Способ обработки термовидеоинформации и решающее устройство для определения температуры объекта при осуществлении способа

Изобретение относится к области тепловизионной техники и касается способа обработки термовидеоинформации. Способ включает в себя видеозапись теплового излучения исследуемого объекта, транспонирование полученного видеоизображения в видимый диапазон и генерацию видеосигнала, в котором разной температуре наблюдаемого объекта соответствует разный цвет изображения. Видеозапись теплового излучения осуществляется на борту космического аппарата одновременно двумя камерами инфракрасного и ультрафиолетового диапазона с последующим определением температуры в i,j-й точке поля изображения, локализацией участков изображения с температурой, превышающей пороговое значение, и передачей видеоизображения по радиоканалу на наземные пункты приема данных для анализа. Транспонирование видеоизображения в видимый диапазон (λвд) осуществляется по зависимости типа λвд=f(λ, λmin, Δλпд), где λ - текущее значение длины волны, λmin - минимальное значение длины волны в выбранном поддиапазоне длин волн, Δλпд - рассматриваемый поддиапазон длин волн. Технический результат заключается в повышении достоверности контроля температуры исследуемого объекта. 2 н. и 2 з.п. ф-лы, 3 ил., 3 табл.

 

Изобретение относится к области тепловизионной техники, а именно к способам обработки и отображения измеренной яркостной температуры объекта.

Любой объект излучает электромагнитные волны в инфракрасном (ИК), видимом (ВД) и ультрафиолетовом (УФ) диапазонах частот. Интенсивность теплового излучения напрямую зависит от температуры объекта и лишь в очень малой степени зависит от условий освещенности в видимом диапазоне. Таким образом, при помощи тепловизионного прибора о любом наблюдаемом объекте может быть собрана и визуализирована дополнительная информация, недоступная человеческому глазу и приборам. Это открывает ряд уникальных возможностей для различных сфер деятельности, в том числе для контроля технологических процессов, например обеспечения безопасности объектов, таких как космические аппараты и ракеты-носители, имеющих термонагруженные элементы (ракетные двигатели, насосы подачи топлива и окислителя, либо элементы ядерного реактора).

Принцип действия современных тепловизоров основан на способности материалов фиксировать излучение в различных диапазонах длин волн. Посредством оптического прибора, в состав которого входят линзы, изготовленные с применением материалов, прозрачных для определенного типа излучения (таких как германий), тепловое излучение объектов проецируется на матрицу датчиков, информация с этих датчиков считывается и генерируется видеосигнал, где разной температуре наблюдаемого объекта соответствует разный цвет изображения. Шкала соответствия цвета точки на изображении к абсолютной температуре наблюдаемого объекта может быть выведена поверх кадра. Также возможно указание температур наиболее горячей и наиболее холодной точки на изображении. Многие тепловизионные приборы также оснащены устройствами памяти для записи полученного видеоизображения картины теплового излучения, производительными микропроцессорами, позволяющими осуществлять в режиме реального времени минимальную аналитику полученного в результате сканирования изображения источника излучения.

Известно совместное использование тепловизора и видеокамеры, что позволяет в общем случае получить изображение объекта в «расширенном» диапазоне объединенных ИК и видимого спектров, а в неблагоприятных условиях, например при отсутствии освещения объекта, наблюдать объект хотя бы в одном из диапазонов. Например, ИК или видимый диапазон могут как накладываться друг на друга, так и транслироваться отдельно. Примером такой конфигурации может являться тепловизионная система TI3000 компании ULIRVISION (КНР) (www.ulirvision.com).

Также, из уровня техники известен способ визуального спектрального анализа телевизионного изображения дальнего ИК-спектра (патент на изобретение RU 2233559), который может быть принят в качестве прототипа. В RU 2233559 используют транспонирование ИК-изображения объекта в видимый диапазон спектра. Привычные объекты (например, лицо человека, снег, трава и т.д.) передаются привычными цветами (телесный, белый, зеленый и т.д.), что обеспечивает оценку и анализ спектральных и яркостных характеристик объектов оператором по их телевизионным изображениям в дальнем ИК-диапазоне. В результате, обеспечивается психологически привычное восприятие телевизионного изображения объектов. Недостатком данного метода является достаточно узкий диапазон частот регистрируемых сигналов, что ограничивает возможности оператора по анализу изображения и принятию решения в нештатной ситуации. Также, невозможно осуществлять зонный анализ температур в автоматизированном режиме.

В свою очередь предлагаемая группа изобретений позволит учесть существующие технические проблемы, перечисленные выше, и, в итоге, повысить достоверность контроля температуры термонагруженных узлов космических аппаратов и ракет-носителей.

Способ обработки термовидеоинформации предусматривает видеозапись теплового излучения исследуемого объекта и транспонирование полученного видеоизображения в видимый диапазон, генерацию видеосигнала, где разной температуре наблюдаемого объекта соответствует разный цвет изображения с последующим анализом оператором полученного изображения. В предложенном способе видеозапись теплового излучения осуществляется на борту, по преимуществу на борту космического аппарата, одновременно двумя камерами инфракрасного и ультрафиолетового диапазона посредством приборов с зарядовой связью (ПЗС) и объективов двух типов. Первый из двух типов приборов - ПЗС с «виртуальной» фазой (ВФПЗС) и объектив для диапазона длин волн 0,3…1,0 мкм, например объектив из кварцевого стекла, а второй - инфракрасный ПЗС (ИК ПЗС) с объективом для диапазона длин волн 1,1…5,3 мкм, например объективом из оптического кремния. Для записанного теплового излучения измеряют температуру в i,j-й точке поля изображения, локализуют участки изображения с температурой, превышающей пороговое значение, и передают видеоизображения по радиоканалу на наземные пункты приема данных для анализа. Транспонирование полученного видеоизображения в видимый диапазон (λвд) осуществляется по зависимости типа λвд=f(λ, λmin, Δλпд), например, путем вычисления по формуле где λ - текущее значение длины волны, λmin - минимальное значение длины волны в выбранном поддиапазоне длин волн, Δλпд - рассматриваемый поддиапазон длин волн.

Для обработки термовидеоинформации используют решающее устройство, обеспечивающее вычисление значение температуры в рассматриваемой точке поля изображения. Решающее устройство системы обработки термовидеоинформации состоит из совокупности функциональных блоков обработки сигнала «холодного» изображения и яркостных сигналов i,j-й точке поля изображения в соответствии с планковским распределением в диапазоне длин волн. Решающее устройство включает последовательно связанные первую и вторую схемы, относящиеся к «холодному» изображению и выдающие значения энергии светового излучения и интегрального коэффициента излучения заданного типа материала по единственному значению яркости; последовательно связанные третью и четвертую схемы, параллельные первой и второй схемам и относящиеся к текущему значению яркости в i,j-й точке поля изображения, по которому выдается значение энергии светового излучения и значение интегрального коэффициента излучения заданного типа материала. Решающее устройство системы обработки термовидеоинформации включает четыре схемы сравнения, пять схем деления, четыре схемы умножения, два блока вычисления длины волны, блок логарифмирования, блок возведения в пятую степень, блок возведения в минус первую степень, блок возведение величины е в заданную степень, блок вычитания.

Первый вход решающего устройства является входом яркостного сигнала «холодного изображения» и входом первой схемы сравнения, на выходе которого формируется информация об энергии излучения объекта в нормальных условиях. Выход первой схемы сравнения соединен со входом первого блока вычисления длины волны, выход которого соединен со входом второй схемы сравнения, откуда получают информацию об интегральном коэффициенте теплового излучения объекта в нормальных условиях, первым входом первой схемы умножения и вторым входом второй схемы деления. Второй вход решающего устройства является входом яркостного сигнала в i,j-точке поля изображения и входом третьей схемы сравнения, на выходе которого формируется информация об энергии излучения объекта в i,j-точке поля изображения в текущий момент времени. Выход третьей схемы сравнения соединен с входом второго блока вычисления длины волны. Выход второго блока вычисления длины волны соединен с входом четвертой схемы сравнения, откуда получают информацию об интегральном коэффициенте теплового излучения объекта в в i,j-точке поля изображения в текущий момент времени, первым входом второй схемы деления и первым входом третьей схемы деления.

Первый вход первой схемы деления соединен с первым входом устройства. Второй вход первой схемы деления соединен со вторым входом устройства, где вычисляется отношение интенсивностей излучения в текущих и нормальных условиях. Выход первой схемы деления соединен с первым входом второй схемы умножения. Выходы второй и четвертой схемы сравнения соединены соответственно с первым и вторым входом четвертой схемы деления, где вычисляется отношение интегральных коэффициентов теплового излучения объекта в текущих и нормальных условиях. Выход четвертой схемы деления соединен соответственно со вторым входом втором схемы умножения. Выход второй схемы деления соединен с входом блока возведения в пятую степень, выход которого соединен с третьим входом втором схемы умножения. Выход второй схемы деления, где вычисляется отношение длин волн излучения объекта в текущих и нормальных условиях, соединен с входом блока возведения в пятую степень. Выход блока возведения в пятую степень соединен с третьим входом второй схемы умножения.

Выход первой схемы умножения соединен с первым входом пятой схемы деления. Выход блока памяти, где хранится информация о константах h, с и k, а также о значении температуры «холодного изображения», соединен со вторыми входами третьей и пятой схемы деления. Выход второй схемы умножения соединен с первым входом третьей схемы умножения. Вход блока возведения константы е в заданную степень соединен с выходом пятой схемы деления, а выход - с входом блока вычитания. Второй вход третьей схемы умножения соединен с выходом блока вычитания, а выход - с входом блока логарифмирования, выход которого соединен с входом блока возведения в минус первую степень, выход которого соединен с первым входом четвертой схемы умножения, второй вход которого соединен с выходом третьей схемы деления. Выход четвертой схемы умножения является выходом решающего устройства, где вычисляется значение температуры в i,j-точке поля изображения.

Заявленный технический результат достигается за счет того, что контроль и измерение температуры термонагруженного объекта осуществляется одновременно двумя цифровыми камерами, работающими в инфракрасном и ультрафиолетовом диапазонах. Обработка данных с этих камер выполняется частично на борту космического аппарата или иного летающего объекта, а частично - в процессе наземной обработки. Для анализа оператором температурной ситуации на объекте данные с видеокамер транспонируются из инфракрасного и ультрафиолетового диапазонов в видимый диапазон, каждой температуре из рабочего диапазона соответствует свой цвет на экране дисплея на рабочем месте оператора. Разделение обработки температурной информации на бортовую и наземную позволяет осуществлять на борту локализацию отдельных участков (или точек) поля изображения объекта с температурой, превышающей допустимую. Допустимый порог температуры либо вводится на Земле оператором при непосредственном отслеживании термообстановки объекта, либо однократно программируется при разработке программы функционирования бортового процессора. Полученные на борту данные передаются вместе с телеметрической информацией на Землю. В результате, данный подход позволяет существенно сократить информационный поток, предназначенный для видеоинформации, передаваемой на Землю.

Человеческому глазу доступен только видимый диапазон длин волн 0,38…0,74 мкм, однако изменение температуры в изображении исследуемой области должно быть видимо при любом диапазоне длин волн. Для этого в разработанном способе обработки термовидеоинформации предложен следующий алгоритм пересчета длин волн из инфракрасного и ультрафиолетового диапазонов в видимый диапазон длин волн, который заключается в следующем.

Если воспользоваться законом смещения Вина:

где b - постоянная Вина, равная 2896 мкм*K,

λ - длина волны,

можно получить выражение для температуры:

Полный диапазон длин волн для отслеживания температурных параметров наблюдаемого объекта разбивается на поддиапазоны ИК1 - средний ИК-поддиапазон, ИК2 - ближний ИК-поддиапазон, ВД - видимый поддиапазон длин волн, УФ - ближний ультрафиолет и в соответствии с (2) вычислим температурные диапазоны для каждого из них, результаты вычислений приведены в табл. 1.

Столь высокие температуры взяты по причине возникновения туннельного эффекта - резкого выброса энергии в данном случае за счет резкого повышения температуры. Так, в силу специфики материалов, из которых изготовлены элементы космического аппарата, их разрушение происходит при Т >(1500…2000) K. Следовательно, области, подвергшиеся резкому повышению температуры, требуют особого внимания к их рассмотрению и анализу.

Для отображения на дисплее монитора все значения температур должны попадать в видимый диапазон длин волн от 0,38 мкм до 0,74 мкм.

Δλвд=0,74-0,38=0,36 мкм

В силу того, что в данном способе идет цифровая обработка сигнала, сначала вычисляется цена кванта для каждого из поддиапазонов длин волн, приведенных в табл. 1, взяв шаг по температуре равным средней погрешности измерения температуры у цветовых пирометров ΔТ=2K

где - рассматриваемый в соответствии с табл. 1 поддиапазон длин волн,

- максимальная температура рассматриваемого поддиапазона,

- минимальная температура рассматриваемого поддиапазона,

ΔT - погрешность измерения температуры.

Из табл. 2 видно, что

Теперь в соответствии с (3) можно найти цену кванта для каждого из поддиапазонов.

Полученные результаты расчетов цены кванта поддиапазонов длин волн приведены в табл. 3.

Пересчет длин волн в видимый спектр иллюстрируется фиг. 1.

Пусть λ - текущее значение длины волны, а у - вспомогательная промежуточная величина для пересчета, которая определяется выражением

где - минимальное значение величины длины волны в выбранном диапазоне, - цена кванта выбранного поддиапазона.

Тогда пересчитанное в видимый спектр значение длины волны будет

где - ширина видимого диапазона волн, - минимальное значение длины волны видимого диапазона.

Так как Δλвд=0,36 мкм, а то, подставив данные значения в формулу (5), получим формулу пересчета длин волн в видимый спектр:

Следующий пример иллюстрирует предложенный способ транспонирования, например диапазона ИК2 в видимый диапазон.

Возьмем крайнее значение длины волны Таким образом, при пересчете в соответствии с (6) должно быть Δλвд=0,74 мкм. Если проверить это, получим

Следовательно, соотношение (15) адекватно для пересчета длин волн в видимый спектр из любого диапазона.

Блок-схема алгоритма предложенного способа обработки термовидеоинформации, содержащая следующие блоки, представлена на фиг. 2: блок видеозаписи изображений ИК- и УФ-видеокамерами 1; блок измерения температуры объекта в i,j-точке видеокадра 2; блок локализации участков изображения с температурой, превышающей пороговое значение 3; блок передачи видеоизображения на на земную станцию обработки информации 4; блок транспонирования видеоизображения из ИК- и УФ-диапазонов в видимый 5; блок запись видеоинформации в память ЭВМ 6; блок анализа видеоизображений оператором 7.

Процесс обработки термовидеоинформации складывается из формирования на борту космического аппарата с помощью видеокамер ИК- и УФ-диапазонов видеосигналов изображения исследуемого объекта в блоке видеозаписи 1, определения решающим устройством температуры объекта в i,j-точке поля изображения 2, локализации участков изображения, с температурой превышающей пороговое значение 3, и последующей передачей видеоизображения по радиоканалу на наземные пункты приема данных 4. В процессе наземной обработки данных, поступивших от бортовой аппаратуры космического аппарата, осуществляется транспонирование сигналов видеоизображения из ИК- и УФ-диапазонов в видимый 5, запись транспонированного видеосигнала в память ЭВМ 6 и анализ видеоизображения оператором 7.

Для наземной обработки оператор получает информацию о номере зоны обзора, координатах наиболее термонагруженных областей (точек), относящихся к данной зоне обзора, их температуру и уровень превышения допустимого температурного порога. Пакеты видеоинформации, поступающие от наземной станции в реальном времени, идут на персональный компьютер оператора, где на мониторе отображается видеоинформация, которая так же автоматически записывается на жесткий диск в формате МР4. Оператор может выводить картинку, получаемую от любой из камер, выбрав интересующую его из заданного списка и рассматривая картинку с нужным ему разрешением. Просмотр видеоизображения в реальном времени позволяет определять температуру в интересующей оператора области космического аппарата.

В процессе видеоконтроля оператор выбирает зону обзора согласно эксплуатационным данным, спектральный поддиапазона до появления цветной картинки в поле видимого излучения, интересующую область зоны обзора для измерения температуры, масштаба для изменения размеров в пределах зоны обзора видеокамеры (увеличение/уменьшение), координаты точки в пределах зоны обзора, где определяется температура. Расположение зон обзора термонагруженных элементов космических аппаратов и ракет-носителей задается в эксплуатационной документации. Размеры зон обзора видеокамер определяются с учетом характеристик видеорегистрирующей системы при проектировании и наземных испытаниях конкретного космического аппарата или ракеты-носителя.

Каждому спектральному диапазону соответствует своя градуировочная шкала температур. Пурпурный цвет соответствует менее нагретой области зоны обзора выбранного спектрального поддиапазона, темно-фиолетовый цвет - наиболее нагретой области. Видеоизображение отображается всегда в видимом спектре, при этом текущее изображение отображается путем наложения его на «холодное» изображение - изображение, снятое видеокамерой в рассматриваемой зоне обзора при нормальных условиях в соответствии с СП 2.2.4.548-96 и ГОСТ 12.1.005-88 (Тср=20°С, р=747 мм рт.ст., относительная влажность воздуха δ=(40-60)%). Оператор заранее знает цветовую градацию в соответствии с температурой. Видеоизображения сразу после окончания полета космического аппарата или ракеты-носителя должны автоматически сохраняться в указанную в папку, предусмотренную программой для каждого из спектральных поддиапазонов каждой зоны обзора. При просмотре сохраненных видеофайлов оператор может узнавать информацию о температуре и координатах выбранной точки, что позволяет производить детальный анализ термообстановки наблюдаемых узлов космических аппаратов или ракет-носителей.

Вычисление значения температуры в рассматриваемой точке поля изображения выполняет решающее устройство системы обработки термовидеоинформации, функционирующее на принципе определения температуры по величине отношения интенсивностей излучения в двух длинах волн. За λ1 берется текущее значение длины волны (яркости, энергии) в рассматриваемой точке поля изображения, а за λ2 - «холодное» изображение. Т.о. λ2хол. «Холодное» изображение - это изображение, снятое видеокамерой в рассматриваемой зоне обзора при нормальных условиях в соответствии с СП 2.2.4.548-96 и ГОСТ 12.1.005-88 (Тср=20°С, р=747 мм рт.ст., относительная влажность воздуха δ=(40-60)%).

Информация о яркости в ij-й точке k-го кадра Yijk поступает на суммирующее по числу кадров устройство

а далее усредняется по общему числу кадров за секунду L:

Таким образом, получается усредненное по общему числу кадров в секунду значение яркости в рассматриваемой точке Yij.

Алгоритм работы решающего устройства основан на планковском распределении в диапазоне длин волн, а именно:

где k=1,38*10-23 Дж/К - постоянная Больцмана, h=6,63*10-34 Дж*с - постоянная Планка, с=3*108 м/с - скорость света, Т - температура, K, λ - длина волны, м, ελ - интегральный коэффициент теплового излучения.

Отношение интенсивностей текущего изображения в рассматриваемой точке и «холодного» изображения можно выразить в виде следующего выражения:

Зная Tхолср=20°С, найдем Tij из (11):

Пусть , тогда из (13) найдем значение температуры в рассматриваемой точке поля изображения:

Структурная схема решающего устройства обработки термовидеоинформации, реализующего вычисление значение температуры в рассматриваемой точке поля изображения в соответствии с предложенным алгоритмом (14), представлена на фиг. 3.

Решающее устройство системы обработки термовидеоинформации, включает: четыре схемы сравнения 8, 9, 10, 11; пять схем деления 16, 17, 18, 19, 20; четыре схемы умножения 12, 13, 14, 15; два блока вычисления длины волны 21, 22; блок логарифмирования 23; блок возведения в пятую степень 24; блок возведения в минус первую степень 25; блок возведение величины е в заданную степень 26; блок вычитания 27; блок памяти 28.

Первый вход решающего устройства является входом яркостного сигнала «холодного изображения» и входом первой схемы сравнения 8, на выходе которой формируется информация об энергии излучения объекта в нормальных условиях. Выход первой схемы сравнения соединен со входом первого блока вычисления длины волны 21, выход которого соединен со входом второй схемы сравнения 10, откуда получают информацию об интегральном коэффициенте теплового излучения объекта в нормальных условиях, первым входом первой схемы умножения 12 и вторым входом второй схемы деления 17.

Второй вход решающего устройства является входом яркостного сигнала в i,j-й точке поля изображения и входом третьей схемы сравнения 9, на выходе которого формируется информация об энергии излучения объекта в i,j-точке поля изображения в текущий момент времени. Выход третьей схемы сравнения соединен с входом второго блока вычисления длины волны 22, выход которого соединен с входом четвертой схемы сравнения 11, откуда вытекает информация об интегральном коэффициенте теплового излучения объекта в i,j-й точке поля изображения в текущий момент времени, первым входом второй схемы деления 17 и первым входом третьей схемы деления 18.

Первый вход первой схемы деления 16, где вычисляется отношение интенсивностей излучения в текущих и нормальных условиях, соединен с первым входом решающего устройства, второй вход первой схемы деления 16 соединен со вторым входом решающего устройства. Выход первого устройства деления 16 соединен с первым входом второй схемы умножения 13, при этом выходы второй 10 и четвертой схемы сравнения 11 соединены соответственно с первым и вторым входом четвертой схемы деления 19, где вычисляется отношение интегральных коэффициентов теплового излучения объекта в текущих и нормальных условиях. Выход схемы деления 19 соединен соответственно со вторым входом второй схемы умножения 13.

Выход второй схемы деления 17, где вычисляется отношение длин волн излучения объекта в текущих и нормальных условиях, соединен с входом блока возведения в пятую степень 24, выход которого соединен с третьим входом второй схемы умножения 13. Выход первой схемы умножения 12 соединен с первым входом пятой схемы деления 20, а выход блока памяти 28, где хранится информация о константах h, с и k, а также о значении температуры «холодного изображения» (20°С), соединен со вторыми входами третьего 18 и пятой схемы деления 20. Выход второй схемы умножения 13 соединен с первым входом третьей схемы умножения 14, при этом вход блока возведения константы е в заданную степень 26 соединен с выходом пятой схемы деления 20, а выход с входом блока вычитания 27.

Второй вход третьей схемы умножения соединен с выходом блока вычитания 27, а выход - со входом блока логарифмирования 23, выход которого соединен со входом блока возведения в минус первую степень 25, выход которого соединен с первым входом четвертой схемы умножения 15, второй вход которого соединен с выходом третьей схемы деления 18. Выход четвертой схемы умножения 15 является выходом решающего устройства, где вычисляется значение температуры в i,j-й точке поля изображения.

Как видно из фиг. 3, имеют место четыре схемы сравнения:

- I 8 и II 10 относятся к «холодному» изображению и по единственному значению яркости выдается соответствующее значение энергии светового излучения Wхол, по которой, в соответствии с законом Планка, вычисляется длина волны: а также значение интегрального коэффициента излучения заданного типа металла (или графита) при Тхол=20°С;

- III 9 и IV 11 относятся к текущему значению яркости Yij в рассматриваемой точке поля изображения, по которому выдается соответствующее значение энергии светового излучения Wij, по которой, в соответствии с законом Планка, вычисляется длина волны:

а также значения интегрального коэффициента излучения ελij заданного типа металла (или графита) при соответствующем значении λij.

В итоге, достоверность контроля температуры термонагруженных узлов космических аппаратов и ракет-носителей достигается за счет:

анализа термообстановки одновременно в ИК- и УФ-диапазонах длин волн посредством использования двух типов приборов с зарядовой связью (ПЗС) и объективов: ПЗС с «виртуальной» фазой (ВФПЗС) и объектив для диапазона длин волн 0,3…1,0 мкм (из кварцевого стекла) и инфракрасный ПЗС (ИК ПЗС) с объективом для диапазона длин волн 1,1…5,3 мкм (из оптического кремния);

применения предложенного способа обработки полученного видеосигнала для его транспонирования в видимый диапазон, что обеспечивает эффективный анализ оператором термообстановки исследуемого объекта в расширенном диапазоне длин волн (от ИК до УФ);

использования предложенного решающего устройства для обработки термовидеоинформации, обеспечивающего вычисление значения температуры в рассматриваемой точке поля изображения.

1. Способ обработки термовидеоинформации, предусматривающий видеозапись теплового излучения исследуемого объекта и транспонирование полученного видеоизображения в видимый диапазон, генерацию видеосигнала, где разной температуре наблюдаемого объекта соответствует разный цвет изображения с последующим анализом оператором полученного изображения, отличающийся тем, что

видеозапись теплового излучения осуществляется на борту космического аппарата одновременно двумя камерами инфракрасного и ультрафиолетового диапазона посредством

приборов с зарядовой связью (ПЗС) и объективов двух типов, первый из которых

ПЗС с «виртуальной» фазой (ВФПЗС) с объективом для диапазона длин волн 0,3…1,0 мкм, а второй -

инфракрасный ПЗС (ИК ПЗС) с объективом для диапазона длин волн 1,1…5,3 мкм,

с последующим определением температуры в i,j-й точке поля изображения, локализацией участков изображения с температурой, превышающей пороговое значение, и передачей видеоизображения по радиоканалу на наземные пункты приема данных для анализа, причем

транспонирование полученного видеоизображения в видимый диапазон (λвд) осуществляется по зависимости типа λвд=f(λ, λmin, Δλпд), где λ - текущее значение длины волны, λmin - минимальное значение длины волны в выбранном поддиапазоне длин волн, Δλпд - рассматриваемый поддиапазон длин волн.

2. Способ по п. 1, отличающийся тем, что транспонирование полученного видеоизображения в видимый диапазон (λвд) осуществляется путем вычисления по формуле где λ - текущее значение длины волны, λmin - минимальное значение длины волны в выбранном поддиапазоне длин волн, Δλпд - рассматриваемый поддиапазон длин волн.

3. Решающее устройство для определения температуры объекта в i,j-й точке поля изображения при осуществлении способа обработки термовидеоинформации, характеризующееся тем, что состоит

из совокупности функциональных блоков обработки сигнала «холодного» изображения и яркостных сигналов i,j-й точке поля изображения в соответствии с планковским распределением в диапазоне длин волн, включающих

последовательно связанные первую и вторую схемы, относящиеся к «холодному» изображению и выдающие значения энергии светового излучения и интегрального коэффициента излучения заданного типа материала по единственному значению яркости,

последовательно связанные третью и четвертую схемы, параллельные первой и второй схемам и относящиеся к текущему значению яркости в i,j-й точке поля изображения, по которому выдается значение энергии светового излучения и значения интегрального коэффициента излучения заданного типа материала.

4. Решающее устройство по п. 3, характеризующееся тем, что включает

четыре схемы сравнения,

пять схем деления,

четыре схемы умножения,

два блока вычисления длины волны,

блок логарифмирования,

блок возведения в пятую степень,

блок возведения в минус первую степень,

блок возведение величины е в заданную степень,

блок вычитания, при этом

первый вход решающего устройства является входом яркостного сигнала «холодного изображения» и входом первой схемы сравнения, на выходе которого формируется информация об энергии излучения объекта в нормальных условиях, причем

выход первой схемы сравнения соединен со входом первого блока вычисления длины волны, выход которого соединен со

входом второй схемы сравнения, откуда получают информацию об интегральном коэффициенте теплового излучения объекта в нормальных условиях,

первым входом первой схемы умножения и

вторым входом второй схемы деления;

второй вход решающего устройства является входом яркостного сигнала в i,j-точке поля изображения и

входом третьей схемы сравнения, на выходе которого формируется информация об энергии излучения объекта в i,j-точке поля изображения в текущий момент времени, при этом

выход третьей схемы сравнения соединен с входом второго блока вычисления длины волны,

выход которого соединен с входом четвертой схемы сравнения, откуда получают информацию об интегральном коэффициенте теплового излучения объекта в в i,j-точке поля изображения в текущий момент времени,

первым входом второй схемы деления и

первым входом третьей схемы деления;

первый вход первой схемы деления соединен с

первым входом устройства,

второй вход первом схемы деления соединен со

вторым входом устройства, где вычисляется отношение интенсивностей излучения в текущих и нормальных условиях, при этом

выход первой схемы деления соединен с

первым входом второй схемы умножения, при этом

выходы второй и четвертой схемы сравнения соединены соответственно с

первым и вторым входом четвертой схемы деления, где вычисляется отношение интегральных коэффициентов теплового излучения объекта в текущих и нормальных условиях, при этом

выход этой схемы деления соединен соответственно со вторым входом второй схемы умножения, а

выход второй схемы деления соединен с входом блока возведения в пятую степень,

выход которого соединен с третьим входом второй схемы умножения;

выход второй схемы деления, где вычисляется отношение длин волн излучения объекта в текущих и нормальных условиях, соединен с

входом блока возведения в пятую степень, выход которого соединен с

третьим входом второй схемы умножения, при этом

выход первой схемы умножения соединен с

первым входом пятой схемы деления, а

выход блока памяти, где хранится информация о константах h, с и k, а также о значении температуры «холодного изображения», соединен со

вторыми входами третьей и пятой схемы деления;

выход второй схемы умножения соединен с

первым входом третьей схемы умножения, при этом

вход блока возведения константы е в заданную степень соединен с выходом пятой схемы деления, а выход с входом блока вычитания;

второй вход третьем схемы умножения соединен с выходом блока вычитания, а

выход с входом блока логарифмирования,

выход которого соединен с входом блока возведения в минус первую степень,

выход которого соединен с первым входом четвертой схемы умножения,

второй вход которого соединен с выходом третьей схемы деления;

причем выход четвертой схемы умножения является выходом решающего устройства, где вычисляется значение температуры в i,j-точке поля изображения.



 

Похожие патенты:

Изобретение относится к области оптического приборостроения и касается оптической системы тепловизионного прибора. Оптическая система включает в себя объектив, приемник излучения с охлаждаемой диафрагмой, блок обработки информации, датчик температуры, блок позиционирования и блок обработки информации.

Изобретение относится к устройствам регистрации видеоизображений. Техническим результатом является повышение кадровой частоты фотоприемной матрицы и увеличение динамического диапазона датчика изображений для обнаружения малоконтрастных объектов.

Изобретение относится к панорамному телевизионному наблюдению цветного изображения, которое выполняется при помощи трех датчиков видеосигнала основных цветов (R, G, В) в области, близкой к полусфере, т.е.

Изобретение относится к панорамному телевизионному наблюдению, которое выполняется компьютерной системой при помощи телевизионной камеры кругового обзора в области, близкой к полусфере, т.е.

Изобретение относится к панорамному телевизионному наблюдению «день - ночь», которое выполняется в вечернее и/или в ночное время суток телевизионной камерой кругового обзора в области, близкой к полусфере, т.е.

Изобретение относится к электронному приборостроению и предназначено для контроля и управления тепловизионными каналами (ТВК). Техническим результатом является расширение функциональных возможностей устройства за счет обеспечения проверки работоспособности ТВК, не имеющих органов ручного управления, и автоматизации измерения основных качественных характеристик ТВК, при повышении точности результатов измерений.

Изобретение относится к твердотельному датчику изображения и системе восприятия изображения. Датчик содержит блок восприятия изображения, включающий в себя блоки пикселов, и блок считывания для считывания сигнала из блока восприятия изображения.

Двухканальный тепловизионно-ночной наблюдательный прибор содержит тепловизионный канал, состоящий из объектива тепловизионного канала, матричного приемника излучения, плоского дисплея, лупы тепловизионного канала, куб-призмы.
Активно-импульсный ПНВ содержит в качестве источника подсветки объекта импульсный излучатель, а в качестве приемника изображения ЭОП с импульсной модуляцией коэффициента усиления.

Изобретение относится к приборам ночного видения. Устройство содержит блок наблюдения, телевизионный канал, блок управления и синхронизации, импульсный инфракрасный осветитель и блок деления частоты, блок преобразования задержки, два электромеханических привода, блок регулировки амплитуды тока накачки и последовательно соединенные измеритель естественной освещенности, блок преобразования сигнала и блок управления частотой.

Изобретение относится к измерительной технике и позволяет повысить точность контроля температуры за счет устранения влияния радиального биения вращающегося объекта.

Изобретение относится к области фотоэлектроники. .

Однозрачковая мультиспектральная оптическая система со встроенным лазерным дальномером содержит общий входной канал, спектроделительную пластинку, отражающую спектральный диапазон оптического канала и пропускающую спектральный диапазон тепловизионного канала. При этом отраженный канал выполнен телевизионным из двух компонентов, между которыми установлена вторая спектроделительная пластинка, отражающая спектральный диапазон телевизионного канала и пропускающая спектральный диапазон дальномерного канала, который содержит плоское зеркало с осевым отверстием, расположенное под углом к оптической оси, осуществляющее апертурное разделение для ветвей фотоприемника и полупроводникового лазерного излучателя. Технический результат заключается в упрощении конструкции, а также обеспечении возможности измерения дальности. 1 з.п. ф-лы, 2 ил., 2 табл.

Изобретение относится к области получения изображений и касается системы регистрации изображений. Система включает в себя объектив, датчик и контроллер датчика. Контроллер датчика выполнен с возможностью получать текущее фокусное расстояние объектива и искривлять датчик, основываясь на текущем фокусном расстоянии объектива. После искривления датчика на основе текущего фокусного расстояния объектива контроллер регистрирует первые данные изображения, принимает данные обратной связи, соответствующие зарегистрированным первым данным изображения и на основе данных обратной связи и текущего фокусного расстояния объектива регулирует кривизну датчика для повышения качества изображения вторых данных изображения. Технический результат заключается в повышении качества получаемых изображений. 3 н. и 17 з.п. ф-лы, 11 ил.
Наверх