Измерение температуры на потенциале высокого напряжения



Измерение температуры на потенциале высокого напряжения
Измерение температуры на потенциале высокого напряжения

 


Владельцы патента RU 2633292:

СИМЕНС АКЦИЕНГЕЗЕЛЛЬШАФТ (DE)

Изобретение относится к области термометрии и может быть использовано для измерения температуры оптического преобразователя тока. Предлагается система для измерения температуры на потенциале высокого напряжения. Энергия для измерения температуры оптического преобразователя тока предоставляется в распоряжение ровно одним фотодиодом. Фотодиод питается светом от источника света, причем свет источника света направляется к фотодиоду через световод. Технический результат - повышение надежности работы устройства, а также снижение потребления энергии при работе устройства. 6 з.п. ф-лы, 1 ил.

 

Изобретение относится к системе для измерения температуры на потенциале высокого напряжения, включающей в себя электронный датчик температуры, который измеряет температуру оптического преобразователя тока, и который снабжается электрической энергией от источника света.

Оптические преобразователи тока известны в течение длительного времени. Как правило, под преобразователем тока понимается измерительный преобразователь, который имеет сенсорную головку для беспотенциального измерения переменных токов. Оптические преобразователи тока используются для измерения эффекта Фарадея. Эффект Фарадея описывает вращение плоскости поляризации линейно поляризованной электромагнитной волны при прохождении через прозрачную среду, к которой временно постоянное магнитное поле приложено параллельно к направлению распространения волны.

В возрастающей степени оптические преобразователи тока также используются на потенциале высокого напряжения. Такой оптический преобразователь тока известен, например, из DE 198 02 191 B4.

Как правило, эффект Фарадея зависит от температуры, так как вращение поляризованной волны зависит от свойств материала прозрачной среды, и эти свойства изменяются с изменением температуры. Если при оценке измерения не учитывается температурная зависимость, то это может приводить к ошибкам измерения при установленных измеряемых значениях для переменного тока. Для того чтобы компенсировать такие ошибки измерения, согласно уровню техники проводится дополнительное измерение температуры на потенциале высокого напряжения. При этом измерение температуры может осуществляться как при помощи электроники, так и при помощи оптики.

Оптическими датчиками температуры являются, например, датчики на основе волоконных решеток Брэгга. Также известны датчики с полупроводниковыми элементами, которые действуют в качестве зависимых от температуры оптических фильтров границы энергетической зоны, или датчики, которые используют зависящее от температуры время затухания флуоресценции кристаллов. Недостаток оптических датчиков температуры заключается в их более высокой по сравнению с электронными датчиками сложности.

Электронными датчиками температуры являются согласно уровню техники цифровые датчики, которые выполнены на основе микропроцессоров. Такие основывающиеся на цифровой обработке сигнала датчики температуры нуждаются в высоком рабочем напряжении, которое находится в диапазоне нескольких вольт. Кроме того, они должны постоянно снабжаться достаточным количеством электрической энергии.

Для того чтобы покрывать потребность в электрической энергии, известны для цифрового измерения температуры на потенциале высокого напряжения датчики, которые для выполнения задачи по измерению снабжаются энергией при помощи световода. При этом свет высокопроизводительного лазера направляется из наземной станции при помощи световода к оптическому преобразователю тока. Обычно используются высокопроизводительные лазеры с мощностью в диапазоне от 100 мВт до 500 мВт, для того чтобы предоставлять достаточное количество энергии для цифрового измерения температуры. Внутри преобразователя тока или датчика температуры находится блок, состоящий из множества фотоприемников, которые преобразовывают свет лазера в электрическую энергию для работы цифрового датчика температуры. После выполнения задачи по измерению сигнал измерения направляется при помощи дальнейшего световода обратно к наземной станции. Ввиду большой оптической мощности используемых лазеров должна постоянно обеспечиваться достаточная эксплуатационная надежность.

В основе данного изобретения лежит задача по созданию системы для оптического преобразователя тока на потенциале высокого напряжения с электронным измерением температуры, у которой датчик температуры имеет простую конструкцию и надежно работает и у которой электронное измерение температуры обладает низким потреблением энергии.

Задача решается с помощью системы с признаками независимого пункта формулы изобретения. В зависимых от него пунктах формулы изобретения указаны предпочтительные варианты осуществления и усовершенствования изобретения.

Соответствующая изобретению система для измерения температуры на потенциале высокого напряжения включает в себя оптический преобразователь тока на потенциале высокого напряжения, электронный датчик температуры для измерения температуры преобразователя тока, ровно один фотодиод, первый световод для направления света от первого источника света к фотодиоду и второй световод для передачи сигнала измерения на наземную станцию.

Согласно изобретению энергия, которая необходима для работы электронного датчика температуры, предоставляется в распоряжение одним фотодиодом. Для энергоснабжения предпочтительно используется свет, который через первый световод направляется от первого источника света к фотодиоду. Благодаря использованию ровно одного фотодиода может создаваться простая конструкция, так как уменьшается количество конструктивных элементов.

В предпочтительном варианте осуществления электронный датчик температуры является резонансным контуром с термочувствительным резистором. Собственная/резонансная частота резонансного контура зависит от его затухания, над которым преобладает термочувствительное сопротивление. Как правило, собственная частота резонансного контура уменьшается с увеличивающимся затуханием. Если величина термочувствительного сопротивления изменяется посредством температуры преобразователя тока, то собственная частота сдвигается. Таким образом, собственная частота является критерием для температуры.

Наиболее предпочтительным в указанном аналоговом варианте осуществления является то, что в данном случае необходима незначительная по сравнению с цифровыми измерениями потребность в энергии. Таким образом, потребность в электрической энергии может покрываться одним фотодиодом.

В наиболее предпочтительном варианте осуществления внутри электрической цепи резонансного контура установлен второй источник света, в частности светодиод. Вследствие этого второй источник света периодически светится с частотой, которая соответствует собственной частоте резонансного контура. Собственная частота резонансного контура зависит от температуры, так что частота второго источника света представляет собой аналоговый критерий для измеренной температуры. В этом случае аналоговый оптический сигнал второго источника света может передаваться через второй световод на наземную станцию.

Предпочтительно электронный датчик температуры имеет накопитель энергии для накопления электрической энергии. Свет первого источника света направляется от источника света к фотодиоду, который использует этот свет, для того чтобы производить электрическую энергию. Произведенная фотодиодом электрическая энергия предпочтительно накапливается в накопителе энергии. Вследствие этого первый источник света может быть выполнен в виде источника света незначительной мощности. В предпочтительном варианте осуществления накопитель энергии является конденсатором или аккумулятором, причем наиболее предпочтительно конденсатором. Наибольшим преимуществом является то, что конденсатор делает возможным измерение температуры на временных интервалах. Вследствие этого сокращается потребление электрической энергии, так как для измерения температуры является достаточным, например, одно измерение в минуту.

В предпочтительном усовершенствовании световая мощность первого источника света менее или равна 5 мВт. Наиболее предпочтительно мощность менее или равна 1 мВт. Вследствие этого датчик температуры может снабжаться низким уровнем мощности. Если незначительной мощности не достаточно для выполнения задачи по измерению, то может предпочтительно осуществляться накопление в накопителе энергии, пока достаточное количество энергии не будет находиться в распоряжении. Является целесообразным использовать лазер в видимой области спектра от 400 нм до 700 нм в качестве первого источника света. Если мощность используемого лазера находится ниже 1 мВт, то этому соответствует лазер второго класса защиты лазера. Следовательно, особые меры предосторожности не должны предприниматься. Вследствие этого может существенно упрощаться как конструкция, так и эксплуатация.

В предпочтительном варианте осуществления первый источник света выполнен в виде светодиода. Наиболее предпочтительным является то, что светодиоды требуют меньших затрат и тем не менее предоставляют в распоряжение достаточное количество энергии для снабжения датчика температуры или для зарядки накопителя энергии.

Датчик температуры может быть встроен внутри оптического преобразователя тока. Предпочтительно в непосредственной близости от сенсорной головки преобразователя тока. Вследствие этого температурная зависимость эффекта Фарадея может компенсироваться значительно лучше.

В наиболее предпочтительном усовершенствовании датчик температуры использует уже имеющийся световод оптического преобразователя тока.

Первый и второй световоды датчика температуры могут быть стандартными многомодовыми световодами. В частности, могут использоваться световоды, чей диаметр сердечника находится в диапазоне от 50 мкм до 62 мкм. Даже при таких незначительных диаметрах сердечника может предоставляться все еще достаточное количество энергии для работы соответствующего изобретению датчика температуры.

Далее изобретение описывается при помощи предпочтительного примера осуществления, ссылаясь на приложенный чертеж. На чертеже показано:

фиг. 1 - система для аналогового измерения температуры оптического преобразователя тока на потенциале высокого напряжения.

Фиг. 1 показывает систему 1 для измерения температуры на потенциале высокого напряжения, которая включает в себя оптический преобразователь 2 тока, электронный датчик 4 температуры, первый и второй световоды 6, 8 и первый светодиод 10, который находится внутри наземной станции 24. Далее датчик 4 температуры включает в себя ровно один фотодиод 12, конденсатор 14, блок 16 управления и резонансный контур 18. Кроме того, внутри электрической цепи резонансного контура 18 находятся второй светодиод 20 и термочувствительный резистор 22. При этом резистор 22 может быть, например, термистором, элементом PT100, термочувствительным элементом или же полупроводниковым датчиком.

Свет первого светодиода 10 направляется через первый световод 6 к фотодиоду 12 внутри электронного датчика 4 температуры. Световоды 6, 8 предпочтительно могут быть стандартными многомодовыми световодами или световодами 200/220 мкм с твердым защитным покрытием. Наиболее предпочтительны стандартные многомодовые световоды с диаметром сердечника от 50 мкм до 62 мкм. Первый светодиод 10 обладает незначительной мощностью, меньшей или равной 5 мВт. Наиболее предпочтительна мощность, меньшая или равная 1 мВт. Этой незначительной мощности обычно не достаточно для измерения температуры оптического преобразователя 2 тока, так что произведенная фотодиодом 12 электрическая энергия накапливается в конденсаторе 14 для заданного блоком 16 управления промежутка времени. Во время зарядки конденсатора 14 первый светодиод 10 постоянно эксплуатируется. Блок 16 управления устанавливает, когда накопленной электрической энергии достаточно для выполнения задачи по измерению и в этом случае предоставляет резонансному контуру 18 накопленную в конденсаторе 14 электрическую энергию для измерения температуры. Например, разрядка конденсатора 14 один раз в минуту является достаточной.

Наиболее предпочтительно аналоговое и таким образом экономящее энергию использование измерения температуры при помощи резонансного контура 18. Собственная частота резонансного контура 18 зависит от термочувствительного резистора 22. Второй светодиод 20 приводится в действие напряжением резонансного контура 18. Вследствие этого он периодически светится с зависящей от температуры собственной частотой резонансного контура 18. Следовательно, частота второго светодиода 20 является критерием для температуры преобразователя 2 тока. Затем периодический свет второго светодиода 20 передается при помощи второго световода 8 на наземную станцию 24.

Если измерение температуры реализуется цифровыми средствами посредством использования микропроцессоров, то напряжения фотодиода 12 обычно не хватает для выполнения задачи по измерению. Поэтому является целесообразным использовать повышающий преобразователь для повышения напряжения.

В принципе сигнал измерения температуры может направляться при помощи второго световода 8 на наземную станцию 24 также в виде оптического сигнала широтно-импульсной модуляции.

1. Система (1) для измерения температуры на потенциале высокого напряжения, включающая в себя:

- оптический преобразователь (2) тока на потенциале высокого напряжения,

- электронный датчик (4) температуры для измерения температуры преобразователя (2) тока,

- первый световод (6) для энергоснабжения электронного датчика (4) температуры,

- второй световод (8) для передачи данных сигнала измерения электронного датчика (4) температуры на наземную станцию (24) и

- первый источник (10) света,

причем электронный датчик (4) температуры включает в себя ровно один фотодиод (12), и первый световод (6) выполнен для направления света от источника (10) света к фотодиоду (12),

причем датчик (4) температуры выполнен в виде электрического резонансного контура (18), причем резонансный контур (18) включает в себя термочувствительный резистор (22).

2. Система (1) по п.1, отличающаяся тем, что резонансный контур (18) включает в себя второй источник (20) света, в частности светодиод.

3. Система (1) по п.1, отличающаяся тем, что электронный датчик (4) температуры включает в себя по меньшей мере один накопитель (14) энергии для накопления электрической энергии.

4. Система (1) по п.1, отличающаяся тем, что световая мощность первого источника (10) света менее или равна 5 мВт, в частности менее или равна 1 мВт.

5. Система (1) по п.1, отличающаяся тем, что первый источник (10) света является светодиодом.

6. Система (1) по п.1, отличающаяся тем, что датчик (4) температуры встроен внутри сенсорной головки преобразователя (2) тока.

7. Система (1) по п.1, отличающаяся тем, что первый и второй световоды (6, 8) выполнены в виде стандартных многомодовых волокон.



 

Похожие патенты:

Изобретение относится к области термометрии и может быть использовано для контроля технологических параметров в производственных процессах. Передатчик (12) температуры процесса выполнен по меньшей мере с одним датчиком (32) температуры, имеющим множество проводов.

Изобретение относится к измерительной технике и предназначено для измерения температуры контактными резисторными датчиками в окружающей среде и в технологических процессах. Техническим результатом изобретения является повышение точности за счет уменьшения динамической погрешности измерения, обусловленной тепловой инерцией датчика, снижения случайной и систематической погрешностей вторичного измерительного преобразователя схемно-алгоритмическим способом. Измеритель выполнен в составе измерительного моста 1, блока преобразования и обработки 2 и источника питания 3.

Изобретение относится к системам управления и контроля производственных процессов и может быть использовано для измерения температуры технологической текучей среды.

Изобретение относится к измерительной технике и может быть использовано для измерения физических величин с первичными резисторными датчиками. .

Изобретение относится к геофизическим исследованиям скважин и может найти применение для определения тепловых свойств пластов горных пород, окружающих как бурящиеся, так и обсаженные колонной скважины, а также для определения технического состояния эксплуатирующихся скважин и режимов работы их оборудования.

Изобретение относится к измерительной технике и может быть использовано в системах температурного контроля газотурбинных двигателей летательных аппаратов, электрооборудования электростанций и т.д.

Изобретение относится к области приборостроения и может быть использовано в системах температурного контроля газотурбинных двигателей летательных аппаратов, электрооборудования электростанций и т.д.

Изобретение относится к термометрии и позволяет повысить точность измерения разности температур Ток от источника 4 тока протекает через последовательно соединенные термопреобразователи 1 и 2 сопротивления .
Наверх