Способ калибровки сейсмографов



Способ калибровки сейсмографов
Способ калибровки сейсмографов
G01N29/30 - Исследование или анализ материалов с помощью ультразвуковых, звуковых или инфразвуковых волн; визуализация внутреннего строения объектов путем пропускания через них ультразвуковых или звуковых волн через предметы (G01N 3/00-G01N 27/00 имеют преимущество; измерение или индикация ультразвуковых, звуковых или инфразвуковых волн вообще G01H; системы с использованием эффектов отражения или переизлучения акустических волн, например акустическое изображение G01S 15/00; получение записей с помощью способов и устройств, аналогичных используемым в фотографии, но с использованием ультразвуковых, звуковых или инфразвуковых волн G03B 42/06)

Владельцы патента RU 2632986:

Федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия Ракетных войск стратегического назначения имени Петра Великого" Министерства обороны Российской Федерации (RU)

Изобретение относится к области измерительной техники и может быть использовано для калибровки сейсмографов, и в частности для определения их амплитудно-частотных характеристик и увеличения. Заявлен способ калибровки сейсмографов, согласно которому пластинки электрострикционного материала размещают между постаментом и сейсмографом, при этом на постаменте устанавливают герметичный бак, на дне которого размещают пластинки электрострикционного материала, на которые устанавливают герметичную емкость. На дне герметичной емкости устанавливают сейсмограф, а объем, образованный баком и герметичной емкостью, заполняют жидкостью. Технический результат - упрощение процедуры калибровки сейсмографа, а также повышение точности калибровки сейсмографа. 1 ил.

 

Изобретение относится к области измерительной техники и может быть использовано для калибровки сейсмографов, и в частности для определения их амплитудно-частотных характеристик и увеличения.

Известен генераторный метод калибровки сейсмического канала, при котором прикладывают возбуждающую силу к инерционной массе маятника, при этом смещение маятника, имеющего электромеханический преобразователь, производят генератором электрических колебаний, который подключают к калибровочной катушке. Величину сигнала генератора подбирают такой, чтобы на записях регистратора сейсмографа получить читаемые амплитуды, по которым определяют амплитудно-частотные характеристики, увеличение и т.д. [3, 4].

Недостатком способа является то, что возбуждающая сила прикладывается к подвижной массе, вследствие чего получают фиктивное смещение основания сейсмометра, при этом точность определения частотной характеристики сейсмографа невысока, а форма амплитудно-частотной характеристики не в полной мере соответствует действительности.

Также из уровня техники известен способ калибровки сейсмографов [1], при котором возбуждающую силу прикладывают к станине сейсмометра путем размещения пластинок электрострикционного материала между подпятниками установочных винтов и постаментом.

Недостатком аналога является невозможность задания калибровочных сигналов установленной формы вследствие того, что масса сейсмографа оказывает значительное влияние на колебания пластинок электрострикционного материала, поэтому точность определения частотной характеристики сейсмографа не высока, а форма амплитудно-частотной характеристики не полностью соответствует действительности.

Наиболее близким по технической сущности является способ калибровки сейсмографов [2], характеризующийся тем, что пластинки электрострикционного материала размещают между постаментом и сейсмографом, при этом для составления абсолютной АЧХ и определения увеличения сейсмографа введены LCCD-линейка на станине сейсмографа, а на постаменте, жестко скрепленным с грунтом, - лазер, таким образом, что траектория лазерного луча при колебаниях будет проходить точно вдоль LCCD-линейки.

К недостаткам прототипа можно отнести значительное влияние массы сейсмографа на колебания электрострикционных пластинок, при этом фактически отсутствует возможность задания калибровочных сигналов установленной формы и значительная трудоемкость настройки калибровочного стенда вследствие необходимости подгонки электрострикционных пластинок под подпятники установочных винтов сейсмографа.

Техническими результатами изобретения являются обеспечение возможности задания калибровочного сигнала установленной формы, упрощение процедуры калибровки сейсмографа, а также повышение точности калибровки сейсмографа.

Технические результаты достигаются за счет того, что прототип, характеризующийся тем, что пластинки электрострикционного материала размещают между постаментом и сейсмографом, отличается тем, что на постаменте устанавливают герметичный бак, на дне которого размещают пластинки электрострикционного материала, на которые устанавливают герметичную емкость, при этом на дне герметичной емкости устанавливают сейсмограф, а объем, образованный баком и герметичной емкостью, заполняют жидкостью.

В частности, в качестве жидкости можно использовать минеральные или синтетические масла с различной плотностью.

В частности, жидкость является диэлектриком.

В частности, объем герметичной емкости выбирают с учетом массы сейсмографа таким образом, чтобы выталкивающая сила герметичной емкости уравновешивала массу сейсмографа.

В частности, после установки сейсмографа на дно герметичной емкости производят его ориентирование в пространстве.

Краткое описание чертежей.

На фиг. 1 представлен вид сбоку стенда для калибровки сейсмографа.

Осуществление изобретения.

Реализация способа калибровки сейсмографов показана на примере работы стенда для калибровки сейсмографов, при этом стенд содержит постамент 1, на котором установлен герметичный бак 2. На дне бака 2 размещено несколько пластинок из электрострикционного материала 3, на которых установлена герметичная емкость 4, на дне которой размещен сейсмограф.

Сейсмограф содержит опоры 5, на которых установлена станина 6, при этом на станине 6 установлена точка опоры 7 маятника 8, который подвешен пружиной 9 к опоре 10. На конце маятника 8 установлена инерционная масса 11, которой прикреплен ферромагнитный сердечник 12, вокруг которого расположен блок катушек 13.

Объем, образованный баком 2 и герметичной емкостью 4, заполняют жидкостью 14.

Блок катушек 13 может содержать рабочую, демпфирующую и калибровочные катушки.

В качестве жидкости 14 можно использовать минеральные или синтетические масла с нулевой электропроводностью.

Объем герметичной емкости 4 выбирают с учетом массы сейсмографа таким образом, чтобы выталкивающая сила, образованная давлением жидкости 14, была уравновешена массой сейсмографа, при невозможности использования различных емкостей 4 выталкивающую силу регулируют уровнем жидкости 14 в баке 2.

Стенд для калибровки сейсмографов работает следующим образом.

На пластинках 3 устанавливают герметичную емкость 4, на дне которой размещают сейсмограф. После этого производят ориентацию сейсмографа посредством регулирования длины опор 5 таким образом, чтобы плоскость станины 6 приняла горизонтальное положение. Затем объем, образованный баком 2 и емкостью 4, заполняют жидкостью 14 до тех пор, пока масса сейсмографа не будет уравновешена выталкивающей силой емкости 4.

Для калибровки сейсмографа на пластинки 3 подают напряжение или электрический ток заданной формы, при этом линейные размеры пластинок 3 начинают изменяться согласно закону изменения напряжения или тока, герметичная емкость 4 с сейсмографом начинают совершать заданное движение относительно бака 2 и постамента 1. Благодаря системе подвеса, состоящей из опоры 7, маятника 8 и пружины 9, инерционная масса 11 остается в покое относительно постамента 1, при этом блок катушек 13, установленный на станине 6 совершает заданное движение относительно ферромагнитного сердечника 12, установленного на инерционной массе 11. Движение ферромагнитного сердечника наводит ЭДС в рабочей катушке блока 13, с которой напряжение подают на регистратор.

В качестве регистратора могут быть использованы различные аналого-цифровые преобразователи или самописцы.

Калибровку сейсмографа производят методом сопоставления напряжения, подаваемого на пластинки 3, и записи регистратора, при этом могут быть отработаны различные варианты калибровки для снятия частотной характеристики, амплитудно-частотной и для определения увеличения сейсмографа.

Благодаря малой амплитуде изменения линейных размеров пластинок 3 (десятки нанометров) и небольшой частоте их колебаний (единицы герц) жидкость 14 не будет оказывать существенного влияния на колебания емкости 4 относительно бака 2.

Сравнительный анализ с прототипом показал, что положительными техническими эффектами от реализации способа калибровки сейсмографа являются:

обеспечение возможности задания калибровочного сигнала установленной формы, за счет нивелирования влияния массы сейсмографа на электрострикционные пластинки 3, благодаря уравновешиванию массы сейсмографа выталкивающей силы герметичной емкости 4;

упрощение процедуры калибровки сейсмографа за счет простой установки герметичной емкости 4 на пластинки 3, как следствие отсутствие необходимости подгонки пластинок 3 под опоры 5 сейсмографа;

повышение точности калибровки сейсмографа за счет устранения влияния массы сейсмографа на закон изменения линейных размеров пластинок 3.

Следовательно, техническое решение соответствует критерию "новизна".

Кроме того, так как заявленный технический результат достигается применением всей совокупности существенных признаков, что в известной патентной и научной литературе не обнаружено на дату подачи заявки, изобретение соответствует критерию "изобретательский уровень".

Источники информации

1. Шушлебин А.С., Лапицкий Е.А., Скуридин А.В. Способ калибровки сейсмографов. Патент на изобретение №2324208 от 10.05.2008.

2. Шушлебин А.С., Лапицкий Е.А., Митасов Ю.А. Способ калибровки сейсмографов. Патент на изобретение №2461025 от 10.09.2012.

3. Техническое описание и инструкция по эксплуатации изделия (сейсмографа) К-215-С./ ИЛЕВ 416 542.001 ТО, М., 1979, с. 38-40.

4. Техническое описание и инструкция по эксплуатации изделия (сейсмографа) К-212-С1. / ДБИ 2.787.006 ТО, М., 1981, с. 38-39, 40-41.

Способ калибровки сейсмографов, заключающийся в том, что пластинки электрострикционного материала размещают между постаментом и сейсмографом, отличающийся тем, что на постаменте устанавливают герметичный бак, на дне которого размещают пластинки электрострикционного материала, на которые устанавливают герметичную емкость, при этом на дне герметичной емкости устанавливают сейсмограф, а объем, образованный баком и герметичной емкостью, заполняют жидкостью или минеральными или синтетическими маслами с различной плотностью, которые могут быть диэлектрическими, при этом объем герметичной емкости выбирают с учетом массы сейсмографа таким образом, чтобы выталкивающая сила герметичной емкости уравновешивала массу сейсмографа.



 

Похожие патенты:
Изобретение относится к геофизическим, в частности сейсмоакустическим методам исследований различных свойств массива горных пород, и может быть использовано при контроле трещинообразования в массиве горных пород.

Изобретение относится к геофизическим исследованиям в скважинах и может быть использовано при техническом диагностировании насосно-компрессорных труб (НКТ) и обсадных колонн.

Изобретение относится к геофизическим, а в частности к сейсмоакустическим, методам исследований и может быть использовано для калибровки сейсмоакустических преобразователей, применяющихся при мониторинге различных технических объектов.
Изобретение относится к геофизическим, в частности сейсмоакустическим, методам исследований, и может быть использовано для калибровки характеристик сейсмоакустических преобразователей.

Изобретение относится к контрольно-измерительной технике и используется для калибровки сейсмических датчиков. Устройство включает неподвижное основание, на котором закреплен жесткий упор, и установленную на нем подвижную платформу, на ближней к упору стороне которой закреплен калибруемый сейсмический датчик.

Изобретение относится к области геофизики и может быть использовано для контроля характеристик датчиков, применяющихся при мониторинге различных технических объектов.
Изобретение относится к геофизическим, в частности сейсмоакустическим, методам исследований различных свойств массива горных пород, и может быть использовано для контроля характеристик датчиков, применяющихся в сейсмоакустике.

Изобретение относится к геофизическому приборостроению, в частности к средствам гамма-гамма каротажа, а именно к области метрологического обеспечения скважинной геофизической аппаратуры и созданию стандартных образцов для калибровки скважинной аппаратуры.

Изобретение относится к измерительной технике и может быть использовано для определения параметров кварцевых маятниковых акселерометров. Согласно заявленному способу в одну из точек замкнутого контура акселерометра подают синусоидальные, калиброванные сигналы Uг.

Изобретение относится к нефтепромысловой геофизике и может быть использовано в процессе акустического каротажа. Согласно заявленному изобретению обеспечивается моделирование реального акустического волнового сигнала и полное дистанционное тестирование прибора акустического каротажа в полевых условиях путем разложения входного акустического волнового сигнала на спектральные составляющие и сравнение полученной спектральной характеристики с эталонной спектральной характеристикой.

Изобретение относится к измерительной технике, в частности к пеленгаторам. Техническим результатом является возможность пеленга нескольких типов источников сигналов, уменьшение погрешности при использовании устройства на ближних расстояниях и повышение помехоустойчивости устройства.

Изобретение относится к измерительной технике, в частности к пеленгаторам. Техническим результатом, обеспечиваемым заявляемым изобретением, является уменьшение погрешности при использовании на однопозиционном пункте наблюдения или на средстве передвижения и увеличение помехоустойчивости устройства при наличии мешающих сигналов, поступающих от других источников сигналов.

Приведенный в качестве иллюстрации геофон с настраиваемой резонансной частотой содержит первый индуктивный узел, включающий в себя катушку индуктивности с установленным в ней первым магнитом, причем первый магнит и первая катушка индуктивности выполнены с возможностью перемещения относительно друг друга, и второй индуктивный узел, включающий в себя вторую катушку индуктивности с установленным в ней вторым магнитом, причем второй магнит и вторая катушка индуктивности выполнены с возможностью перемещения относительно друг друга.
Изобретение относится к геофизическим, в частности сейсмоакустическим методам исследований различных свойств массива горных пород, и может быть использовано при контроле трещинообразования в массиве горных пород.

Изобретение относится к области гидроакустики, конкретно к векторно-скалярным приемникам, и может быть использовано в составе мобильной антенной системы (гибкой протяженной буксируемой антенны, донной станции, радиогидроакустического буя) при проведении гидроакустических исследований, в частности для измерения гидроакустических шумов в морях и океанах.

Группа изобретений относится к техническим средствам охраны, способам обнаружения объектов, в том числе нарушителей, на охраняемой территории по создаваемым ими сейсмическим колебаниям и может быть использована для охраны участков местности и подступов к зданиям.

Изобретение относится к области сейсморазведки и может быть использовано для поиска углеводородов и уточнения имеющихся запасов углеводородов на акваториях, в ходе морской сейсморазведки, в ходе шельфовой сейсморазведки, в том числе в Северных морях.

Изобретение относится к области геофизики и может быть использовано при проведении сейсмических исследований. Предложено соединительное устройство TRM для считывающего элемента SU, содержащего по меньшей мере один датчик, расположенный внутри корпуса SH.

Изобретение относится к геофизическим, а в частности к сейсмоакустическим, методам исследований и может быть использовано для калибровки сейсмоакустических преобразователей, применяющихся при мониторинге различных технических объектов.

Изобретение относится к области геофизики и может быть использовано при проведении сейсморазведочных работ. Предложено подвесное устройство, которое может быть использовано с устройством крепления к корпусу ремнями.

Использование: для дефектоскопии магистральных газопроводов. Сущность изобретения заключается в том, что автоматизированная установка ультразвукового контроля содержит блок перемещения, акустический блок, электронный блок, блок питания и баки контактной жидкости.
Наверх