос передачи SRS, выделенных для UE, является специфическим для UE параметром.

25. Устройство по п. 22, в котором конфигурация ширины полосы SRS является специфическим для соты параметром.

26. Устройство по п. 22, в котором индекс антенны генерируется посредством уравнения

a[ n SRS ]={ [ n SRS + n SRS /2 +β n SRS /K ]mod2,еслиKчетное n SRS mod2,еслиKнечетное ,

β{ 1,гдеKmod4=0, 0,иначе   K= B= b _hop B SRS N b'    ,

где nSRS является моментом времени передачи, а(nSRS) является индексом антенны, B_SRS является индексом уровня для ширины полосы передачи данных восходящей линии связи, b_hop является параметром для определения частотной области, в которой разрешено скачкообразное изменение частоты SRS, и Nb' является числом SRS BandWidth (BW) на уровне b'.

27. Устройство по п. 22, в котором индексом антенны является 0110,

причем "0" индекса 0110 антенны является индексом первой антенны и "1" индекса 0110 антенны является индексом второй антенны.

28. Устройство по п. 22, в котором индекс 0110 антенны и индекс антенны, который является комплементарной формой индекса 0110 антенны, повторяются поочередно, когда число полос передачи является кратным 4,

причем "0" индекса 0110 антенны является индексом первой антенны и "1" индекса 0110 антенны является индексом второй антенны.



 

Похожие патенты:

Изобретение относится к беспроводной связи. Технический результат – улучшение качества соединения и повышение скорости передачи данных путем формирования множества не создающих помех друг другу пространственных каналов для каждого пользователя.

Изобретение относится к системе беспроводной связи. Технический результат – обеспечение эффективной передачи информации состояния канала с использованием субдискретизации таблицы кодирования в системе беспроводной связи.

Базовая станция и мобильная станция осуществляют связь с использованием связи с множеством входов и множеством выходов (MIMO). Базовая станция включает в себя двухмерную (2D) антенную решетку, содержащую число N элементов антенны, сконфигурированных в 2D сетке.

Изобретение относится к технике связи и может использоваться в системах мобильной связи. Технический результат состоит в повышении надежности связи.

Изобретение относится к беспроводной связи. Система с множественными входами и множественными выходами (MIMO) с множественными усилителями мощности и антеннами в мобильном передатчике, например, пользовательском оборудовании для системы сотовой телефонной связи, оказывает настолько большое влияние на время работы батареи, форм фактор и сложность передатчика, что ее не следует использовать, пока ее преимущества значимо не перевесят ее недостатки.

Изобретение относится к технике связи и может использоваться в системах беспроводной связи (MIMO). Технический результат состоит в повышении надежности связи.

Изобретение относится к мобильной связи. Техническим результатом является осуществление передачи и приема сигналов с высокой скоростью передачи в обычной системе сотовой мобильной связи.

Изобретение относится к технике связи и может использоваться в системах беспроводной связи. Технический результат состоит в повышении пропускной способности передачи информации.

Изобретение относится к кодовой книге для систем беспроводной или мобильной связи, и, более конкретно, к передаче по обратной связи информации для кодовой книги. Техническим результатом является обеспечение решения относительно передачи, с пользовательского оборудования в базовую станцию, информации обратной связи для кодовой книги.

Изобретение относится к сотовой системе радиосвязи, использующей разнесение передачи восходящей линии связи с обратной связью. Технический результат заключается в повышении производительности в сотовых радиосистемах с пользовательским оборудованием (UE), конфигурируемыми для разнесения передачи с обратной связью (CLTD).

Изобретение относится к беспроводной связи. Технический результат заключается в обеспечении эффективной передачи и приема информации о состоянии канала (CSI) через множество антенн. Способ передачи CSI терминала включает в себя прием первого опорного сигнала с CSI (CSI-RS) и второго CSI-RS, передачу индикатора CSI, указывающего один из первого и второго CSI-RS, который соответствует CSI, которая должна быть передана, и передачу CSI, сгенерированной на основе упомянутого индикатора CSI, до передачи нового индикатора CSI. 4 н. и 8 з.п. ф-лы, 1 табл., 19 ил.

Изобретение относится к технике связи и может использоваться в системе беспроводной связи. Технический результат состоит в повышении надежности связи. для этого базовая станция определяет, согласно заранее определенному условию инициирования и состоянию канала терминала, активировать ли режим перекрытия лепестков с использованием лепестка перекрытия, в котором несколько одинарных лепестков базовой станции перекрываются, выбирает один или более наилучших лепестков из множества одинарных лепестков, если определено, что режим перекрытия лепестков не активирован, и передает или принимает сигнал для терминала через выбранные наилучшие лепестки. Если определено, что режим перекрытия лепестков активирован, базовая станция формирует лепесток перекрытия, в котором несколько одинарных лепестков базовой станции перекрывается, путем регулировки коэффициентов формирования диаграммы направленности одинарного формирования диаграммы направленности, и передает или принимает сигнал для терминала через лепесток перекрытия. 4 н. и 15 з.п. ф-лы, 14 ил., 1 табл.

Изобретение относится к кодовой книге для систем беспроводной или мобильной связи, и, более конкретно, к передаче по обратной связи информации для кодовой книги. Техническим результатом является обеспечение решения относительно передачи, с пользовательского оборудования в базовую станцию, информации обратной связи для кодовой книги. Предложен cпособ приема индикации ранга (RI), осуществляемый в базовой станции, содержащий этапы: принимают, от пользовательского оборудования, RI, первый индикатор матрицы предварительного кодирования (PMI) и второй PMI, определяют индекс i2 кодовой книги на основе RI и второго PMI, причем значения 0-15 назначаются второму PMI (IPMI2) для RI=1, и значения 0-3 назначаются второму PMI (IPMI2) для каждого из RI=2, RI=3 и RI=4, причем индекс i2 кодовой книги содержит IPMI2 для RI=1, и индекс i2 кодовой книги содержит {0, 1, 4, 5} для RI=2. 6 н. и 20 з.п. ф-лы, 7 ил., 22 табл.

Изобретение относится к системе беспроводной связи. Технический результат изобретения заключается в увеличении эффективности передачи информации о состоянии канала связи. Способ для терминала для передачи информации о состоянии канала (CSI) в системе беспроводной связи содержит этапы режима сообщения отчета для четырех антенных портов: совместное кодирование индикатора ранга (индикатор RI) и первого индикатора матрицы предварительного кодирования (индикатора PMI) в одно значение кодирования; и передача информации о состоянии канала, содержащей упомянутое значение кодирования, при этом, если индикатор RI равен 1, то индекс кодовой книги может иметь такое же значение, как и упомянутое значение кодирования, и если индикатор RI равен 2, то упомянутый индекс кодовой книги может быть меньше, чем упомянутое значение кодирования на 8. 2 н. и 8 з.п. ф-лы, 17 ил., 10 табл.

Изобретение относится к технике связи и может использоваться в системах беспроводной связи. Технический результат состоит в повышении надежности связи. Для этого узел доступа беспроводной связи выполнен с возможностью устанавливать линию беспроводной связи с устройством беспроводной связи посредством передачи на основе сформированной диаграммы направленности с использованием варианта диаграммы направленности, выбранного из множества вариантов диаграммы направленности, каждый из которых соответствует направлению, исходящему от узла доступа беспроводной связи. Раскрыты также способ передачи и способ приема отчета о считывании сигналов маяка. 8 н. и 19 з.п. ф-лы, 5 ил.

Изобретение относится к технике связи и может использоваться в системах беспроводной связи. Технический результат состоит в повышении надежности связи. Для этого узел доступа беспроводной связи выполнен с возможностью устанавливать линию беспроводной связи с устройством беспроводной связи посредством передачи на основе сформированной диаграммы направленности с использованием варианта диаграммы направленности, выбранного из множества вариантов диаграммы направленности, каждый из которых соответствует направлению, исходящему от узла доступа беспроводной связи. Раскрыты также способ передачи и способ приема отчета о считывании сигналов маяка. 8 н. и 19 з.п. ф-лы, 5 ил.

Изобретение относится к области связи, изобретения обеспечивают способ и устройство выделения ресурсов. В объеме существующих пилотных затрат ресурсов DMRS с помощью нового распределения портов осуществляется ортогональный способ синтеза (DMRS) для 24 или менее потоков данных. Решение включает в себя: определение согласно информации о конфигурации сети, что количество уровней опорного сигнала демодуляции (DMRS) базовой станции равно N; и, если 8<N≤12, распределение N портов DMRS, соответствующих количеству уровней DMRS, на три группы CDM на ресурсном блоке RB; если 12<N≤24, распределение N портов DMRS, соответствующих количеству уровней DMRS, на шесть групп CDM на RB; или, если N≤8, распределение N портов DMRS, соответствующих количеству уровней DMRS, на две группы CDM на RB. 2 н. и 6 з.п. ф-лы, 9 ил.
Наверх