Интерметаллический сплав на основе tial

Изобретение относится к области металлургии, в частности легированным сплавам на основе γ-TiAl. Интерметаллический сплав на основе TiAl содержит, ат.%: алюминий 44-46, ниобий 5-7, хром 1-3, цирконий 1-2, бор 0,1-0,5, лантан ≤0,2, титан - остальное. Сплав характеризуется мелкозернистой изотропной микроструктурой, низким содержанием растворенного кислорода, высокой прочностью и пластичностью до температур 700-800°С при плотности менее 4,2 г/см3. 1 табл., 2 ил.

 

Изобретение относится к области металлургии, в частности к легированным сплавам на основе титаналюминидов с преобладающей фазой γ-TiAl. Сплавы этого типа отличаются малой плотностью, высокой удельной прочностью и хорошей стойкостью к окислению, и предназначены для конструкционных применений при высоких температурах и нагрузках. В частности, такие сплавы перспективны для изготовления стационарных сопловых лопаток компрессора и турбины низкого давления в составе газотурбинных двигателей.

Инновационные гамма-титаналюминиды, релевантные современному уровню техники (так называемые сплавы 3-го поколения), содержат 42-46 ат.% алюминия, и в качестве легирующих добавок переходные металлы, стабилизирующие первичную β-Ti фазу (также известную как В2-фаза), с которой начинается кристаллизация расплавов [Appel F., Paul J.D.H., Oehring М. "Gamma Titanium Aluminide Alloys: Science and Technology", Weinheim, Wiley-VCH Verlag, 2011, 745 р.]. Помимо Nb и Cr, используются такие β-стабилизаторы, как Mo, Та, Zr, W. Их применение приводит к сохранению в затвердевшем литом сплаве относительно малой объемной фракции стабилизированной В2-фазы, пластичной при высоких температурах. Благодаря этому, работоспособность известных β-стабилизированных сплавов в наиболее экстремальных условиях повышается до 700-800°С. Однако, для применений в составе жаропрочных компонентов современных авиационных турбин, необходимо поддержание необходимого баланса прочности и пластичности сплавов при комнатной температуре при сохранении плотности сплавов не более 4,2 г/см3. В частности, необходимым свойством сплавов для таких применений является относительное удлинение при разрушении на разрыв (пластическое предельное удлинение), превышающее 1%.

Низкотемпературную пластичность интерметаллических γ-TiAl сплавов повышают с помощью измельчения их структурного зерна в процессе литья и/или последующих термомеханических обработок. В частности, для получения изотропной мелкозернистой структуры в состав литых сплавов вводят модифицирующую примесь бора в концентрациях до 1 ат.%.

Кроме того, пластичность сплавов зависит от содержания охрупчивающей примеси кислорода, растворенного в основных интерметаллических фазах γ-TiAl и α2-TiAl. Необходимым условием применения γ-TiAl сплавов в составе ответственных узлов и деталей авиационной турбины является содержание растворенного кислорода не более 1000 мас. ppm. Кислород в титаналюминидах является фоновой трудноконтролируемой примесью, уровень содержания которой определяется чистотой и условиями технологических процессов синтеза и литья сплавов. В частности, источником кислорода являются различные составы оксидной керамики, применяемые для изготовления тиглей и литейных форм. Поэтому одним из способов снижения содержания кислорода является применение в процессах кристаллизации расплавов TiAl тигельной жаростойкой керамики неоксидной природы (например, такой способ раскрыт в патенте RU 2362651 С1, опубл. 27.07.2009).

Другим способом снижения содержания кислорода в титаналюминидах является введение в их состав очень малого количества примесей редкоземельных элементов (РЗЭ), атомы которых служат внутренним геттером кислорода в расплаве. Из-за высокого химического сродства РЗЭ к кислороду, он экстрагируется и связывается в микропреципитаты оксидов РЗЭ, дисперсно выпадающие в объеме отливок. Такие микропреципитаты могут упрочнять сплавы по дисперсионному механизму. В настоящей заявке с этой целью применяется микролегирование лантаном.

Известен сплав, описанный в RU 2466201 С2 (опубл. 12.12.2008 г.), содержащий титан, от 38 до 46 ат.% алюминия и от 5 до 10 ат.% ниобия. В частности, в качестве дополнительных (независимых), а также самостоятельных решений в этом изобретении упомянуты сплавы на основе титаналюминидов следующих составов (в атомных %): Ti-(38,5-42,5) Al-(5-10) Nb-(0,5-5)Cr и Ti-(39-43) Al-(5-10) Nb-(0,5-5)Zr. Общими с заявляемым сплавом являются назначение изобретения, а также номенклатура основных и некоторых легирующих химических элементов. Различие состоит в том, что совместное легирование сплавов хромом и цирконием в известном изобретении не предусмотрено. Различие также состоит в том, что в составе сплавов по RU 2466201 отсутствуют бор и лантан. Различия также состоят в количественных содержаниях элементов и, как следствие, в фазовых составах полученных сплавов. Различие также состоит в более низком по сравнению с заявляемой формулой содержании алюминия, что в частности приводит к формированию в составе сплавов по RU 2466201 орторомбической фазы В19, отсутствующей в заявляемом сплаве. Недостатком известных сплавов является необходимость проведения их дополнительных высокотемпературных термомеханических обработок для достижения требуемых свойств, в частности методом экструзии, или комбинации таких термообработок.

Известен также сплав на основе гамма-алюминида титана γ-TiAl, описанный в RU 2520250 C1 (опубл. 14.03.2013 г.), имеющий плотность при комнатной температуре не более 4,2 г/см3, содержащий ниобий в количестве 1,3, или 1,5, или 1,6 ат.% и переходные металлы, выбранные из хрома в количестве 1,3 или 1,7 ат.% и циркония в количестве 1,0 ат.%. В частности, в примерах реализации изобретения упомянуты следующие составы сплавов (в атомных %): Ti-45Al-1,3Nb-1,7Cr; Ti-45,5Al-1,6Nb-1,3Cr и Ti-45,3Al-1,5Nb-1,0Zr. Общими с заявляемым сплавом являются назначение изобретения, а также номенклатура основных и некоторых легирующих химических элементов. Различие состоит в том, что совместное легирование сплавов хромом и цирконием в известном изобретении не предусмотрено. Различие также состоит в том, что в составе сплавов по RU 2520250 отсутствуют бор и лантан. Различия также состоят в количественных содержаниях элементов и, как следствие, в фазовых составах полученных сплавов. Различие также состоит в более низком по сравнению с заявляемой формулой суммарном содержании переходных металлов. Это более низкое содержание переходных металлов, в частности, приводит к формированию в составе упомянутых по RU 2520250 сплавов двухфазной структуры (γ+α2) при отсутствии β-фазы, что обусловливает недостаточную жаропрочность известного сплава.

Прототипом заявляемого сплава выбран сплав на основе алюминидов титана, описанный в RU 2370561 С2 (опубл. 01.09.2005 г.), который имеет состав Ti-zAl-yNb-хВ, где 44,5≤z≤47 ат.%, 5≤y≤10 ат.% и 0,05≤x≤0,8 ат.%, а также содержит молибден в количестве 0,1≤Мо≤3 ат.% и имеет тонко дисперсную β-фазу в γ-титаналюминидном сплаве. Общими с заявляемым сплавом являются назначение изобретения, а также номенклатура составляющих химических элементов Ti, Al, Nb и В. Общим с заявляемым сплавом является также трехфазный состав сплава, состоящий из основных (γ+α2) интерметаллических фаз и неосновной β/В2-фазы, существование которой обусловлено введением достаточного количества β-стабилизирующей добавки переходного металла (в данном случае молибдена). Недостатком известного сплава является использование в его составе тяжелого элемента Мо, повышающего плотность сплава.

Техническим результатом предлагаемого изобретения является создание сплава на основе TiAl, в литом состоянии имеющего мелкодисперсную изотропную микроструктуру, плотность не более 4,2 г/см3, обладающего повышенными прочностными характеристиками при температурах до 750-800°С и предельным удлинением более 1% при испытаниях на разрыв при комнатной температуре.

В качестве изобретения предлагается интерметаллический сплав на основе TiAl с содержанием компонентов в атомных %:

алюминия 44-46,

ниобия 5-7,

хрома 1-3,

циркония 1-2,

бора 0.1-0.5,

лантана ≤0.2,

титан - остальное.

Заявляемый сплав на основе TiAl отличается от прототипа номенклатурой примененных легирующих элементов Cr, Zr и La вместо Мо и количественной формулой состава. Содержание алюминия в диапазоне 44-46 ат.% обеспечивает кристаллизацию единственной первичной β-фазы из расплава в литейных процессах, реализацию оптимальной схемы твердофазных превращений и итоговый состав сплава по основным интерметаллическим фазам γ+α2. Введение ниобия с содержанием 5-7 ат.% позволяет повысить прочностные характеристики сплава в интервале рабочих температур, а также частично стабилизировать остаточное содержание неосновной β/В2 фазы. Содержание ниобия более 7 ат.% увеличивает плотность сплава. Хром и цирконий, примененные совместно в диапазонах легирования 1-3 ат.% и 1-2 ат.% соответственно, являются дополнительными стабилизаторами β/В2 фазы, но при этом имеют атомные массы, меньшие, чем у Nb. Точная дозировка этих примесей обеспечивает необходимое количественное содержание β/В2 фазы. Бор, примененный в диапазоне концентраций 0.1-0.5 ат.%, является источником множественных точечных затравок - микрокристаллов TiB, выпадающих при охлаждении расплава в твердой фазе, и при множественном затравлении твердой фазы уменьшающих средний размер структурного зерна. Содержание бора более 0.5 ат.% приводит к ухудшению пластичности сплава. Лантан в микроколичествах является геттером охрупчивающей примеси кислорода. Содержание лантана более 0.2 ат.% приводит к выпадению в объеме отливки крупных микрочастиц оксида лантана La2O3, а также к ухудшению пластичности сплава.

Указанный технический результат достигается изготовлением сплава в соответствии с составом, предложенным в формуле изобретения, например, с применением литейных технологий.

Изобретение поясняется чертежом, где на Фиг. 1а изображена мелкодисперсная изотропная микроструктура заявляемого сплава. Изображение получено методом растровой электронной микроскопии в режиме обратно-рассеянных электронов. На Фиг. 1б изображено статистическое распределение структурных зерен сплава по их диаметру, приведено среднее значение диаметра зерна - 27.5 мкм и величина его среднеквадратического отклонения - 12.6 мкм.

Примеры реализации изобретения поясняются Таблицей 1, где в диапазоне температур 20-800°С приведены результаты измерений предела текучести (σ0.2), предела прочности (σmax) и предельного удлинения (δ) в зависимости от конкретного содержания компонентов в составе сплава. Измерения проведены при одноосном растяжении образцов. В Таблице 1 приведены также значения плотности сплава при комнатной температуре, измеренные методом гидростатического взвешивания.

Интерметаллический сплав по предложенному в изобретении составу получают методами литья, в частности сплавлением навесок исходных компонентов в необходимом количестве в огнеупорном керамическом тигле при температурах 1700-1800°С в атмосфере аргона, с использованием индукционного нагрева загруженной шихты. Из экспериментальных данных, представленных в Таблице 1, следует, что сплав обладает устойчивыми высокими механическими характеристиками до температуры 800°С, с высокой для сплавов этого типа низкотемпературной пластичностью более 1%. Следовательно, сплав пригоден для многих применений в широком диапазоне температур, например, может использоваться для высоконагружаемых конструктивных элементов.

Указанные свойства объясняются мелкодисперсной изотропной микроструктурой сплава, зафиксированной на Фиг. 1а, а также низким содержанием кислорода в сплаве. В частности, экспериментальное определенное содержание растворенного кислорода составило 1210 мас. ppm при отсутствии La; 430 мас. ppm при 0.07 ат.% La, и 290 мас. ppm при 0.2 ат.% La в составе сплава.

Интерметаллический сплав на основе TiAl, содержащий алюминий, ниобий, хром, цирконий и титан, отличающийся тем, что он дополнительно содержит бор и лантан, при следующем соотношении компонентов, ат.%:

алюминий 44-46
ниобий 5-7
хром 1-3
цирконий 1-2
бор 0,1-0,5
лантан ≤0,2
титан остальное



 

Похожие патенты:

Изобретение относится к области металлургии, а именно к жаропрочным сплавам, которые могут быть использованы для изготовления реакционных труб установок производства этилена с рабочими режимами при температуре плюс 900÷1160°С и давлением до 6 атмосфер.

Изобретение относится к области металлургии, а именно к жаропрочным сплавам, которые могут быть использованы для изготовления реакционных труб нефтегазоперерабатывающих установок с рабочими режимами при температуре 800÷1150°С и давлением до 46 атмосфер.

Изобретение относится к области металлургии, а именно к изготовлению полосы из магнитомягкого сплава. Способ изготовления полосы из магнитомягкого сплава толщиной менее 0,6 мм, пригодной для механической резки, включает холодную прокатку полосы, полученной горячей прокаткой полуфабриката, затем полосу подвергают непрерывному отжигу пропусканием через печь непрерывного действия при температуре в пределах от температуры перехода упорядочения/разупорядочения сплава до температуры начала ферритно-аустенитного превращения сплава, причем скорость движения полосы устанавливают таким образом, чтобы время выдержки полосы в печи непрерывного действия при температуре отжига составляло меньше 10 минут.

Изобретение относится к области металлургии, а именно к никель-хромовым сплавам для бесшовных нефтепромысловых труб. Ni-Cr сплав содержит, мас.%: Si от 0,01 до 0,5, Mn от 0,01 до менее чем 1,0, Cu от 0,01 до менее чем 1,0, Ni от 48 до менее чем 55, Cr от 22 до 28, Mo от 5,6 до менее чем 7,0, N от 0,04 до 0,16, растворимый Al от 0,03 до 0,20, РЗМ от 0,01 до 0,074, W от 0 или более и менее чем 8,0, Co от 0 до 2,0, один или элементов из Ca и Mg от 0,0003 до 0,01 в сумме, и один или более элементов из Ti, Nb, Zr и V от 0 до 0,5 в сумме, Fe и примеси – остальное.

Изобретение относится к области металлургии, в частности, к составам сплавов на основе никеля, которые могут быть использованы для изготовления деталей двигателей, тепловых агрегатов, печей, металлургического оборудования.

Изобретение относится к области металлургии, в частности, к составам сплавов на основе никеля, которые могут быть использованы, например, для изготовления деталей двигателей, труб.

Изобретение относится к области металлургии и может быть использовано в газотурбинном двигателестроении при производстве рабочих и сопловых охлаждаемых лопаток с монокристаллической структурой.

Изобретение относится к области металлургии, в частности легированным сплавам на основе TiAl с преобладающей фазой γ-TiAl, и может быть использовано при изготовлении компонентов авиационных газотурбинных двигателей.

Изобретение относится к металлургии, в частности к использованию сплава для изготовления реакционных труб установок производства этилена, водорода, аммиака, сероуглерода, метанола и с рабочими режимами при температуре 600÷1200°С и давлением до 50 атм.

Жаропрочный сплав используется для изготовления реакционных труб змеевиков установок производства этилена и др. нефтегазоперерабатывающих установок, с рабочими режимами при температуре 650÷1000°C и давлением до 10 атмосфер.

Изобретение относится к технологии получения компактных полуфабрикатов из сплавов на основе интерметаллида TiNi. Способ включает гидридно-кальциевый синтез порошковой смеси, ее консолидацию путем прессования и вакуумного спекания с последующей термомеханической обработкой.

Изобретение относится к получению заготовок из сплавов на основе интерметаллида TiNi. Способ включает приготовление порошковой смеси из TiO2, Ni и/или оксида никеля и гидрида кальция, термическую обработку полученной смеси при температуре 1100-1300°С в течение не менее 6 часов с обеспечением гидридно-кальциевого синтеза порошка сплавов на основе интерметаллида TiNi.

Изобретение относится к области специальной металлургии, в частности к получению электродов из сплавов на основе алюминида титана. Способ включает получение литого интерметаллидного полуфабриката методом центробежного СВС-литья с использованием реакционной смеси при следующем соотношении компонентов, вес.%: целевой состав 57,5 - 62,0, энергетическая добавка 35,0-40,0, флюс CaF2 2,5-5,0, и последующий вакуумный индукционный переплав полученного полуфабриката в медном водоохлаждаемом тигле с введением в расплав за 1-2 минуты до его разливки в кристаллизатор порошковой лигатуры, состоящей из прессованной смеси алюминия с нанопорошком с удельной поверхностью 5÷30 м2/г, в количестве, обеспечивающем содержание 0,5-7 об.% нанопорошка в расплаве, при этом в качестве целевого используют смесь порошков TiO2, Ti, Al, Ca, Nb2O5 и Cr2O3, а в качестве энергетической добавки смесь порошков CaO2 и Al.

Изобретение относится к области металлургии, а именно к способу получения заготовки из титанового сплава, и может быть использовано для изготовления деталей самолета.

Изобретение относится к области металлургии, а именно к интерметаллидным сплавам на основе титана, и может быть использовано для изготовления деталей авиационной и космической техники, длительно работающих до 700°С.

Изобретение относится к области металлургии, а именно к способу изготовления никель-титановых прокатных изделий, и может быть использовано для изготовления исполнительно-приводных механизмов, имплантируемых стентов и других медицинских устройств.

Изобретение относится к области металлургии, а именно к изготовлению высококачественных слитков и заготовок изделий из легированных интерметаллических сплавов на основе гамма-алюминида титана.

Лигатура // 2625148
Изобретение относится к области металлургии, в частности к составам лигатур, используемых в производстве сплавов на основе титана. Лигатура содержит, мас.

Изобретение относится к области металлургии, в частности легированным сплавам на основе TiAl с преобладающей фазой γ-TiAl, и может быть использовано при изготовлении компонентов авиационных газотурбинных двигателей.

Изобретение относится к области металлургии, к сплавам на основе титана, которые могут быть использованы для изготовления деталей приборов. Сплав на основе титана содержит, мас.%: молибден 29,0-35,0; палладий 10,0-15,0; рутений 0,8-1,2; родий 2,6-3,0; титан - остальное.

Изобретение относится к области цветной металлургии, в частности к свариваемым литейным сплавам на основе титана, и предназначено для изготовления фасонных отливок, используемых в ответственных сварно-литых конструкциях энергомашиностроения при температуре до 450°С. Литейный свариваемый сплав на основе титана содержит, мас.%: алюминий 5,0-6,0, молибден 1,0-2,0, ванадий 1,0-2,0, углерод 0,06-0,14, кислород 0,05-0,12, водород 0,002-0,008 железо 0,02-0,15, кремний 0,05-0,08. Сплав характеризуется высоким пределом ползучести при 450°С и высоким качеством сварных соединений. 2 табл., 1 пр.
Наверх