Устройство для определения направления и дальности до источника сигналов

Изобретение относится к пеленгаторам и может быть использовано для определения направления и дальности до источника сигналов. Сущность: устройство содержит ПЭВМ (1), блок (5) системы единого времени, блок (6) связи с абонентами, первый блок (7) схем ИЛИ, а также первый и второй идентичные каналы, каждый из которых включает антенный блок (2), первый усилитель (3), первый фильтр (4), блок (8) датчиков света, первый блок (9) усилителей, первый блок (10) фильтров, второй блок (11) усилителей, первый пороговый блок (12), второй блок (13) схем ИЛИ, третий блок (14) усилителей, второй блок (15) фильтров, четвертый блок (16) усилителей, второй пороговый блок (17), третий блок (18) схем ИЛИ, первый блок (19) ЦАП, первый блок (20) калибраторов, второй блок (21) ЦАП, второй блок (22) калибраторов, первый ЦАП (23), первый калибратор (24), сейсмометр (25), второй усилитель (26), второй фильтр (27), первый пороговый элемент (28), первая схема (29) И, первый таймер (30), вторая схема (31) И, первый счетчик (32), второй ЦАП (33), второй калибратор (34), микробарометр (35), третий усилитель (36), третий фильтр (37), четвертый усилитель (38), четвертый фильтр (39), второй пороговый элемент (40), третья схема (41) И, второй таймер (42), четвертая схема (43) И, второй счетчик (44), первый АЦП (45), второй АЦП (46), первый блок (47) АЦП, второй блок (48) АЦП, третий таймер (49), четвертый таймер (50), тактовый генератор (51). Причем антенный блок (2) выполнен в виде трех взаимно перпендикулярных антенн. Блок (8) датчиков света выполнен в виде трех взаимно перпендикулярных оппозитных пар датчиков света. Технический результат: возможность пеленга нескольких типов источников сигналов, уменьшение погрешности при использовании устройства на ближних расстояниях, повышение помехоустойчивости устройства. 1 ил.

 

Изобретение относится к измерительной технике, в частности к пеленгаторам, и предназначено для мониторинга событий, влияющих на экологию окружающей среды (молниевые разряды, взрывы газа, промышленные взрывы и др.).

Известно устройство для определения направления и дальности до источника сигналов [1] (комбинированная система грозоопределения, состоящая из инфразвукового комплекса и электрической антенны), содержащее три микробарометра, инфразвуковой микрофон и электростатический флюксметр, подключенные через аналого-цифровые преобразователи (АЦП), к персональной электронно-вычислительной машине (ПЭВМ). В устройстве направление и дальность до источника сигналов определяются по результатам дальнейшей обработки оператором записанных сигналов. Для определения азимута используются разности времени прихода инфразвуковых сигналов на не менее, чем на три микробарометра, разнесенные друг от друга более, чем на 90 метров (трехпозиционная система регистрации), а для определения дальности используется разность времени прихода сигналов на электростатический флюксметр и инфразвуковой микрофон (или микробарометры).

Недостатками устройства являются невозможность пеленга нескольких типов источников сигналов, невозможность использования устройства на однопозиционном пункте наблюдения или на средстве передвижения, невозможность использования устройства на ближних расстояниях в реальном масштабе времени, а также низкая помехоустойчивость устройства из-за использования электрической компоненты сигнала.

Наиболее близким техническим решением к предлагаемому является «Способ однопунктовой дальнометрии грозовых разрядов и устройство для его осуществления» [2] Устройство содержит две горизонтальные ортогонально ориентированные магнитные антенны и вертикальную электрическую антенну, два интегратора, три усилителя, три фильтра, два квадратора, сумматор, имеющий два входа и один выход, решающий блок, первый пороговый блок, одновибратор и ключевой блок, причем выход первой магнитной антенны соединен последовательно с первым интегратором, первым усилителем, первым фильтром, первым квадратором, первым входом сумматора, первым входом первого порогового блока, одновибратором и вторым входом ключевого блока, выход второй магнитной антенны соединен последовательно с вторым интегратором, вторым усилителем, вторым фильтром, вторым квадратором и вторым входом сумматора, выход электрической антенны соединен последовательно с третьим усилителем и третьим фильтром, а также третий квадратор, блок вычитания, имеющий два входа и один выход, второй пороговый блок и триггер, имеющий два входа и один выход, причем выход сумматора соединен, кроме того, последовательно с первым входом блока вычитания, первым входом ключевого блока, вторым пороговым блоком и вторым входом триггера, а выход третьего фильтра соединен последовательно с третьим квадратором и вторым входом блока вычитания, выход первого порогового блока соединен, кроме того, последовательно с первым входом триггера и решающим блоком.

Недостатками прототипа являются невозможность пеленга нескольких типов источников сигналов, большая погрешность при использовании устройства на ближних расстояниях, а также низкая помехоустойчивость устройства из-за использования электрической компоненты сигнала.

Техническим результатом, обеспечиваемым заявляемым изобретением, являются возможность пеленга нескольких типов источников сигналов, уменьшение погрешности при использовании устройства на ближних расстояниях и повышение помехоустойчивости устройства.

Технический результат достигается тем, что устройство для определения направления и дальности до источника сигналов, содержащее персональную электронно-вычислительную машину (ПЭВМ), а также первый и второй идентичные каналы, каждый из которых включает антенный блок и последовательно соединенные первый усилитель и первый фильтр, дополнительно содержит подключенные к ПЭВМ блок системы единого времени и блок связи с абонентами, а также первый блок схем ИЛИ, а в каждом канале содержит последовательно соединенные блок датчиков света, первый блок усилителей, первый блок фильтров, второй блок усилителей, первый пороговый блок и второй блок схем ИЛИ, последовательно соединенные третий блок усилителей, второй блок фильтров, четвертый блок усилителей, второй пороговый блок и третий блок схем ИЛИ, последовательно соединенные первый блок цифро-аналоговых преобразователей (ЦАП) и первый блок калибраторов, последовательно соединенные второй блок ЦАП и второй блок калибраторов, последовательно соединенные первый ЦАП, первый калибратор и сейсмометр, последовательно соединенные второй усилитель, второй фильтр, первый пороговый элемент и первую схему И, последовательно соединенные первый таймер, вторую схему И и первый счетчик, последовательно соединенные второй ЦАП и второй калибратор, последовательно соединенные микробарометр, третий усилитель, третий фильтр, четвертый усилитель, четвертый фильтр, второй пороговый элемент и третью схему И, последовательно соединенные второй таймер, четвертую схему И и второй счетчик, а также первый и второй аналого-цифровые преобразователи (АЦП), подключенные входами, соответственно, к первому и третьему фильтрам, а выходами подключенные к ПЭВМ, первый и второй блоки АЦП, подключенные входами, соответственно, к первому и ко второму блокам фильтров, а выходами подключенные к ПЭВМ, третий и четвертый таймеры, подключенные выходами, соответственно, ко вторым входам первой и третьей схем И, а входами запуска и управляющими входами подключенные к ПЭВМ и тактовый генератор, подключенный выходом ко вторым входам второй и четвертой схем И, причем выходы антенного блока подключены к третьему блоку усилителей, выходы первого и второго блоков калибраторов подключены, соответственно, к антенному блоку и к блоку датчиков света, входы первого и второго усилителей подключены, соответственно, к сейсмометру и к первому фильтру, входы останова первого и второго счетчиков подключены, соответственно, к первой и к третьей схемам И, выходы первого и второго таймеров подключены, соответственно, к третьим входам первой и третьей схем И, вход микробарометра акустически связан со вторым калибратором, выходы первого и второго счетчиков, первого и второго таймеров, первого и второго пороговых блоков, первого и второго пороговых элементов, входы первого и второго блоков ЦАП, входы первого и второго ЦАП, а также управляющие входы первого и второго таймеров, всех усилителей, фильтров, пороговых элементов, пороговых блоков, блоков усилителей и блоков фильтров подключены к ПЭВМ, выходы второго и третьего блоков схем ИЛИ подключены к первому блоку схем ИЛИ, выход первого блока схем ИЛИ подключен к первому и второму таймерам, а антенный блок выполнен в виде трех взаимно перпендикулярных магнитных антенн, блок датчиков света выполнен в виде трех взаимно перпендикулярных оппозитных пар датчиков света, блоки усилителей, блоки фильтров, пороговые блоки, блоки калибраторов, блоки АЦП и блоки ЦАП выполнены трехканальными, второй и третий блоки схем ИЛИ выполнены с тремя входами и одним выходом, первый блок схем ИЛИ выполнен с четырьмя входами и одним выходом, пороговые блоки и пороговые элементы выполнены с управлением по порогу, усилители и блоки усилителей выполнены с управлением по фазе, полосе пропускания и чувствительности, таймеры выполнены с управлением по длительности выходного сигнала, и фильтры и блоки фильтров выполнены с управлением по полосе пропускания.

Такое выполнение устройства для определения направления и дальности до источника сигнала обеспечивает возможность пеленга нескольких типов источников сигналов, уменьшение погрешности при использовании устройства на ближних расстояниях и повышение помехоустойчивости устройства.

На чертеже представлена структурная схема предлагаемого устройства.

Принятые обозначения:

1 - персональная электронно-вычислительная машина (ПЭВМ), 2 - антенный блок, 3 - первый усилитель, 4 - первый фильтр, 5 - блок системы единого времени, 6 - блок связи с абонентами, 7 - первый блок схем ИЛИ, 8 - блок датчиков света, 9 - первый блок усилителей, 10 - первый блок фильтров, 11 - второй блок усилителей, 12 - первый пороговый блок, 13 - второй блок схем ИЛИ, 14 - третий блок усилителей, 15 - второй блок фильтров, 16 - четвертый блок усилителей, 17 - второй пороговый блок, 18 - третий блок схем ИЛИ, 19 - первый блок цифро-аналоговых преобразователей (ЦАП), 20 - первый блок калибраторов, 21 - второй блок ЦАП, 22 - второй блок калибраторов, 23 - первый ЦАП, 24 - первый калибратор, 25 - сейсмометр, 26 - второй усилитель, 27 - второй фильтр, 28 - первый пороговый элемент, 29 - первая схема И, 30 - первый таймер, 31 - вторая схема И, 32 - первый счетчик, 33 - второй ЦАП, 34 - второй калибратор, 35 - микробарометр, 36 - третий усилитель, 37 - третий фильтр, 38 - четвертый усилитель, 39 - четвертый фильтр, 40 - второй пороговый элемент, 41 - третья схема И, 42 - второй таймер, 43 - четвертая схема И, 44 - второй счетчик, 45 - первый АЦП, 46 - второй АЦП, 47 - первый блок АЦП, 48 - второй блок АЦП, 49 - третей таймер, 50 - четвертый таймер, 51 - тактовый генератор.

Устройство для определения направления и дальности до источника сигналов содержит персональную электронно-вычислительную машину (ПЭВМ) 1, первый и второй идентичные каналы, каждый из которых включает антенный блок 2 и последовательно соединенные первый усилитель 3 и первый фильтр 4, а также общие, подключенные к ПЭВМ 1, блок 5 системы единого времени, блок 6 связи с абонентами, и первый блок схем ИЛИ 7, а в каждом канале содержит последовательно соединенные блок датчиков 8 света, первый блок усилителей 9, первый блок фильтров 10, второй блок усилителей 11, первый пороговый блок 12 и второй блок схем ИЛИ 13, последовательно соединенные третий блок усилителей 14, второй блок фильтров 15, четвертый блок усилителей 16, второй пороговый блок 17 и третий блок схем ИЛИ 18, последовательно соединенные первый блок цифро-аналоговых преобразователей (ЦАП) 19 и первый блок калибраторов 20, последовательно соединенные второй блок ЦАП 21 и второй блок калибраторов 22, последовательно соединенные первый ЦАП 23, первый калибратор 24 и сейсмометр 25, последовательно соединенные второй усилитель 26, второй фильтр 27, первый пороговый элемент 28 и первую схему И 29, последовательно соединенные первый таймер 30, вторую схему И 31 и первый счетчик 32, последовательно соединенные второй ЦАП 33 и второй калибратор 34, последовательно соединенные микробарометр 35, третий усилитель 36, третий фильтр 37, четвертый усилитель 38, четвертый фильтр 39, второй пороговый элемент 40 и третью схему И 41, последовательно соединенные второй таймер 42, четвертую схему И 43 и второй счетчик 44, а также первый АЦП 45 и второй АЦП 46, подключенные входами, соответственно, к первому и третьему фильтрам 4, 37, а выходами подключенные к ПЭВМ 1, первый блок АЦП 47 и второй блок АЦП 48, подключенные входами, соответственно, к первому и ко второму блокам фильтров 10, 15, а выходами подключенные к ПЭВМ 1, третий таймер 49 и четвертый таймер 50, подключенные выходами, соответственно, ко вторым входам первой и третьей схем И 29, 41, а входами запуска и управляющими входами подключенные к ПЭВМ 1 и тактовый генератор 51, подключенный выходом ко вторым входам второй и четвертой схем И 31, 43, причем выходы антенного блока 2 подключены к третьему блоку усилителей 14, выходы первого и второго блоков калибраторов 20, 22 подключены, соответственно, к антенному блоку 2 и к блоку датчиков 8 света, входы первого и второго усилителей 3, 26 подключены, соответственно, к сейсмометру 25 и к первому фильтру 4, входы останова первого и второго счетчиков 32, 44 подключены, соответственно, к первой и к третьей схемам И 29, 41, выходы первого и второго таймеров 30, 42 подключены, соответственно, к третьим входам первой и третьей схем И 29, 41, вход микробарометра 35 акустически связан со вторым калибратором 34, выходы первого и второго счетчиков 32, 44, первого и второго таймеров 30, 42, первого и второго пороговых блоков 12, 17, первого и второго пороговых элементов 28, 40, входы первого и второго блоков ЦАП 19, 21, входы первого и второго ЦАП 23, 33, а также управляющие входы первого и второго таймеров 30, 42, всех усилителей, фильтров, пороговых элементов, пороговых блоков, блоков усилителей и блоков фильтров подключены к ПЭВМ 1, выходы второго и третьего блоков схем ИЛИ 13, 18 подключены к первому блоку схем ИЛИ 7, выход первого блока схем ИЛИ 7 подключен к первому и второму таймерам 30, 42, а антенный блок 2 выполнен в виде трех взаимно перпендикулярных магнитных антенн, блок датчиков 8 света выполнен в виде трех взаимно перпендикулярных оппозитных пар датчиков света, блоки усилителей, блоки фильтров, пороговые блоки, блоки калибраторов, блоки АЦП и блоки ЦАП выполнены трехканальными, второй и третий блоки схем ИЛИ 13, 18 выполнены с тремя входами и одним выходом, первый блок схем ИЛИ 7 выполнен с четырьмя входами и одним выходом, пороговые блоки и пороговые элементы выполнены с управлением по порогу, усилители и блоки усилителей выполнены с управлением по фазе, полосе пропускания и чувствительности, таймеры выполнены с управлением по длительности выходного сигнала, и фильтры и блоки фильтров выполнены с управлением по полосе пропускания.

Устройство для определения направления и дальности до источника сигналов, установленное на однопозиционном пункте наблюдения с первым и вторым каналами, размещенными, соответственно, в первой и второй точках регистрации электромагнитного излучения (ЭМИ), инфразвука, света и сейсмических волн работает следующим образом. При возникновении, например, молниевого разряда, взрыва газа, промышленного взрыва, падения метеорита, сначала на пункте наблюдения возможна регистрация быстрых сигналов - ЭМИ, света. По любому из быстрых сигналов запускаются счетчики разностей времени между быстрыми и сопутствующими медленными сигналами - инфразвуковыми и сейсмическими сигналами. По возможным быстрым сигналам определяется направление на источник сигналов и приближенное местонахождение, а по медленным сигналам уточняется местонахождение источника сигналов. Прием и обработка сигналов осуществляются следующим образом. При появлении ЭМИ токи, наведенные в антенном блоке 2 от источника сигналов, через третий блок усилителей 14, второй блок фильтров 15 и второй блок АЦП 48, поступают в ПЭВМ 1. Аналогично, сигналы блока датчиков 8 света через первый блок усилителей 9, первый блок фильтров 10 и первый блок АЦП 47, поступают в ПЭВМ 1, где начинается цикл обработки информации при превышении сигналами антенного блока 2 или блока датчиков 8 света заданных пороговых значений. Принятые сигналы двух ортогональных пар антенн, установленных в точках регистрации в горизонтальной плоскости так, что одна из двух антенн первой точки регистрации ориентирована максимумом диаграммы направленности на максимум диаграммы направленности антенны второй точки регистрации, используются для определения известными способами [3] углов α, β прихода сигнала ЭМИ на точки регистрации т.е. углов между направлением из одной точки регистрации на другую точку регистрации и направлением из каждой точки регистрации на источник сигналов ЭМИ, например, по формулам,

где A1, A2 - амплитуды сигналов средней частоты, поступающих в ПЭВМ 1 из второго блока АЦП 48 от антенн первой точки регистрации, размещенных в горизонтальной плоскости, причем А1 - амплитуда сигналов от антенны, ориентированной максимумом диаграммы направленности на вторую точку регистрации.

A3, A4 - амплитуды сигналов средней частоты, поступающих в ПЭВМ 1 из второго блока АЦП 48 от антенн второй точки регистрации, размещенных в горизонтальной плоскости, причем А3 - амплитуда сигналов от антенны, ориентированной максимумом диаграммы направленности на первую точку регистрации.

Одновременно сигналы ортогональных антенн с выходов второго блока фильтров 15 поступают через четвертый блок усилителей 16 на второй пороговый блок 17. При превышении сигналами значений, заданных ПЭВМ 1, на выходах второго порогового блока 17 формируются логические единицы, поступающие на третий блок схем ИЛИ 18, выходной сигнал которого поступает на первый блок схем ИЛИ 7, запускающий своим выходным сигналом первый и второй таймеры 30, 42. Выходные сигналы первого и второго таймеров 30, 42 разрешают прохождение импульсов от тактового генератора 51 через вторую схему И 31 на первый счетчик 32 и подготавливают первую схему И 29, а также через четвертую схему И 43 на второй счетчик 44 и подготавливают третью схему И 41. Таким образом, начинается отсчет времени с момента прихода на пункт наблюдения электромагнитного излучения (ЭМИ) зарегистрированного явления, например, грозового разряда.

Для регистрации света в пределах полусферы используется комплект датчиков света с зависимостью амплитуды сигнала от координат, как, например, в патенте США [4]. В конкретном случае эта зависимость достигается установкой на датчиках света оптических фильтров, обеспечивающих диаграмму чувствительности в горизонтальной плоскости в виде окружности, касательной к плоскости датчика света. Пара таких датчиков света, направленных в противоположные стороны, обеспечивает диаграмму чувствительности в горизонтальной плоскости в виде восьмерки, как у магнитной антенны. Принятые сигналы двух ортогональных пар датчиков света, установленных в точках регистрации в горизонтальной плоскости так, что одна из двух пар датчиков света первой точки регистрации ориентирована максимумом диаграммы чувствительности на максимум диаграммы чувствительности пары датчиков света второй точки регистрации, используются для определения известным аналогичным способом [3] углов α, β прихода света на точки регистрации т.е. углов между направлением из одной точки регистрации на другую точку регистрации и направлением из каждой точки регистрации на источник света, например, по формулам,

где А1, А2 - амплитуды сигналов, поступающих в ПЭВМ 1 из первого блока АЦП 47 от датчиков света первой точки регистрации, размещенных в горизонтальной плоскости, причем А1 - амплитуда сигналов от датчиков света, ориентированных максимумом диаграммы чувствительности на вторую точку регистрации.

А3, А4 - амплитуды сигналов, поступающих в ПЭВМ 1 из первого блока АЦП 47 от датчиков света второй точки регистрации, размещенных в горизонтальной плоскости, причем А3 - амплитуда сигналов от датчиков света, ориентированных максимумом диаграммы чувствительности на первую точку регистрации.

Принятые сигналы ортогональных пар датчиков света с выходов первого блока фильтров 10 поступают через второй блок усилителей 11 на первый пороговый блок 12. При превышении сигналами значений, заданных ПЭВМ 1, на выходах первого порогового блока 12 формируются логические единицы, поступающие на второй блок схем ИЛИ 13, выходной сигнал которого поступает на первый блок схем ИЛИ 7, запускающий своим выходным сигналом первый и второй таймеры 30, 42. Выходные сигналы первого и второго таймеров 30, 42 разрешают прохождение импульсов от тактового генератора 51 через вторую схему И 31 на первый счетчик 32 и подготавливают первую схему И 29, а также через четвертую схему И 43 на второй счетчик 44 и подготавливают третью схему И 41. Таким образом, начинается отсчет времени с момента прихода на пункт наблюдения светового излучения зарегистрированного явления, например, грозового разряда, с остановом первого счетчика 32 и второго счетчика 44 при появлении, соответственно, сейсмического сигнала и инфразвука.

Сопутствующая этому явлению сейсмическая волна приходит позднее ЭМИ (света) на первую и вторую точки регистрации сейсмических волн, находящиеся на пункте наблюдения, принимается сейсмометрами 25 первого и второго каналов, выходные сигналы которых поступают в ПЭВМ 1 через первый усилитель 3, первый фильтр 4 и первый АЦП 45. Кроме того, выходные сигналы сейсмометров 25 поступают через второй усилитель 26 и второй фильтр 27 на первый пороговый элемент 28. При превышении сигналом значения, заданного ПЭВМ 1, на выходе первого порогового элемента 28 формируется логическая единица, поступающая на первую схему И 29, выходной сигнал которой, при наличии разрешающего сигнала на втором входе от третьего таймера 49, останавливает первый счетчик 32 и фиксирует интервалы времени между приходами ЭМИ (света) и сейсмических волн на первую и вторую точки регистрации. Полученные значения интервалов времени с выходов первых счетчиков 32 поступают в ПЭВМ 1, где по известному значению для данного региона скорости сейсмических волн определяются расстояния А, В от точек регистрации до источника сигналов, а с учетом полученных направлений α, β на источник сигналов из точек регистрации определяется приближенное местоположение источника сигналов. Однако реальная скорость сейсмических волн на трассе зависит от местности и может отличаться от известной региональной скорости сейсмических волн. Для уточнения местоположения источника сигналов определяется уточненная скорость сейсмических волн на трассах от источника сигналов до точек регистрации по известному расстоянию С между точками регистрации, углам α, β прихода сигнала на точки регистрации и интервалам времени Δt1, Δt2 между приходом ЭМИ (света) и сейсмических волн на точки регистрации. Из полученного треугольника следует:

А⋅cosα+В⋅cosβ=C;

А=V⋅Δt1; В=V⋅Δt2;

V=С/(Δt1⋅cosα+Δt2⋅cosβ),

где А - расстояние от первой точки регистрации до источника сигналов,

В - расстояние от второй точки регистрации до источника сигналов,

С - расстояние между первой и второй точками регистрации,

α, β - углы прихода сигнала на первую и вторую точки регистрации,

Δt1 - интервал времени между приходом ЭМИ (света) и сейсмических волн на первую точку регистрации,

Δt2 - интервал времени между приходом ЭМИ (света) и сейсмических волн на вторую точку регистрации,

V - уточненная скорость сейсмических волн на трассах от источника сигналов до точек регистрации.

По уточненной скорости сейсмических волн и интервалам времени между приходом ЭМИ и сейсмических волн на точки регистрации определяются уточненные значения А, В и уточненное местоположение источника сигналов.

Аналогично, сопутствующая этому явлению инфразвуковая волна приходит позднее ЭМИ на первую и вторую точки регистрации инфразвука, находящиеся на пункте наблюдения, принимается микробарометрами 35 первого и второго каналов, выходные сигналы которых поступают в ПЭВМ 1 через третий усилитель 36, третий фильтр 37 и второй АЦП 46. Кроме того, выходные сигналы микробарометров 35 поступают через четвертый усилитель 38 и четвертый фильтр 39 на второй пороговый элемент 40. При превышении сигналом значения, заданного ПЭВМ 1, на выходе второго порогового элемента 40 формируется логическая единица, поступающая на третью схему И 41, выходной сигнал которой, при наличии разрешающего сигнала на втором входе от четвертого таймера 50, останавливает второй счетчик 44 и фиксирует интервалы времени между приходами ЭМИ (света) и инфразвука на первую и вторую точки регистрации. Полученные значения интервалов времени с выходов вторых счетчиков 44 поступают в ПЭВМ 1, где по заранее измеренному при калибровке микробарометров значению скорости инфразвука определяются расстояния А, В от точек регистрации до источника сигналов, а с учетом полученных направлений α, β на источник сигналов из точек регистрации определяется приближенное местоположение источника сигналов. Однако реальная скорость инфразвука на трассе зависит от местности и может отличаться от скорости инфразвука, полученной при калибровке микробарометров. Для уточнения местоположения источника сигналов определяется уточненная скорость инфразвука на трассах от источника сигналов до точек регистрации по известному расстоянию С между точками регистрации, углам α, β прихода сигнала на точки регистрации и интервалам времени Δt3⋅Δt4 между приходом ЭМИ (света) и инфразвука на точки регистрации. Из полученного треугольника следует:

А⋅cosα+В⋅cosβ=С;

А=V1⋅Δt3; В=V1⋅Δt4;

V1=С/(Δt3⋅cosα+Δt4⋅cosβ),

где А - расстояние от первой точки регистрации до источника сигналов,

В - расстояние от второй точки регистрации до источника сигналов,

С - расстояние между первой и второй точками регистрации,

α, β - углы прихода сигнала на первую и вторую точки регистрации,

Δt3 - интервал времени между приходом ЭМИ (света) и инфразвука на первую точку регистрации,

Δt4 - интервал времени между приходом ЭМИ (света) и инфразвука на вторую точку регистрации.

V1 - уточненная скорость инфразвука на трассах от источника сигналов до точек регистрации.

По уточненной скорости инфразвука и интервалам времени между приходом ЭМИ (света) и инфразвука на точки регистрации определяются уточненные значения А, В и уточненное местоположение источника сигналов.

При отсутствии сейсмического или инфразвукового сигнала первый счетчик 32 останавливается и обнуляется после окончания сигнала первого таймера 31, а второй счетчик 44 останавливается и обнуляется после окончания сигнала второго таймера 42.

Комбинация принятых сигналов, поступающих в ПЭВМ 1 с выходов АЦП, пороговых блоков и пороговых элементов, служит для идентификации события, например:

- ЭМИ или (и) вспышка и инфразвук сопровождают молниевый разряд;

- вспышка, инфразвук и сейсмический сигнал сопровождают открытый промышленный взрыв;

- вспышка и инфразвук сопровождают открытый взрыв газа, и т.д.

Для предотвращения ложных остановов первого и второго счетчиков 32, 44 от более поздних ближних сигналов, которые могут появиться за время распространения сейсмических волн или инфразвука, в ПЭВМ 1 вычисляются приближенное значение дальности и ожидаемые моменты прихода сейсмических волн и инфразвука с запасом на ошибки с цепки дальности и скорости распространения инфразвука и сейсмических волн, а по показаниям первого и второго счетчиков 32, 44 в нужный момент ПЭВМ 1 открывает временное окно с помощью третьего таймера 49 для прохождения сигнала останова первого счетчика 32 и открывает временное окно с помощью четвертого таймера 50 для прохождения сигнала останова второго счетчика 44.

Вычисление приближенного значения дальности производится до прихода сейсмических волн и инфразвука. Для этого по полученным углам прихода ЭМИ (света) и известному расстоянию между точками регистрации решается геометрическая задача нахождения сторон треугольника по двум углам и прилегающей стороне, т.е. определяются расстояния А, В от точек регистрации до источника сигналов, а с учетом полученных направлений на источник сигналов и расстояний от точек регистрации определяется приближенное местоположение источника сигналов, которое далее используется для расчета разрешенных временных интервалов регистрации прихода сейсмических волн и инфразвука с целью защиты от помех, приходящих за время прохождения сейсмических волн и инфразвука от источника сигналов до пункта наблюдения. Для малых углов, близких к 0 или 180 градусам, когда ошибка триангуляции велика, ПЭВМ открывает временное окно сразу же после прихода ЭМИ (света), учитывал малую вероятность трех событий, - размещение источника помех на тех же малых углах, что и источник сигналов, размещение источника помехи ближе, чем источник сигналов, и возникновение помехи раньше, чем сейсмическая волна или инфразвук от источника сигналов войдет в зону близости источника помехи, однако, при необходимости, вычисление приближенного значения дальности может быть проведено для малых углов прихода по результатам анализа спектра сигнала ЭМИ по формуле, учитывающей изменение спектра сигнала ЭМИ в зависимости от пройденного расстояния [5]:

где R - расстояние до источника сигнала, С - скорость света,

ω1, ω2 - соответственно верхняя и нижняя частоты сигнала ЭМИ,

H1, Н2 - соответственно амплитуды сигналов нижней и верхней частоты сигнала ЭМИ.

При появлении помехи, не забивающей весь рабочий диапазон частот, в ПЭВМ 1 по результатам предварительного частотного анализа формируются управляющие сигналы для диапазонов сигналов ЭМИ, света, сейсмического и инфразвука отдельно, которые подаются на управляющие входы первого блока фильтров 10 диапазона сигналов света, на управляющие входы второго блока фильтров 15 диапазона сигналов ЭМИ, на управляющие входы первого и второго фильтров 4, 27 диапазона сейсмических сигналов, а также на управляющие входы третьего и четвертого фильтров 37, 39 диапазона сигналов инфразвука и с помощью цифровых потенциометров вырезают из полосы пропускания участки частот помехи.

Для защиты от ложных сигналов (например, солнечных бликов, длительных сигналов ЭМИ и др.) ПЭВМ 1 периодически опрашивает все приемники ЭМИ, света, инфразвука и сейсмических колебаний (с выходов соответствующих АЦП) и устанавливает для каждого приемника пороги срабатывания соответствующих пороговых блоков и элементов.

Требуемые амплитудные и фазовые соотношения сигналов формируются с помощью команд ПЭВМ 1, поступающих на управляющие входы первого, второго, третьего и четвертого блоков усилителей 9, 11, 14, 16, а также на управляющие входы первого, второго, третьего и четвертого усилителей 3, 26, 36, 38, (например, с помощью цифровых потенциометров).

Указанные режимы работы устройства могут быть реализованы одновременно в разных комбинациях, с использованием отдельного управления для каждого усилителя, фильтра и порогового блока.

Для контроля усилительно - преобразовательных трактов предусмотрена подача калибровочных сигналов на антенный блок 2 от первого блока калибраторов 20, управляемого ПЭВМ 1 с помощью первого блока ЦАП 19, подача калибровочных сигналов на блок датчиков 8 света от второго блока калибраторов 22, управляемого ПЭВМ 1 с помощью второго блока ЦАП 21, а также подача калибровочных сигналов на сейсмометр 25 от первого калибратора 24, управляемого ПЭВМ 1 с помощью первого ЦАП 23. Калибровка микробарометра 35 осуществляется с помощью второго калибратора 34. Второй калибратор 34 является управляемым от ПЭВМ 1 источником импульсного и синусоидального инфразвука, в простейшем случае это может быть усилитель мощности с динамическим громкоговорителем. Второй калибратор 34 установлен на расстоянии нескольких метров от микробарометра 35 и акустически связан с последним через окружающую среду. В процессе калибровки определяются амплитудно-частотные характеристики (АЧХ) микробарометра 35 с третьим усилителем 36 и третьим фильтром 37, а также скорость инфразвука на текущий момент. Для этого в памяти ПЭВМ 1 хранятся цифровые образы эталонных синусоидальных сигналов и импульсного сигнала, которые из ПЭВМ 1 передаются во второй калибратор 34 через второй ЦАП 33. Для снятия АЧХ на микробарометр 35 от второго калибратора 34 подаются эталонные синусоидальные акустические сигналы с частотами рабочего диапазона микробарометра, которые преобразуются, усиливаются, фильтруются и через второй АЦП 46 поступают в ПЭВМ 1, где вычисляется АЧХ. Для определения скорости инфразвука на текущий момент ПЭВМ 1 подает эталонный импульсный сигнал на второй калибратор 34 и одновременно запускает четвертый таймер 50, а через второй таймер 42 запускает второй счетчик 44, который начинает отсчет времени прохождения инфразвуком известного расстояния между вторым калибратором 34 и микробарометром 35. Выходной сигнал микробарометра 35 через третий усилитель 36, третий фильтр 37, а также через четвертый усилитель 38 и четвертый фильтр 39 поступает на второй пороговый элемент 40 и третью схему И 41 и останавливает второй счетчик 44. Полученное значение интервала времени с выхода второго счетчика 44 поступает в ПЭВМ 1, где по известному расстоянию между вторым калибратором 34 и микробарометром 35 определяется скорость инфразвука на текущий момент для расчета расстояния до источника сигнала.

Информация, полученная в процессе работы, привязывается к единому времени с помощью блока 5 системы единого времени (GPS или Глонасс), и передается по назначению с помощью блока 6 связи с абонентами.

Таким образом, предлагаемое устройство для определения направления и дальности до источника сигналов в сравнении с прототипом обеспечивает возможность пеленга нескольких типов источников сигналов, уменьшение погрешности при использовании устройства на ближних расстояниях и повышение помехоустойчивости устройства.

Источники информации

1. Электромагнитная акустическая система обнаружения грозовых разрядов. К.В. Вознесенская, А.В. Соловьев, И.С.Гибанов, Д.С. Провоторов, М.В. Чепчугов, А.А. Бочаров. Вестник науки Сибири. Серия Инженерные науки 2012. №5 (6), стр. 70-75, http://sjs.tpu.ru/journal/article/view/510/420, УДК 534.321.8.

2. Способ однопунктовой дальнометрии грозовых разрядов и устройство для его осуществления (патент РФ №2085965 C1, G01S 13/95, 1995 г., опубл. 27.07.1997 г.).

3. Широкополосное двухкомпонентное приемное антенное устройство (патент РФ №2474014 C1, H01Q 7/04, 2011 г., опубл. 27.01.2013).

4. Панорамный фотоэлектрический обнаружитель молний (патент США №3937951, H01J 39/12, 1974 г. опубл. 10.02.1976 г.).

5. Способ и устройство штормового предупреждения (патент США №4672305, G01N 31/02, 1984 г. опубл. 09.07.1987 г.).

Устройство для определения направления и дальности до источника сигналов, содержащее персональную электронно-вычислительную машину (ПЭВМ), а также первый и второй идентичные каналы, каждый из которых включает антенный блок и последовательно соединенные первый усилитель и первый фильтр, отличающееся тем, что дополнительно содержит подключенные к ПЭВМ блок системы единого времени и блок связи с абонентами, а также первый блок схем ИЛИ, а в каждом канале содержит последовательно соединенные блок датчиков света, первый блок усилителей, первый блок фильтров, второй блок усилителей, первый пороговый блок и второй блок схем ИЛИ, последовательно соединенные третий блок усилителей, второй блок фильтров, четвертый блок усилителей, второй пороговый блок и третий блок схем ИЛИ, последовательно соединенные первый блок цифро-аналоговых преобразователей (ЦАП) и первый блок калибраторов, последовательно соединенные второй блок ЦАП и второй блок калибраторов, последовательно соединенные первый ЦАП, первый калибратор и сейсмометр, последовательно соединенные второй усилитель, второй фильтр, первый пороговый элемент и первую схему И, последовательно соединенные первый таймер, вторую схему И и первый счетчик, последовательно соединенные второй ЦАП и второй калибратор, последовательно соединенные микробарометр, третий усилитель, третий фильтр, четвертый усилитель, четвертый фильтр, второй пороговый элемент и третью схему И, последовательно соединенные второй таймер, четвертую схему И и второй счетчик, а также первый и второй аналого-цифровые преобразователи (АЦП), подключенные входами соответственно к первому и третьему фильтрам, а выходами подключенные к ПЭВМ, первый и второй блоки АЦП, подключенные входами соответственно к первому и ко второму блокам фильтров, а выходами подключенные к ПЭВМ, третий и четвертый таймеры, подключенные выходами соответственно ко вторым входам первой и третьей схем И, а входами запуска и управляющими входами подключенные к ПЭВМ, и тактовый генератор, подключенный выходом ко вторым входам второй и четвертой схем И, причем выходы антенного блока подключены к третьему блоку усилителей, выходы первого и второго блоков калибраторов подключены соответственно к антенному блоку и к блоку датчиков света, входы первого и второго усилителей подключены соответственно к сейсмометру и к первому фильтру, входы останова первого и второго счетчиков подключены соответственно к первой и к третьей схемам И, выходы первого и второго таймеров подключены соответственно к третьим входам первой и третьей схем И, вход микробарометра акустически связан со вторым калибратором, выходы первого и второго счетчиков, первого и второго таймеров, первого и второго пороговых блоков, первого и второго пороговых элементов, входы первого и второго блоков ЦАП, входы первого и второго ЦАП, а также управляющие входы первого и второго таймеров, всех усилителей, фильтров, пороговых элементов, пороговых блоков, блоков усилителей и блоков фильтров подключены к ПЭВМ, выходы второго и третьего блоков схем ИЛИ подключены к первому блоку схем ИЛИ, выход первого блока схем ИЛИ подключен к первому и второму таймерам, а антенный блок выполнен в виде трех взаимно перпендикулярных магнитных антенн, блок датчиков света выполнен в виде трех взаимно перпендикулярных оппозитных пар датчиков света, блоки усилителей, блоки фильтров, пороговые блоки, блоки калибраторов, блоки АЦП и блоки ЦАП выполнены трехканальными, второй и третий блоки схем ИЛИ выполнены с тремя входами и одним выходом, первый блок схем ИЛИ выполнен с четырьмя входами и одним выходом, пороговые блоки и пороговые элементы выполнены с управлением по порогу, усилители и блоки усилителей выполнены с управлением по фазе, полосе пропускания и чувствительности, таймеры выполнены с управлением по длительности выходного сигнала, и фильтры, и блоки фильтров выполнены с управлением по полосе пропускания.



 

Похожие патенты:

Способ относится к измерениям, в частности к пеленгу. Техническим результатом является уменьшение погрешности использования его на однопозиционном пункте наблюдения и увеличение помехоустойчивости при наличии мешающих сигналов, приходящих во время прохождения инфразвуком расстояния от источника сигнала до пункта наблюдения.

Изобретение относится к измерительной технике, в частности к определению местоположения стрелка на местности с использованием звуковых волн. .Достигаемый технический результат – повышение точности определения координат стрелка.

Изобретение относится к метрологии, в частности к средствам обнаружения источников звука. Устройство содержит микрофоны для приема звуковых сигналов, аналого-цифровые преобразователи, два средства вычисления автокорреляции между звуками, модуль вычисления взаимной корреляции, средство обнаружения источника звука, в частности, приближающегося транспортного средства, модуль определения неисправности.

Изобретение относится к бортовой системе обнаружения стрелка, содержащей множество датчиков, прикрепленных к корпусу летательного аппарата, например вертолета. Датчики предназначены для приема сигналы только ударной волны.

Настоящее изобретение относится к техническим решениям для правоохранительных органов и служб безопасности и более конкретно к способам оценки дальности до точки выстрела.

Изобретение относится к устройствам навигации и картографии. .

Изобретение относится к радиопеленгации и может быть использовано в системах определения местоположения источников радиоизлучения. .

Изобретение относится к средствам подводной навигации и может быть использовано в составе ультракороткобазисных гидроакустических навигационных систем повышенной точности для обеспечения работы автономных и привязных необитаемых подводных аппаратов или других подводных технических средств.

Изобретение относится к области аэрокосмического приборостроения и касается способа и может быть использовано при коррекции нелинейности характеристики статического фотоэлектрического пеленгатора (СФП) отдаленного источника электромагнитной энергии (ОИЭЭ) в пределах обзорного развернутого угла, участвующего в решении задач навигации, ориентации, стабилизации и контроля положения мобильного аэрокосмического объекта.

Двухспектральная оптическая система содержит главное вогнутое асферическое зеркало с центральным отверстием, вторичное выпуклое асферическое зеркало, спектроделитель, тепловизионный канал с первым, вторым и третьим объективами, а также фотоприемным устройством и устройством переключения потоков излучения, два телевизионных канала с объективом и фотоприемным устройством в каждом из каналов и устройство управления и обработки информации.

Изобретение относится к измерительной технике, в частности к пеленгаторам. Заявлено устройство для определения направления и дальности до источника сигналов, содержащее первую антенну, первый и второй микробарометры, а также пять аналого-цифровых преобразователей (АЦП), подключенных к персональной электронно-вычислительной машине (ПЭВМ).

Изобретение относится к измерительной технике, в частности к пеленгаторам. Предложено устройство для определения пеленга и дальности до источника сигнала, содержащее первую антенну, первый и второй микробарометры, а также пять аналого-цифровых преобразователей (АЦП), подключенных к персональной электронно-вычислительной машине (ПЭВМ), дополнительно содержащее блок системы единого времени и блок связи с абонентами, подключенные к ПЭВМ, последовательно соединенные первый усилитель, первый фильтр, второй усилитель, первый пороговый блок и схему ИЛИ, последовательно соединенные вторую антенну, третий усилитель, второй фильтр, четвертый усилитель и второй пороговый блок, последовательно соединенные третью антенну, пятый усилитель, третий фильтр, шестой усилитель и третий пороговый блок, последовательно соединенные седьмой усилитель, четвертый фильтр, восьмой усилитель, пятый фильтр, четвертый пороговый блок и первую схему И, последовательно соединенные первый цифроаналоговый преобразователь (ЦАП) и первый калибратор, последовательно соединенные второй ЦАП и второй калибратор, последовательно соединенные третий ЦАП и третий калибратор, последовательно соединенные четвертый ЦАП и четвертый калибратор, последовательно соединенные пятый ЦАП и первый формирователь, последовательно соединенные шестой ЦАП и второй формирователь, последовательно соединенные первый таймер, вторую схему И и первый счетчик, последовательно соединенные девятый усилитель, шестой фильтр, десятый усилитель, седьмой фильтр, пятый пороговый блок и третью схему И, последовательно соединенные седьмой ЦАП и пятый калибратор, последовательно соединенные восьмой ЦАП и третий формирователь, последовательно соединенные второй таймер, четвертую схему И и второй счетчик, а также первый тактовый генератор, подключенный ко вторым входам второй и четвертой схем И, третий и четвертый таймеры, последовательно соединенные аналоговые первый квадратор, сумматор, первый делитель, шестой пороговый блок и пятую схему И, последовательно соединенные пятый таймер, шестую схему И и третий счетчик, а также шестой АЦП, второй тактовый генератор, подключенный ко второму входу шестой схемы И, и аналоговые второй и третий квадраторы, подключенные входами, соответственно, ко второму и третьему фильтрам, а выходами подключенные, соответственно, ко второму входу сумматора и ко второму входу первого делителя, последовательно соединенные второй делитель, корректор нелинейности, первый блок вычисления модуля, блок вычитания, второй блок вычисления модуля, седьмой пороговый блок и инверсный вход седьмой схемы И, последовательно соединенные ключ, запоминающее устройство и третий блок вычисления модуля, подключенный ко второму входу блока вычитания, последовательно соединенные восьмую схему И и одновибратор, подключенный к управляющему входу ключа, а также седьмой АЦП и блок сравнения знаков, подключенный входами к корректору нелинейности и к запоминающему устройству, а выходом подключенный ко второму входу седьмой схемы И.

Изобретение относится к измерительной технике, в частности к пеленгаторам. Предложено устройство для определения пеленга и дальности до источника сигнала, содержащее первую антенну, первый и второй микробарометры, а также пять аналого-цифровых преобразователей (АЦП), подключенных к персональной электронно-вычислительной машине (ПЭВМ), дополнительно содержит блок системы единого времени и блок связи с абонентами, подключенные к ПЭВМ, последовательно соединенные первый усилитель, первый фильтр, второй усилитель, первый пороговый блок и схему ИЛИ, последовательно соединенные вторую антенну, третий усилитель, второй фильтр, четвертый усилитель и второй пороговый блок, последовательно соединенные третью антенну, пятый усилитель, третий фильтр, шестой усилитель и третий пороговый блок, последовательно соединенные седьмой усилитель, четвертый фильтр, восьмой усилитель, пятый фильтр, четвертый пороговый блок и первую схему И, последовательно соединенные первый цифро-аналоговый преобразователь (ЦАП) и первый калибратор, последовательно соединенные второй ЦАП и второй калибратор, последовательно соединенные третий ЦАП и третий калибратор, последовательно соединенные четвертый ЦАП и четвертый калибратор, последовательно соединенные пятый ЦАП и первый формирователь, последовательно соединенные шестой ЦАП и второй формирователь, последовательно соединенные первый таймер, вторую схему И и первый счетчик, последовательно соединенные девятый усилитель, шестой фильтр, десятый усилитель, седьмой фильтр, пятый пороговый блок и третью схему И, последовательно соединенные седьмой ЦАП и пятый калибратор, последовательно соединенные восьмой ЦАП и третий формирователь, последовательно соединенные второй таймер, четвертую схему И и второй счетчик, а также первый тактовый генератор, подключенный ко вторым входам второй и четвертой схем И, третий и четвертый таймеры, последовательно соединенные аналоговые первый квадратор, сумматор и первый делитель, последовательно соединенные шестой пороговый блок и пятую схему И, последовательно соединенные пятый таймер, шестую схему И и третий счетчик, а также шестой АЦП, второй тактовый генератор, подключенный ко второму входу шестой схемы И, и аналоговые второй и третий квадраторы, подключенные входами соответственно ко второму и третьему фильтрам, а выходами подключенные соответственно ко второму входу сумматора и ко второму входу первого делителя, последовательно соединенные второй делитель, корректор нелинейности, первый блок вычисления модуля, первый блок вычитания, второй блок вычисления модуля, седьмой пороговый блок и инверсный вход седьмой схемы И, последовательно соединенные первый ключ, первое запоминающее устройство и третий блок вычисления модуля, подключенный ко второму входу первого блока вычитания, последовательно соединенные восьмую схему И и первый одновибратор, подключенный к управляющему входу первого ключа, а также седьмой АЦП и блок сравнения знаков, подключенный входами к корректору нелинейности и к первому запоминающему устройству, а выходом подключенный ко второму входу седьмой схемы И, последовательно соединенные второй ключ, второе запоминающее устройство, второй блок вычитания и четвертый блок вычисления модуля, а также второй одновибратор, подключенный входом к восьмой схеме И, а выходом подключенный к управляющему входу второго ключа, причем первая, вторая и третья антенны выполнены магнитными и размещены взаимно перпендикулярно друг к другу, первый, второй и третий формирователи выполнены в виде сглаживающего звена с усилителем мощности, корректор нелинейности выполнен в виде усилителя с автоматической регулировкой усиления, первый, второй, третий, четвертый, пятый, шестой и седьмой пороговые блоки выполнены с управлением по порогу, первый, второй, третий, четвертый, пятый, шестой и седьмой фильтры выполнены с управлением по полосе пропускания, первый, второй, третий, четвертый, пятый, шестой, седьмой, восьмой, девятый и десятый усилители выполнены с управлением по фазе и чувствительности, первый, второй, третий, четвертый и пятый таймеры выполнены с управлением по длительности выходного сигнала, первый, второй, третий и четвертый блоки вычисления модуля выполнены в виде инверсных усилителей с диодами для преобразования сигналов любой полярности в сигналы положительной полярности, первая схема И подключена вторым входом к первому таймеру, третьим входом подключена к третьему таймеру, а выходом подключена ко входу останова первого счетчика, третья схема И подключена вторым входом ко второму таймеру, третьим входом подключена к четвертому таймеру, а выходом подключена ко входу останова второго счетчика, пятая схема И подключена вторым входом к пятому таймеру, а выходом подключена ко входу останова третьего счетчика, шестой АЦП подключен входом к выходу первого делителя, а выходом подключен к ПЭВМ, седьмой АЦП подключен входом к выходу корректора нелинейности, а выходом подключен к ПЭВМ, схема ИЛИ подключена вторым и третьим входами соответственно ко второму и третьему пороговым блокам, а выходом подключена к ПЭВМ и к первому, второму и пятому таймерам, первый квадратор подключен к выходу первого фильтра, первая антенна подключена к первому усилителю, первый микробарометр подключен выходом к седьмому усилителю, а входом акустически связан с четвертым калибратором, второй микробарометр подключен выходом к девятому усилителю, а входом акустически связан с пятым калибратором, первый формирователь подключен к управляющим входам первого, второго и третьего фильтров, второй формирователь подключен к управляющим входам четвертого и пятого фильтров, третий формирователь подключен к управляющим входам шестого и седьмого фильтров, входы первого, второго, третьего, четвертого и пятого АЦП подключены соответственно к первому, второму, третьему, четвертому и шестому фильтрам, выходы первого, второго и третьего калибраторов подключены соответственно к первой, второй и третьей антеннам, восьмая схема И подключена первым входом к схеме ИЛИ, а инверсным входом подключена к пятому таймеру, второй делитель подключен входами к первому и второму фильтрам, вход первого ключа подключен к корректору нелинейности, выход седьмой схемы И подключен к третьему входу пятой схемы И, вход второго ключа и второй вход второго блока вычитания подключены к первому делителю, выход четвертого блока вычисления модуля подключен к шестому пороговому блоку, а входы всех ЦАП, управляющие входы всех усилителей, управляющие входы всех пороговых блоков, выходы первого, второго и третьего счетчиков, выходы и управляющие входы первого, второго и пятого таймеров, а также входы запуска и управляющие входы третьего и четвертого таймеров подключены к ПЭВМ.

Изобретение относится к области измерительной техники и касается оптико-электронной системы для определения спектроэнергетических параметров и координат источника лазерного излучения.

Изобретение относится к области оптико-электронного приборостроения и касается многоспектрального оптико-электронного устройства разведки целей. Устройство включает в себя входную оптическую систему, солнечно-слепой ультрафиолетовый пеленгатор, три фотоприемных устройства и электронный блок управления, соединенный с фотоприемными устройствами.

Изобретение относится к области приборостроения и касается дальнейшего совершенствования амплитудных датчиков фасеточного типа, участвующих в решении задач навигации, ориентации, стабилизации и положения мобильных объектов по Солнцу или источнику иной интенсивности.

Изобретение относится к области оптико-электронного приборостроения и может быть использовано для обнаружения и видеорегистрации воздушных и наземных объектов, а также в области активной и пассивной локации.

Изобретение относится к оптико-электронным приборам и может использоваться для поиска, обнаружения и определения координат теплоизлучающих объектов в полусферической зоне обзора.

Изобретение относится к оптикоэлектронике, пассивной оптической локации и наземным системам обнаружения воздушных объектов и может быть использовано для обнаружения и распознавания малоразмерных воздушных объектов различного типа: беспилотных летательных аппаратов, птиц, воздушных шаров и других объектов, представляющих опасность для воздушного движения. Достигаемый технический результат - повышение эффективности обнаружения и вероятности распознавания воздушных малоразмерных объектов при осуществлении непрерывного кругового обзора контролируемой области пространства, в том числе в сложных метеоусловиях. Указанный результат достигается за счет того, что система содержит блоки электронного и механического сканирования пространства, работающие в двух диапазонах длин волн, выполненные на основе матричных многоэлементных фотоприемных устройств видимого и инфракрасного диапазонов длин волн, а также высокопроизводительные процессоры, обеспечивающие выполнение алгоритмов обработки изображений наблюдаемых областей пространства и быстрого преобразования Фурье в реальном масштабе времени. 7 з.п. ф-лы, 3 ил.

Изобретение относится к оптикоэлектронике, пассивной оптической локации и наземным системам обнаружения воздушных объектов и может быть использовано для обнаружения и распознавания малоразмерных воздушных объектов различного типа: беспилотных летательных аппаратов, птиц, воздушных шаров и других объектов, представляющих опасность для воздушного движения. Достигаемый технический результат - повышение эффективности обнаружения и вероятности распознавания воздушных малоразмерных объектов при осуществлении непрерывного кругового обзора контролируемой области пространства, в том числе в сложных метеоусловиях. Указанный результат достигается за счет того, что система содержит блоки электронного и механического сканирования пространства, работающие в двух диапазонах длин волн, выполненные на основе матричных многоэлементных фотоприемных устройств видимого и инфракрасного диапазонов длин волн, а также высокопроизводительные процессоры, обеспечивающие выполнение алгоритмов обработки изображений наблюдаемых областей пространства и быстрого преобразования Фурье в реальном масштабе времени. 7 з.п. ф-лы, 3 ил.
Наверх