Способ изготовления матричного фчэ на основе gaas

Изобретение относится к технологии изготовления полупроводникового фотоприемника (ФП) и может быть использовано при создании матричных ФП различного назначения. Способ изготовления матричного ФЧЭ на основе GaAs, в котором согласно изобретению базовую область МФЧЭ после гибридизации с БИС мультиплексором утоньшают от 500 мкм до 20-40 мкм с помощью ХМП, включающего обработку пластины МФЧЭ вращающимся полировальником, утоньшение проводят сначала ХМП от толщины 500 мкм до 40-50 мкм полирующим составом, содержащим (10,0÷45,0) г/л водного раствора гипохлорита натрия и (0,5÷3,0) г/л водного раствора гидроокиси натрия, а затем проводят с помощью ХМП утоньшение базовой области до толщины 20-40 мкм в полирующем составе, содержащем в качестве комплексообразователя винную кислоту при концентрации 7,0÷70,0% об., окислителя - пероксид водорода при концентрации 7,0÷70,0% об., смазки - этиленгликоль при концентрации 5,0÷15,0% об., остальное - деионизованная вода. Изобретение обеспечивает плоскостность МФЧЭ не хуже 1 мкм с сохранением первоначальной геометрии. 2 пр.

 

Изобретение относится к технологии изготовления полупроводникового фотоприемника (ФП) и может быть использовано при создании матричных ФП различного назначения.

Предлагаемый способ изготовления матричного фотоприемника заключается в том, что фоточувствительный элемент на основе GaAs гибридизируют с БИС мультиплексора, образуя заготовку фотоприемника, заливают промежуточное пространство между МФЧЭ (матричный фоточувствительный элемент) и БИС клеем-расплавом и методом ХМП (химико-механическое полирование) утоньшают базовую область МФЧЭ с толщин от нескольких сот мкм до десятков мкм, например от 500 мкм до толщины 20-40 мкм.

Изобретение обеспечивает плоскостность МФЧЭ не хуже 1 мкм с сохранением первоначальной геометрии. Способ может быть также использован для утоньшения пластин GaAs.

Известен способ изготовления МФЧЭ из объемного материала после гибридизации с БИС МП [тезисы докладов XIX Международной научно-технической конференции по фотоэлектронике и приборам ночного видения 23-26 мая 2006 г. «Исследование характеристик МФП с тонкой базовой областью на основе InSb», 2006 г., стр. 118]. Однако в нем не описано, каким образом осуществляется утоньшение базовой области МФЧЭ.

Известен способ [RU 2460174] изготовления МФЧЭ. В качестве примера приводится утоньшение базовой области ФЧЭ на основе InSb. Однако этот способ не годится для утоньшения гибридизированного МФЧЭ на основе GaAs с БИС мультиплексора от толщины 500 мкм до 10-20 мкм, так как не позволяет сохранить первоначальную геометрию.

Наиболее близким к предлагаемому техническому решению является способ обработки пластин GaAs, использующий безабразивный метод химико-механической полировки [RU 2545295], который принимаем за прототип.

Способ включает одноэтапную обработку пластин GaAs на вращающемся полировальнике с закрепленной на нем х/б тканью с помощью полирующего состава, не содержащего абразива.

Полирующий состав включает в себя в качестве комплексообразователя винную кислоту при концентрации 7,0÷70,0% об., окислителя - пероксид водорода при концентрации 7,0÷70,0% об., смазки - этиленгликоль при концентрации 5,0±15,0% об., остальное - деионизованная вода.

Полировкой достигалась зеркальная поверхность 14 класса чистоты по ГОСТ 11141-84, плоскостность не хуже 2-3 мкм.

Однако известный способ не позволяет сохранять габариты (длина и ширина) пластин, что является одним из основных требований при выполнении задачи утоньшения базовой области МФЧЭ после его гибридизации с БИС мультиплексора.

Предложенное изобретение решает задачу сохранения габаритов пластин при утоньшении базовой области МФЧЭ после его гибридизации с БИС мультиплексора.

Технический результат достигается тем, что после выполнения технологической операции закрепления МФЧЭ (для проведения утоньшения) утоньшение проводят сначала ХМП от толщины 500 мкм до 40-50 мкм полирующим составом, содержащим (10,0÷45,0) г/л водного раствора гипохлорита натрия и (0,5÷3,0) г/л водного раствора гидроокиси натрия, а затем проводят [RU 2545295] с помощью ХМП утоньшение базовой области до толщины 20-40 мкм в полирующем составе, содержащем в качестве комплексообразователя винную кислоту при концентрации 7,0÷70,0% об., окислителя - пероксид водорода при концентрации 7,0÷70,0% об., смазки - этиленгликоль при концентрации 5,0÷15,0% об., остальное - деионизованная вода.

Процесс проводят с помощью вращающегося полировальника со скоростью вращения n=20 мин-1 с закрепленной на нем х/б тканью. Раствор подается в зону полировки дозиметром со скоростью 0,8÷1,5 мл в минуту при давлении на МФЧЭ Р=5 кПа. Процессы ХМП заканчиваются промывкой МФЧЭ деионизованной водой.

При утоньшении базовой области от толщины 500 мкм до 40-50 мкм образующаяся на поверхности в процессе полирования окисная пленка непрерывно удаляется полировальником, в отличие от окисной пленки на боковых (неполируемых) гранях, которая не удаляется и фиксируется в определенном размере. Что обеспечивает сохранение габарита утоньшаемой базовой области МФЧЭ.

При утоньшении базовой области от 40-50 мкм до толщины 20-40 мкм боковые грани базовой области МФЧЭ подвергаются подтравливанию, однако из-за незначительного времени обработки на этом этапе габариты базовой области МФЧЭ существенно не изменяются.

Пример 1

После гибридизации проводят ХМП базовой области МФЧЭ на основе GaAs, утоньшение производится от толщины 480 мкм. Полирующим составом является водный раствор объемом один литр, который содержи; 30,0 г гипохлорита натрия и 2,0 г гидроокиси натрия. Скорость съема материала составляет 1 мкм/мин при давлении 5,0 кПа. Процесс проводят до толщины 40÷50 мкм и заканчивают промывкой МФЧЭ деионизованной водой. Последующее утоньшение базовой области МФЧЭ от 30-40 мкм до 20-40 мкм проводят с помощью ХМП в полирующем составе, об. %: пероксид водорода - 30, водный раствор винной кислоты (30%) - 35, этиленгликоль -10, остальное - деионизованная вода.

Пример 2

После гибридизации проводят ХМП базовой области МФЧЭ на основе GaAs. Полирующим составом является водный раствор объемом 1 литр, который содержит 45,0 г гипохлорита натрия и 3,0 г гидроокиси натрия. Скорость съема материала составляет 3 мкм/мин при давлении 5,0 кПа. Последующее утоньшение базовой области МФЧЭ от 40-50 мкм до 20-40 мкм проводят с помощью ХМП в полирующем составе, об. %: пероксид водорода - 60, водный раствор винной кислоты (30%) - 20, этиленгликоль - 10, остальное - деионизованная вода.

Все ФЧЭ имели плоскостность не более 1 мкм, поверхность соответствовала 14 классу чистоты по ГОСТ 1141-81. Габариты ФЧЭ уменьшились не более, чем на 20 мкм с каждой стороны.

Способ изготовления матричного ФЧЭ на основе GaAs, в котором базовую область МФЧЭ после гибридизации с БИС мультиплексором утоньшают от 500 мкм до 20-40 мкм с помощью ХМП, включающего обработку пластины МФЧЭ вращающимся полировальником, утоньшение проводят сначала ХМП от толщины 500 мкм до 40-50 мкм полирующим составом, содержащим (10,0÷45,0) г/л водного раствора гипохлорита натрия и (0,5÷3,0) г/л водного раствора гидроокиси натрия, а затем проводят с помощью ХМП утоньшение базовой области до толщины 20-40 мкм в полирующем составе, содержащем в качестве комплексообразователя винную кислоту при концентрации 7,0÷70,0% об., окислителя - пероксид водорода при концентрации 7,0÷70,0% об., смазки - этиленгликоль при концентрации 5,0÷15,0% об., остальное - деионизованная вода.



 

Похожие патенты:

Изобретение относится к области полупроводниковых приборов, а именно к структуре фотопреобразователей на основе монокристаллического или поликристаллического кремния и к линии по производству фотопреобразователей.

Изобретение относится к способу изготовления многоэлементных или матричных фотоприемников на основе антимонида индия. Многоэлементный фотоприемник на основе антимонида индия включает матрицу фоточувствительных элементов (МФЧЭ) с антиотражающим покрытием на освещаемой стороне фоточувствительных элементов (ФЧЭ), соединенных микроконтактами со схемой считывания.

Согласно изобретению предложен способ изготовления солнечных батарей, содержащий этапы формирования пленки SiNx поверх второй главной поверхности полупроводниковой подложки n-типа; формирования диффузионного слоя p-типа поверх первой главной поверхности полупроводниковой подложки n-типа после стадии формирования пленки SiNx; и формирования поверх диффузионного слоя p-типа пассивирующей пленки, состоящей из пленки SiO2 или пленки оксида алюминия.

Изобретение относится к способам получения тройных нано-гетероструктур из полупроводниковых материалов, характеризующихся различной шириной запрещенной зоны, и может быть использовано при разработке фотокатализаторов на основе нано-гетероструктурных материалов в фотоэлектрохимических и фотокаталитических устройствах для получения чистого водорода и кислорода, синтеза органических молекул.

Изобретение относится к способам коммутации ячеек фотоэлектрических преобразователей на основе кристаллического кремния, в частности к способу контактирования контактных шин к пластинам фотоэлектрических преобразователей с применением адгезивов и ультразвуковой пайки.

Изобретение относится к области оптоэлектронной техники и может быть использовано для создания переизлучающих текстурированных покрытий для использования в тонкопленочных солнечных элементах.

Изобретение относится к технологии сборки гибридных матричных фотоприемных устройств (МФПУ). Одной из основных операций при изготовлении МФПУ является сборка кристаллов в корпус с последующим соединением контактных площадок кристалла БИС с внешними выводами корпуса МФПУ.

Изобретения могут быть использованы для формирователя сигналов изображения в инфракрасной области спектра. Гетероструктурный диод с p-n-переходом содержит подложку на основе HgCdTe, главным образом n-легированную, причем упомянутая подложка содержит первую часть (4), имеющую первую концентрацию кадмия, вторую часть (11), имеющую вторую концентрацию кадмия больше, чем первая концентрация кадмия, причем вторая часть(11) образует гетероструктуру с первой частью (4), р+-легированную зону (9) или р-легированную зону, расположенную в концентрированной части (11) и продолжающуюся в первую часть (4) и образующую p-n-переход (10) с n-легированным участком первой части (4), называемым базовой подложкой (1), при этом концентрированная часть (11) расположена только в р+-легированной зоне (9) и образует карман (12) по существу с постоянной концентрацией кадмия.

Изобретение может быть использовано в современных системах дальнометрии, управления неподвижными и движущимися объектами, зондирования облачности, контроля рельефа местности и т.д.

Изобретение относится к области полупроводникового материаловедения, а именно – к технологии получения тонких фоточувствительных пленок селенида свинца, широко используемых в изделиях оптоэлектроники в ИК-диапазоне 1-5 мкм, лазерной и сенсорной технике.

Изобретение относится к технологии материалов электронной техники, а именно к способам получения эпитаксиальных слоев узкозонных полупроводниковых твердых растворов CdxHg1-xTe для изготовления на их основе фотовольтаических приемников инфракрасного излучения. Способ получения эпитаксиальных слоев CdxHg1-xTe из раствора на основе теллура включает выращивание эпитаксиального слоя CdxHg1-xTe (0,19<х<0,33) методом жидкофазной эпитаксии в запаянной кварцевой ампуле при температуре 500÷513°С на подложку Cd1-yZnyTe (0,02<y<0,06) с кристаллографической ориентацией поверхности (111)В±0,5°, расположенную горизонтально над слоем жидкой фазы высотой от 1 до 2 мм, в условиях принудительного охлаждения системы подложка/раствор на 6÷11°С, в зависимости от требуемой толщины эпитаксиального слоя, и предварительное растворение поверхностного слоя подложки в перегретом не более чем на 2° относительно температуры ликвидуса растворе на основе теллура, из которого проводится выращивание эпитаксиального слоя, при этом охлаждение системы проводят со скоростью снижения температуры 0,2÷0,5 град/мин, начиная с момента контакта подложки с перегретым раствором. Техническим результатом изобретения является воспроизводимое получение эпитаксиальных слоев CdxHg1-xTe диаметром до 50 мм без отклонения формы поверхности от формы поверхности подложки с высотой микрорельефа на поверхности эпитаксиального слоя не более 60 нм и разнотолщинностью эпитаксиального слоя по его площади не более 1 мкм при номинальном значении толщины в интервале от 10 до 20 мкм. 1 табл.
Наверх