Катализатор и способ раздельного получения водорода и монооксида углерода из метана


 


Владельцы патента RU 2633354:

Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) (RU)

Изобретение относится к катализатору для раздельного получения водорода и монооксида углерода из метана. Катализатор состава 5-15% мас. Ni на γ-Al2O3 или SiO2 промотирован оксидными соединениями ванадия, в пересчете на V2O5 в количестве 5-20% массовых процентов. Также предложен способ раздельного получения водорода и монооксида углерода из метана и СО2. Изобретение позволяет увеличить производительность процесса по водороду и монооксиду углерода, сохранить постоянной за время цикла производительность по водороду и монооксиду углерода, снизить энергозатраты. 2 н. и 1 з.п. ф-лы, 1 ил., 11 пр.

 

Изобретение относится к химической и нефтехимической отраслям промышленности, энергетике и способу переработки углеводородного сырья, метанас помощью соответствующего катализатора в Н2 и/или СО с дальнейшем использованием: в нефтехимических синтезах (реакция карбонилирования); энергоустановках на топливных элементах; для создания восстановительных атмосфер при плавке металлов; синтезах на основе монооксида углерода и/или водорода.

Существует несколько каталитических и не каталитических способов получения СО и Н2 из метана, заключающихся в высокотемпературном взаимодействии метана с окислителем, содержащим кислород: О2, Н2О, СО2 с образованием синтез-газа [Арутюнов В.С. Окислительная конверсия природного газа. М.: КРАСАНД, 2011. – 640 с.].

Недостатком данных способов является то, что в любом случае получается смесь газов СО и Н2 в различном соотношении, для дальнейшего использования чистых водорода или монооксида углерода синтез-газ необходимо разделять на индивидуальные компоненты с использованием криогенных установок, что требует больших капитальных и эксплуатационных затрат.

Предложен [Патент РФ №2116829, МПК C01B31/04, C01B3/26, опубл. 10.08.1998] никельсодержащий катализатор и способ получения водорода и углерода из метана, который заключается в высокотемпературном контактировании метана с катализатором с образованием углерода на катализаторе и газофазного свободного водорода по реакции (1):

1. СН4=С+2Н2 ΔН= +17,8 ккал/моль.

После цикла наработки водорода и углерода процесс прерывается и катализатор с образовавшимся углеродом извлекается из реактора.

Так же предложено [Choudhary V.R., Banerjee S., Rajput A.M. Hydrogen from step-wise stream reforming of methane over Ni/ZrO2: factors affecting catalytic methane decomposition and gasification by steam of carbon formed on the catalyst // Applied Catalysis A: General, 2002, V.234, P.259-270] получать водород и синтез-газ на нанесенном Ni/ZrO2 катализаторе в циклическом (периодическом режиме). Первая стадия разложение метана с образованием водорода и углерода, образующегося на катализаторе по реакции (1), вторая стадия - регенерация катализатора водяным паром по реакции (2) с образованием синтез-газа:

2. С+Н2О=СО+Н2 ΔН= +31,4 ккал/моль.

В [Otsuka K., Takenaka S., Ohtsuki H. Production of pure hydrogen by cyclic decomposition of methane and oxidation elimination of carbon nanofibers on supported-Ni-based catalysts // Applied Catalysis A: General, 2004, V.273, P.113-124] в качестве катализаторов предложен никель, нанесенный на носители: Al2O3, SiO2, TiO2 системы могут промотироваться Pd. Первая стадия процесса заключается в подаче метана на разогретый до Т= 823К (550 ºС) катализатор с образованием водорода и углерода, отлагающегося на катализаторе по реакции (1), вторая стадия регенерация катализатора кислородсодержащим газом с выжигом углерода по реакции (3):

3. С+О2=СО2 ΔН= -94.3 8 ккал/моль.

Наиболее близким можно считать [Takenaka S., Tomikudo Y., Kato E., Otsuka K. Sequential production of H2 and CO over supported Ni catalysts // Fuel, 2004, V.83, P.47-57], где в качестве катализатора используется никель, нанесенный на носители Al2O3, SiO2, TiO2. Первая стадия процесса заключается в подаче метана на разогретый до Т= 823 К катализатор с образованием водорода и углерода, отлагающегося на катализаторе по реакции (1), вторая стадия регенерация катализатора диоксидом углерода при Т= 923К с образованием моноксида углерода по реакции (4).

4. С+СО2=2СО ΔН= +41,2 ккал/моль.

Таким образом, возможно, получать водород, содержащий газ без СО, и газ с монооксидом углерода во второй стадии, не содержащий водород, что значительно упрощает процесс очистки и выделения как чистого водорода, так и чистого монооксида углерода. При этих температурах время цикла наработки водорода достигало 140 минут до полного прекращения образования водорода, при этом производительность по водороду уменьшалась от 17 ммоль Н2/грамм катализатора⋅минуту в начале цикла до 0 в конце, время цикла наработки СО достигало 150 минут при этом производительность по СО так же снижалась с 12 ммоль СО/грамм катализатора⋅минуту в начале цикла до 0 ммоль СО/грамм катализатора⋅минуту в конце цикла.

Недостатком можно считать низкую производительность по водороду и монооксиду углерода, резкое снижение производительности за время циклов (непостоянство концентраций Н2 или СО в реакционной смеси), а также суммарно по тепловому эффекту реакций 1 и 3 процесс получается эндотермический (протекает с поглощением тепла), что требует непрерывного подвода тепловой энергии к реактору (реакторам).

Задача изобретения - увеличить производительность процесса по водороду и монооксиду углерода, сохранить постоянной за время цикла производительности по Н2 и СО, сделать процесс суммарно экзотермическим или термонейтральным, для снижения энергозатрат.

Результат достигается введением в катализатор оксидных соединений ванадия в пересчете на V2O5 5-20 % массовых, повышением температуры процесса и оптимизации длительности циклов наработки водорода и СО для сохранения их постоянной концентрации в выходящих газах и соответственно высокой и постоянной за время цикла производительности по СО и Н2. Термонейтральность или экзотермичность процесса достигается использованием в качестве регенерирующего зауглероженный катализатор реагента воздух, регенерация осуществляется по реакции (5) с генерацией СО.

5. С +0,5О2=СО ΔН= -26.4 ккал/моль.

При использовании в качестве реагента при генерации водорода метана (реакция 1), а в качестве реагента при генерации СО воздуха (реакция 5), суммарный положительный (экзотермический) тепловой эффект цикла наработки водорода и цикла наработки СО составит 8,6 ккал на один моль прореагировавшего метана. Или 2,15 ккал на 1 грамм полученного водорода и 7 грамм СО.

Способ получения водорода или монооксида углерода из метана и СО2 включает попеременное контактирование метана и СО2 в трубчатом реакторе, но в отличие от прототипа, что используют предложенный катализатор, процесс проводится при температурах 650–800°С (923-1073 К).

В качестве газа в цикле наработки монооксида углерода используется воздух. Длительность циклов наработки водорода и монооксида углерода составляет 15 минут.

Сущность изобретения характеризуется примерами приведенными ниже.

Пример 1.

Используется катализатор 5% массовых Ni и 5% соединений ванадия в пересчете на V2O5, нанесенных на γ-Al2O3, помещенный в трубчатый реактор. Температура реактора Т=625°С. Цикл 1. Длительность 20 минут, подается метан со скоростью 0,75 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Цикл 2. Длительность 20 минут, подается СО2 со скоростью 0,5 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Цикл 3. Длительность 20 минут, подается метан со скоростью 0,75 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Цикл 4. Длительность 20 минут, подается воздух со скоростью 1,0 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Данные по концентрации водорода и СО, а также производительностью по водороду и СО за время цикла представлены таблице 1. Согласно таблице 1 концентрации и производительность по водороду и СО снижаются за время цикла, при этом средняя производительность за цикл по Н2 и СО выше, чем в прототипе.

Пример 2.

Используется катализатор аналогичный примеру 1. Температура реактора Т=650°С. Цикл 1. Длительность 20 минут, подается метан со скоростью 0,75 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Цикл 2. Длительность 20 минут, подается СО2 со скоростью 0,75 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Цикл 3. Длительность 20 минут, подается метан со скоростью 0,75 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Цикл 4. Длительность 20 минут, подается воздух со скоростью 1,0 л/мин⋅гр.⋅кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Данные по концентрации водорода и СО, а также производительностью по водороду и СО за время цикла представлены таблице 1. Согласно таблице 1 производительность и концентрации по водороду и СО не снижаются за время цикла, при этом средняя производительность за цикл по Н2 и СО выше, чем в прототипе.

Пример 3.

Используется катализатор 5% массовых Ni и 10% соединений ванадия в пересчете на V2O5, нанесенных на SiO2, помещенный в трубчатый реактор. Температура реактора Т=650°С. Цикл 1. Длительность 20 минут, подается метан со скоростью 0,75 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Цикл 2. Длительность 20 минут, подается СО2 со скоростью 0,75 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Цикл 3. Длительность 20 минут, подается метан со скоростью 0,75 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Цикл 4. Длительность 20 минут, подается воздух со скоростью 1,0 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Данные по концентрации водорода и СО, а также производительность по водороду и СО за время цикла представлены таблице 1. Согласно таблице 1 производительность и концентрации по водороду и СО постоянны за время цикла, с сохранением средней производительность за цикл по Н2 и СО выше, чем в прототипе.

Пример 4.

Используется катализатор, аналогичный примеру 3. Температура реактора Т=700°С. Цикл 1. Длительность 15 минут, подается метан со скоростью 1,0 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Цикл 2. Длительность 15 минут, подается СО2 со скоростью 1,0 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Цикл 3. Длительность 15 минут, подается метан со скоростью 1,0 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Цикл 4. Длительность 15 минут, подается воздух со скоростью 1,5 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Данные по концентрации водорода и СО, а также производительность по водороду и СО за время цикла представлены таблице 1. Согласно таблице 1 производительности по водороду и СО не снижаются за время цикла.

Пример 5.

Используется катализатор 10% массовых Ni и 15% соединений ванадия в пересчете на V2O5, нанесенных на SiO2, помещенный в трубчатый реактор. Температура реактора Т=720°С. Цикл 1. Длительность 15 минут, подается метан со скоростью 1,0 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Цикл 2. Длительность 15 минут, подается СО2 со скоростью 1,0 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Цикл 3. Длительность 15 минут, подается метан со скоростью 0,75 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Цикл 4. Длительность 15 минут, подается воздух со скоростью 1,5 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Данные по концентрации водорода и СО, а также производительность по водороду и СО за время цикла представлены таблице 1. Согласно таблице 1 производительности и концентрации по водороду и СО постоянны за все время цикла.

Пример 6.

Используется катализатор аналогичный примеру 5, помещенный в трубчатый реактор. Температура реактора Т=750°С. Цикл 1. Длительность 15 минут, подается метан со скоростью 1,25 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Цикл 2. Длительность 15 минут, подается СО2 со скоростью 1,0 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Цикл 3. Длительность 15 минут, подается метан со скоростью 1,0 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Цикл 4. Длительность 15 минут, подается воздух со скоростью 2,0 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Данные по концентрации водорода и СО, а также производительность по водороду и СО за время цикла представлены таблице 1. Согласно таблице 1 производительности и концентрации по водороду и СО постоянны за все время цикла.

Пример 7.

Используется катализатор 10% массовых Ni и 20% соединений ванадия в пересчете на V2O5, нанесенных на γ-Al2O3, помещенный в трубчатый реактор. Температура реактора Т=750°С. Цикл 1. Длительность 15 минут, подается метан со скоростью 1,25 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Цикл 2. Длительность 15 минут, подается СО2 со скоростью 1,25 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Цикл 3. Длительность 15 минут, подается метан со скоростью 1,25 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Цикл 4. Длительность 15 минут, подается воздух со скоростью 2,5 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Данные по концентрации водорода и СО, а также производительность по водороду и СО за время цикла представлены таблице 1. Согласно таблице 1 производительности и концентрации по водороду и СО постоянны за все время цикла.

Пример 8.

Используется катализатор 5% массовых Ni и 20% соединений ванадия в пересчете на V2O5, нанесенных на γ-Al2O3, помещенный в трубчатый реактор. Температура реактора Т=800°С. Цикл 1. Длительность 15 минут, подается метан со скоростью 1,5 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Цикл 2. Длительность 15 минут, подается СО2 со скоростью 1,5 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Цикл 3. Длительность 15 минут, подается метан со скоростью 1,5 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Цикл 4. Длительность 15 минут, подается воздух со скоростью 3,0 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Данные по концентрации водорода и СО, а также производительность по водороду и СО за время цикла представлены таблице 1. Согласно таблице 1 производительности и концентрации по водороду и СО постоянны за все время цикла.

Пример 9.

Используется катализатор 5% массовых Ni и 20% соединений ванадия в пересчете на V2O5, нанесенных на SiO2, помещенный в трубчатый реактор. Температура реактора Т=800°С. Цикл 1. Длительность 15 минут, подается метан со скоростью 1,5 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Цикл 2. Длительность 15 минут, подается СО2 со скоростью 1,5 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Цикл 3. Длительность 15 минут, подается метан со скоростью 1,5 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Цикл 4. Длительность 15 минут, подается воздух со скоростью 3,0 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Данные по концентрации водорода и СО, а также производительность по водороду и СО за время цикла представлены таблице 1. Согласно таблице 1 производительности и концентрации по водороду и СО постоянны за все время цикла.

Пример 10.

Используется катализатор, аналогичный примеру 5, помещенный в трубчатый реактор. Температура реактора Т=750°С. Цикл 1. Длительность 15 минут, подается метан со скоростью 1,25 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Цикл 2. Длительность 15 минут, подается СО2 со скоростью 1,0 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Цикл 3. Длительность 15 минут, подается метан со скоростью 1,25 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Цикл 4. Длительность 15 минут, подается воздух со скоростью 2,0 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Циклы 5-12 повторяют циклы 1-4. Данные по концентрации водорода и СО, а также производительность по водороду и СО за время цикла представлены таблице 1. Согласно таблице 1 производительности и концентрации по водороду и СО постоянны за все время цикла и между циклами.

Пример 11.

Используется катализатор, аналогичный примеру 7, помещенный в трубчатый реактор. Температура реактора Т=750°С. Цикл 1. Длительность 15 минут, подается метан со скоростью 1,25 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Цикл 2. Длительность 15 минут, подается воздух со скоростью 2,5 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Цикл 3. Длительность 15 минут, подается метан со скоростью 1,25 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Цикл 4. Длительность 15 минут, подается воздух со скоростью 2,5 л/мин⋅гр. кат. По окончании цикла реактор продувается азотом 2 минуты со скоростью 0,25 л/мин⋅гр. кат. Циклы 5-8 повторяют циклы 1-4. Данные по концентрации водорода и СО, а также производительности по водороду и СО представлены таблице 1. Согласно таблице 1 производительность и концентрации по водороду и СО постоянны за все время цикла и между циклами.

1. Катализатор для раздельного получения водорода и монооксида углерода из метана состава 5-15% мас. Ni на γ-Al2O3 или SiO2, отличающийся тем, что промотирован оксидными соединениями ванадия, в пересчете на V2O5 в количестве 5-20% массовых процентов.

2. Способ раздельного получения водорода и монооксида углерода из метана и СО2, включающий циклы наработки водорода и монооксида углерода путем попеременного контактирования метана и СО2 в трубчатом реакторе в присутствии катализатора по п.1, с использованием в качестве регенерирующего зауглероженный катализатор реагента - воздух с генерацией монооксида углерода, процесс проводится при температурах 650-800°С (923-1073 К).

3. Способ по п.2, отличающийся тем, что в длительность циклов наработки водорода и монооксида углерода составляет 15 минут.



 

Похожие патенты:

Группа изобретений относится к способу получения водородсодержащего газа для производства метанола из углеводородных газов (метана, природного газа, попутных нефтяных газов, сланцевых газов) и устройству для осуществления способа, и могут быть использованы в химической, нефте- и газохимической отраслях промышленности, в том числе при создании малотоннажных газохимических производств.
Изобретение относится к технологии получения синтетических алмазов методом динамического детонационного синтеза и может быть использовано для очистки и извлечения высокочистого алмаза из первичных продуктов.

Изобретение относится к технологии получения синтез-газа из углеводородных газов путем их парциального окисления для целевого использования в качестве промежуточного продукта в нефте- и газохимических производствах.

Изобретение относится к технологии переработки газового сырья, в частности к способу получения синтез-газа, который может быть в дальнейшем использован для процессов синтеза метанола.
Изобретение может быть использовано в наноэлектронике. Частицы графита помещают в вакуум между электродами, при этом разность потенциалов устанавливают достаточной для электродинамического ожижения частиц и получения ими энергии, превышающей работу, необходимую для их раскола по плоскостям спайности на слои графена при хрупком разрушении во время ударов об электроды.

Изобретение относится к катализатору для гетерогенного катализа, который содержит по меньшей мере смешанный оксид никеля и магния и магниевую шпинель, где смешанный оксид никеля и магния обладает средним размером кристаллитов ≤100 нм, фаза магниевой шпинели обладает средним размером кристаллитов ≤100 нм.

Изобретение может быть использовано в энергетической, нефтехимической, химической, металлургической отраслях промышленности. Способ получения водорода из газовых смесей, содержащих диоксид углерода, осуществляют путем его абсорбционного удаления абсорбентом на основе водных растворов аминов, способ включает процессы абсорбции диоксида углерода при повышенном давлении, расширения насыщенного абсорбента в турбине с получением механической энергии, регенерации насыщенного абсорбента при повышенной температуре и/или пониженном давлении с подводом тепла через кипятильник, рекуперации тепла горячего регенерированного абсорбента, сжатие регенерированного абсорбента насосом, охлаждение регенерированного абсорбента в холодильнике и подачу его в абсорбер, а также охлаждение парогазовой фазы, выделенной при регенерации абсорбента.

Изобретение относится к способу получения ацетилена и синтез-газа путем частичного окисления углеводородов при помощи кислорода, причем первый исходный поток, содержащий один или несколько углеводородов, и второй исходный поток, содержащий кислород, предварительно нагреваются отдельно друг от друга, смешиваются в соотношении массовых потоков из второго исходного потока и первого исходного потока, соответствующем кислородному числу λ, меньше или равному 0,35, причем под кислородным числом λ понимают соотношение из фактически присутствующего во втором исходном потоке количества кислорода и стехиометрически необходимого количества кислорода, которое требуется для полного сгорания одного или нескольких углеводородов, содержащихся в первом исходном потоке, посредством блока горелок (В) подаются в камеру сгорания (F), где происходит частичное окисление этих углеводородов с получением крекинг-газа, который после камеры сгорания относительно направления движения потока при помощи впрыскивания масла для гашения подвергается гашению до температуры от 200 до 250°С.

Изобретение относится к утилизации органических отходов, а именно к устройствам для их переработки путем пиролиза с получением генераторного газа, и может быть использовано для утилизации отходов заводов по производству риса и овса с получением аморфного кремнийсодержащего остатка.

Изобретение относится к установке получения водорода методом паровой конверсии углеводородного сырья и может быть использовано в различных отраслях промышленности.

Изобретение относится к способу преобразования углерода в оксид углерода. Данный способ включает приведение углерода в контакт с паром в присутствии материала со структурой типа карнегиита, имеющего формулу (Na2O)xNa2[Al2Si2O8], где 0<х≤1.

Изобретение относится к химической технологии неорганических продуктов. .

Изобретение относится к химии, а именно к способам получения монооксида углерода. .
Изобретение относится к области химической технологии и может быть использовано при получении оксида углерода или фосгена. .

Изобретение относится к неорганической химии, в частности к устройствам для получения монооксида углерода СО, который может быть использован как сырье для промышленного производства продуктов органического синтеза.

Изобретение относится к способам получения монооксида углерода (12СО, 13СО или 14СО) взаимодействием диоксида углерода ( 12СО2, 13СО 2 или 14CO2 ) с металлами и их сплавами. .

Изобретение относится к способам получения окиси углерода, которая является важным промышленным полупродуктом для производства целого ряда органических и неорганических соединений.
Изобретение относится к химической промышленности и может быть использовано для синтеза различных органических соединений. .
Изобретение относится к химической промышленности и может быть использовано для синтеза различных органических соединений. .

Изобретение относится к объединенному синергетическому способу производства метанола и производству третичных бутиловых эфиров низших алкилов частичным окислением тяжелых фракций углеводородов.

Изобретение относится к катализаторам для очистки газовых смесей от токсичных примесей, в частности от оксидов азота и углерода, и может быть использовано для удаления их из газовых технологических выбросов и выхлопных газов двигателей внутреннего сгорания.
Наверх