Ветроэнергетическая установка



Ветроэнергетическая установка
Ветроэнергетическая установка
Ветроэнергетическая установка

 


Владельцы патента RU 2633390:

ВОББЕН ПРОПЕРТИЗ ГМБХ (DE)

Изобретение относится к электротехнике. Ветроэнергетическая установка содержит ротор с лопастями, электрический генератор, связанный с ротором, и силовой электронный блок, содержащий варисторный блок и предназначенный для преобразования входного напряжения с входной частотой в выходное напряжение с выходной частотой. Варисторный блок содержит варисторный диск с зависимым от напряжения сопротивлением и металлический диск, находящийся в контакте с варисторным диском, предназначенный для охлаждения варисторного диска. Технический результат заключается в повышении надежности устройства за счет предотвращения пиков напряжения на генераторе при сбросе нагрузки. 2 з.п. ф-лы, 4 ил.

 

Настоящее изобретение относится к ветроэнергетической установке.

Ветроэнергетические установки содержат аэродинамический ротор обычно с тремя лопастями ротора, которые приводят ротор во вращательное движение в случае наличия ветра. Ротор непосредственно или опосредованно связан с электрическим генератором, который вырабатывает электрическую мощность, когда ротор приводит электрический генератор в движение. В определенных эксплуатационных состояниях ветроэнергетической установки на выходе генератора могут возникать пики напряжения. Чтобы уменьшить воздействие этих пиков напряжения, избыточная электрическая энергия может быть преобразована в тепло. Это может осуществляться, например, посредством нагрузочных резисторов.

По приоритетной немецкой заявке Ведомство Германии по патентам и товарным знакам выявило следующие документы: DE 102008049630 A1, DE 2102009004318 A1 и US 2012/0025804 A1.

Задачей изобретения является создание ветроэнергетической установки, которая была бы способна эффективно преобразовывать в тепло выработанную электрическим генератором электрическую мощность.

Эта задача решается посредством ветроэнергетической установки по п. 1 формулы изобретения.

Таким образом, предложена ветроэнергетическая установка, содержащая ротор, по меньшей мере, с двумя лопастями ротора, электрический генератор, непосредственно или опосредованно связанный с ротором и вырабатывающий электрическую мощность, и, по меньшей мере, один силовой электронный блок, предназначенный для преобразования входного напряжения с входной частотой в выходное напряжение с выходной частотой. Силовой электронный блок содержит, по меньшей мере, один варисторный блок. Последний содержит, по меньшей мере, один варисторный диск с зависимым от напряжения сопротивлением и, по меньшей мере, один металлический диск, который находится в контакте, по меньшей мере, с одним варисторным диском и предусмотрен в качестве охлаждающего элемента для охлаждения варисторного диска. Варисторный блок может обладать зависимым от напряжения сопротивлением. Металлические диски имеют хорошую теплопроводность, так что они могут хорошо использоваться для охлаждения варисторных дисков.

Согласно одному аспекту настоящего изобретения, по меньшей мере, один варисторный блок содержит корпус, а корпус залит заливочной массой, чтобы повысить теплоемкость варисторного блока.

Согласно другому аспекту изобретения, несколько варисторных блоков термически связаны между собой стяжным элементом.

Согласно другому аспекту изобретения, три варисторных блока соединены друг с другом по схеме «треугольник», образуя один трехфазный варисторный блок.

Согласно другому аспекту настоящего изобретения, присоединительные провода для варисторного блока с одной стороны варисторного блока выводятся наружу.

В основе изобретения лежит идея того, что в определенных эксплуатационных состояниях ветроэнергетической установки, например при сбросе нагрузки, на генераторе могут возникнуть пики напряжения, которые могут привести к повреждению разрядников защиты от перенапряжения на генераторе и других деталей. Для уменьшения таких пиков напряжения на генераторе предусмотрен, согласно изобретению, по меньшей мере, один варисторный блок. Он может быть расположен, например, в шкафу управления гондолой.

Другие варианты осуществления изобретения являются объектом зависимых пунктов формулы.

Преимущества и примеры осуществления изобретения более подробно поясняются ниже со ссылкой на чертежи. На чертежах показано:

фиг. 1: схематичный вид ветроэнергетической установки, согласно изобретению;

фиг. 2А: схематичный вид варисторного блока согласно первому примеру выполнения;

фиг. 2В: другой схематичный вид варисторного блока согласно первому примеру выполнения;

фиг. 2С: вид сверху на варисторный блок согласно первому примеру выполнения.

На фиг. 1 изображен схематичный вид ветроэнергетической установки, согласно изобретению. Ветроэнергетическая установка 100 содержит башню 102 и гондолу 104. На гондоле 104 установлен ротор 106 с тремя лопастями 108 ротора и обтекателем 110. При работе ротор 106 приводится ветром во вращательное движение, вращая, тем самым, также ротор электрического генератора 200 в гондоле 104. Угол наклона лопастей 108 ротора можно изменять посредством двигателей наклона на основаниях соответствующих лопастей 108 ротора.

В гондоле 104 установлен генератор 200. В гондоле 104 может быть предусмотрен первый силовой электронный блок 300, а в зоне основания башни 102 – второй силовой электронный блок 400. Первым силовым электронным блоком 300 может быть, например, выпрямитель. В качестве альтернативы этому первый силовой электронный блок 300 может представлять собой также шкаф управления гондолой или фильтрующий блок.

Второй силовой электронный блок 400 может представлять собой, например, инвертор.

Первый и/или второй силовой электронный блок 300 и/или 400 может содержать, по меньшей мере, один варисторный блок, согласно изобретению.

На фиг. 2А изображен схематичный вид варисторного блока в первом примере выполнения. Варисторный блок 500 может быть предусмотрен в первом и/или втором силовом электронном блоке 300 и/или 400 и может служить для преобразования электрической мощности в тепло.

Варисторный блок 500 содержит на своей первой стороне изолятор 510, первый металлический диск 520, первый варисторный диск 530, второй металлический диск 540, второй варисторный диск 530, третий металлический диск 540 и четвертый металлический диск 550. Четвертый металлический диск 550 может служить также крышкой. Согласно первому примеру, варисторные диски находятся тем самым в постоянном контакте, по меньшей мере, с одним металлическим диском, преимущественно с двумя металлическими дисками, и могут обладать зависимым от напряжения сопротивлением. Толщина второго и третьего металлических дисков 540 больше толщины варисторных дисков. Второй и третий металлические диски 540 изготовлены преимущественно из металла, обладающего хорошей теплопроводностью. Преимущественно объем второго и третьего металлических дисков 540 существенно больше объема варисторных дисков 530. Первый, второй, третий и четвертый металлический диск и варисторные диски 530 могут быть закреплены друг на друге, например, посредством штанг 590, причем штанги 590 привинчены к первому и четвертому металлическим дискам 520, 550, а варисторные диски 530 и второй и третий металлические диски 540 расположены стопой между ними.

На фиг. 2В изображен другой схематичный вид варисторного блока согласно второму примеру выполнения. Дополнительно к виду на фиг. 2А, по меньшей мере, частично изображен также корпус 501. Он может быть выполнен, например, цилиндрическим. Варисторный блок размещается внутри корпуса 501, который затем может быть залит заливочной массой, что также является предпочтительным в отношении повышения теплоемкости.

На фиг. 2В показаны также присоединительные провода 570 и опциональные присоединительные клеммы 580.

На фиг. 2С изображен вид сверху на варисторный блок в первом примере выполнения. При этом виден, в частности, четвертый металлический диск 550.

За счет использования варисторного блока в первом примере выполнения в первом силовом электронном блоке 300, который соединен, например, с присоединительными клеммами генератора 200, можно ограничить высокоэнергетические перенапряжения на выходных клеммах генератора. В частности, компактная конструкция варисторного блока предпочтительна, поскольку его можно тем самым встроить в уже имеющиеся силовые шкафы или в силовые электронные блоки.

Подключение описанного выше варисторного блока может осуществляться напрямую к сети трехфазного тока.

За счет соединения варисторных дисков 530 с металлическими дисками 540 может быть достигнута термическая связь, так что созданное варисторными дисками 530 тепло может передаваться на металлические диски 540. Это значительно увеличивает теплоемкость соответствующих варисторных блоков 500, что обеспечивает также улучшенный теплоотвод.

За счет использования предложенных варисторных блоков ветроэнергетическая установка может очень быстро реагировать на сброс нагрузки. Непосредственно после сброса нагрузки выработанная электрическая мощность генератора может преобразовываться варисторными блоками в тепло. За счет использования предложенных варисторных блоков может быть покрыт тот отрезок времени (или соответственно выработанная за этот отрезок времени электрическая мощность), вплоть до которого можно изменить угол наклона лопастей ротора и уменьшить выработанную электрическим генератором мощность. В этот отрезок времени, вплоть до которого можно уменьшить выработанную генератором мощность, могут использоваться предложенные варисторные блоки, чтобы, по меньшей мере, кратковременно преобразовать выработанную мощность в тепло.

Согласно изобретению, металлические диски, находящиеся в контакте с варисторными дисками, выполняются большого объема, так что эти металлические диски обладают большой теплопроводностью, благодаря чему выработанное в варисторных дисках тепло может передаваться на металлические диски. За счет большой теплоемкости предложенных варисторных блоков они могут также быстрее снова активироваться, поскольку варисторные диски охлаждаются быстрее.

Варисторные диски обладают зависимым от напряжения сопротивлением.

1. Ветроэнергетическая установка, содержащая

ротор (110), по меньшей мере, с двумя лопастями (108) ротора,

электрический генератор (200), содержащий выходные клеммы и непосредственно или опосредованно связанный с ротором (110) , с возможностью генерирования электрической мощности, и,

по меньшей мере, один силовой электронный блок (300, 400), предназначенный для преобразования входного напряжения с входной частотой в выходное напряжение с выходной частотой,

причем силовой электронный блок (300, 400) содержит, по меньшей мере, один варисторный блок (500), выполненный с возможностью ограничивать высокоэнергетические перенапряжения на выходных клеммах генератора,

причем варисторный блок (500) содержит:

по меньшей мере, один варисторный диск (530) с зависимым от напряжения сопротивлением и

первый металлический диск (520) в непосредственном контакте с одной стороной, по меньшей мере, одного варисторного диска (530) и второй металлический диск (540) в непосредственном контакте с другой стороной в качестве охлаждающего элемента для охлаждения варисторного диска (530),

причем толщина, по меньшей мере, одного из упомянутых металлических дисков (520, 540) больше толщины варисторного диска (530),

причем объем, по меньшей мере, одного из упомянутых металлических дисков (520, 540) больше объема, по меньшей мере, одного варисторного диска (530).

2. Ветроэнергетическая установка по п. 1, причем

варисторный блок (500) содержит корпус (501), окружающий, по меньшей мере, один варисторный диск (530) и, по меньшей мере, один из упомянутых металлических дисков (520, 540),

причем корпус (501) залит заливочной массой для повышения теплопроводности.

3. Ветроэнергетическая установка по п. 1, причем три варисторных блока (500) электрически подключены друг к другу по схеме «треугольник», образуя трехфазный варисторный блок.



 

Похожие патенты:

Разрядник (1) для защиты от перенапряжений при высоких напряжениях имеет высоковольтный разъем, который соединен с образующим нелинейное сопротивление блоком (3) разрядника, а также имеет температурный сенсор (13) для регистрации температуры блока (3) разрядника.

Устройство защиты от перенапряжения содержит по меньшей мере один разрядник (2) защиты от перенапряжений и термически расцепляемое переключающее устройство (3), включенное последовательно с разрядником (2).

Изобретение касается разрядника (1) для защиты от перенапряжений, имеющего трубчатый корпус (2), соединенную с одним концом корпуса (2) концевую арматуру (3), расположенный в корпусе (2) варисторный блок и расположенный в области концевой арматуры (3) опорный элемент (4), который имеет прилегающее к корпусу (2) опорное кольцо (5), имеющее конус (6), и прижимное кольцо (7), которое имеет соответствующий конусу (6) ответный конус (8).

Разрядник (1) защиты от перенапряжений с колонкой варисторных элементов содержит растяжимую манжету (8) для размещения натяжных элементов (4) и фиксации их в радиальном направлении.

Элемент защиты от перенапряжения содержит корпус (2), по меньшей мере один расположенный в корпусе (2) ограничивающий перенапряжение компонент (3), например варистор или газонаполненный разрядник защиты от перенапряжения, и два контактных элемента (4, 5) для электрического подключения элемента (1) защиты от перенапряжения к подлежащему защите пути тока или пути сигнала.

Изобретение относится к элементу защиты от перенапряжения. Устройство содержит корпус с выводами для электрического подключения элемента защиты от перенапряжения к подлежащей защите токо- или сигналопроводящей линии, с двумя расположенными внутри корпуса и включенными электрически параллельно варисторами и, по меньшей мере, с частично расположенным между варисторами центральным электродом, корпус имеет две состоящие из металла электрически соединенные друг с другом половины (7, 8) корпуса, причем центральный электрод (6) изолирован от половин (7, 8) корпуса и своими противолежащими друг другу сторонами соответственно электрически соединен с первой присоединительной областью варистора, оба варистора и центральный электрод расположены по типу сэндвича между обеими половинами (7, 8) корпуса.

Изобретение относится к устройству для выполнения точки теплового расцепления, состоящему из разделительной полосы, которая подвергается воздействию силы предварительного натяжения, из электрического средства, производящего тепловую энергию, с контактной поверхностью, в частности, выполненного как элемент защиты от перенапряжения или как составная часть такого элемента, а также из соединительного средства, образующего единый массив материала, при определенном нагревании изменяющего свое агрегатное состояние, в частности, из припоя.

Изобретение относится к импедансному устройству с первым (1) и вторым (2) арматурными телами, которые соединены между собой через импедансное тело, зажатое между арматурными телами (1, 2) посредством предохранительного элемента (4).

Устройство защиты содержит разрядник (1, 1a) для защиты от перенапряжений, который содержит первый (4) и второй (5) присоединительные терминалы. По меньшей мере, один присоединительный терминал (4, 5) соединен с электропроводящей присоединительной токовой цепью (6), которая установлена карданно.

Устройство защиты от перенапряжений имеет корпус (1) и по меньшей мере два электрических проводника (2), подведенных к корпусу (1) для электрического подсоединения к устройству защиты от перенапряжений, тепловой переключатель (14), искровой разрядник (15) и воспламенитель (16).

Изобретение относится к области электротехники, в частности к защите линий электропередач от перенапряжений. Устройство ограничения перенапряжения, включающее наружную полимерную оболочку с ребрами, по меньшей мере, одну колонку варисторов, размещенную между двумя концевыми электродами в изоляционном каркасе. Внутри каркаса находятся два металлических цилиндра без одного основания и вставленных друг в друга. Внутренний металлический цилиндр изолирован от наружного и содержит внутри, по меньшей мере, один блок варистора, изолированный от его стенок и имеющий электрическое соединение одного контакта с его основанием с помощью прижимного токопроводящего элемента, соединяемого с линией электропередач и давящего на его второй контакт. На наружной поверхности внутреннего цилиндра расположены первичная изолированная обмотка из токопроводящего материала, один конец которой соединен с внутренним цилиндром, а второй с внешним заземленным цилиндром; и вторичная изолированная обмотка из токопроводящего материала, концы которой выведены из каркаса. Техническим результатом является повышение уровня защиты линии электропередач от грозовых перенапряжений. 2 ил.
Наверх