Устройство для генерации плазмы высокочастотного разряда



Устройство для генерации плазмы высокочастотного разряда
Устройство для генерации плазмы высокочастотного разряда

 

H05H1/30 - Плазменная техника (термоядерные реакторы G21B; ионно-лучевые трубки H01J 27/00; магнитогидродинамические генераторы H02K 44/08; получение рентгеновского излучения с формированием плазмы H05G 2/00); получение или ускорение электрически заряженных частиц или нейтронов (получение нейтронов от радиоактивных источников G21, например G21B,G21C, G21G); получение или ускорение пучков нейтральных молекул или атомов (атомные часы G04F 5/14; устройства со стимулированным излучением H01S; регулирование частоты путем сравнения с эталонной частотой, определяемой энергетическими уровнями молекул, атомов или субатомных частиц H03L 7/26)

Владельцы патента RU 2633707:

Беспала Евгений Владимирович (RU)
Мышкин Вячеслав Федорович (RU)

Изобретение относится к средствам формирования плазмы высокочастотных разрядов и может быть использовано, например, для травления поверхности, проведении газофазных плазмохимических реакций, спектрального анализа жидких и твердых проб. Устройство для генерации высокочастотного разряда содержит катод и анод, установленные через разрядный промежуток. Анод электрически соединен с фидером высоковольтного высокочастотного генератора. Катод выполнен в виде дополнительного электрода, соединенного электрически с одной из обкладок конденсатора переменной емкости. Другая обкладка этого конденсатора электрически изолирована как от шины заземления, так и общего провода высоковольтного ВЧ-генератора. Техническим результатом является возможность формирования неравновесной плазмы высокочастотных разрядов, электронная температура которой сопоставима с электронной температурой плазмы факельного разряда, а газовая температура сопоставима с газовой температурой плазмы дугового разряда. 3 ил.

 

Изобретение относится к электротехнологии, в частности к устройствам для формирования высокочастотных разрядов, и может быть использовано, например, для травления поверхности, проведении газофазных плазмохимических реакций, спектрального анализа жидких и твердых проб.

Известно устройство для получения плазмы многофакельного разряда в неоднородном электрическом поле [SU 283181 А1, МПК 6 B01J 6/00, опубл. 6.10.1970], содержащее корпус, источник высокого напряжения, электроды. Для ввода-вывода реагентов корпус снабжен патрубками. Электроды размещены в воздушной среде. Анод выполнен в виде проволоки, располагаемой в изоляционной трубе. Изоляционная труба снабжена рядом отверстий для формирования факельных разрядов.

Недостатком устройства является разрушение изоляционной трубы из-за постоянного теплового воздействия каналом разряда и формирование градиента температуры по периметру отверстия в изоляционной трубе, близкой к пороговому для материала изоляционной трубы.

Известно устройство для возбуждения плазмы высокочастотного факельного разряда [RU 2499373 С1, МПК Н05Н 1/24 (2006.01), опубл. 20.11.2013], содержащее анод, охлаждаемый водой, дополнительный заостренный электрод и внешний электрод. Анод цилиндрической формы установлен внутри диэлектрической трубы и ориентирован по его оси. Диэлектрическая труба заглушена с одной стороны фланцем, по центру которого герметично установлен анод. Анод электрически соединен с высокочастотным генератором. Дополнительный электрод установлен на аноде и ориентирован радиально. Внешний электрод, в виде вогнутой пластины, установлен в области расположения дополнительного электрода снаружи диэлектрической трубы с возможностью перемещения параллельно оси диэлектрической трубы.

Недостатком устройства является возможность разрушения диэлектрической трубы в области между дополнительным и внешним электродами из-за перегрева и пробоя, наличие высокого потенциала на внешнем электроде.

Известно устройство формирования плазмы факельного электрического разряда [SU 1751826 А1, МПК 5 H01J 37/04, опубл. 30.07.1992], выбранное в качестве прототипа, содержащее источник высоковольтного напряжения, систему анодов, каждый из которых установлен в трубу из термостойкого диэлектрика. Труба из термостойкого диэлектрика снабжена с одного торца насадкой из гидрофобного диэлектрика и ориентирована этим торцом к катоду. Каждый анод электрически соединен с источником высоковольтного напряжения через индивидуальный высокоомный резистор. Объект, поверхность которого подлежит обработке, закреплен в держателе объекта, который электрически соединен с катодом источника высоковольтного напряжения.

Недостатком устройства является выделение энергии на индивидуальных высокоомных резисторах, что ограничивает мощность, вкладываемую в разряд, и снижает эффективность использования потребляемой энергии.

Задачей изобретения является расширение арсенала устройств для формирования неравновесной плазмы высокочастотных разрядов, электронная температура которой сопоставима с электронной температурой плазмы факельного разряда, а газовая температура сопоставима с газовой температурой плазмы дугового разряда.

Поставленная задача решена за счет того, что устройство для генерации плазмы высокочастотного разряда содержит источник высоковольтного высокочастотного напряжения, анод и дополнительный электрод, установленные через разрядный промежуток.

Технический результат изобретения заключается в обеспечении возможности генерации плазмы высокочастотного разряда.

Технический результат достигается тем, что анод непосредственно соединен с фидером высоковольтного высокочастотного генератора (ВЧ-генератора). Дополнительный электрод выполнен в виде объемного тела, размеры которого не меньше размеров анода. Дополнительный электрод электрически соединен с первой обкладкой воздушного конденсатора переменной емкости. При этом вторая обкладка этого конденсатора электрически изолирована как от шины заземления, так и от общего провода высоковольтного ВЧ-генератора.

На фиг. 1 приведена принципиальная схема устройства для генерации плазмы высокочастотного разряда.

На фиг. 2 приведена фотография разрядного промежутка при генерации плазмы высокочастотного разряда в виде дуги.

На фиг. 3 приведены графики зависимости анодного тока высоковольтного ВЧ-генератора от электрической емкости воздушного конденсатора. График со сплошной линией соответствует расстоянию между электродами 0,3 см, штрихпунктирной - 0,7 см, пунктирной - 1,0 см.

Устройство для генерации плазмы высокочастотного разряда, показанное на фиг. 1, содержит анод 1 и дополнительный электрод 2, выполненные, например, из графита. Пространственная ориентация анода 1 может быть любой, например вертикальной. При этом анод 1 электрически соединен с фидером (на чертеже не показан) высоковольтного ВЧ-генератора 3. Дополнительный электрод 2 электрически соединен с воздушным конденсатором переменной емкости 4. Дополнительный электрод может быть установлен под любым углом к аноду. Дополнительный электрод и анод закреплены в металлических держателях 5. Расстояние между электродами 1 и 2 определяют из условия формирования между этими электродами стабильного каналу объемной плазмы. Расстояние между электродами определяется величиной высоковольтного напряжения, например, для высоковольтного ВЧ-генератора 27,12 МГц, 4 кВт, может быть выбрано в диапазоне 0,3-1,0 см. При расстояниях между электродами менее 0,3 см формируется узкий разрядный канал, характерный для дугового разряда. При расстояниях между электродами более 1,0 см канал дугового разряда отрывается от катода и формируется разряд в виде факела.

Устройство, показанное на фиг. 1, работает следующим образом.

В устройстве для генерации плазмы высокочастотного разряда напряжение с высоковольтного ВЧ-генератора 3 подают на анод 1. Между анодом 1 и дополнительным электродом 2 инициируют электрический газовый разряд, например, путем кратковременного замыкания указанных электродов с помощью металлического провода на изолирующей штанге. Сохраняют неизменными условия протекания высокочастотного тока между анодом 1 и дополнительным электродом 2. Поддерживают высокочастотный разряд между анодом и дополнительным электродом за счет перезарядки воздушного конденсатора переменной емкости 4. Для формирования плазмы высокочастотного разряда поддерживают условия, обеспечивающие одновременное протекание процессов, характерных для плазмы факельного и дугового разрядов. Для этого нагревают плазмообразующий газ как за счет сообщения энергии молекулам при столкновениях с электронами, ускоренными в электрическом поле ВЧ-волны, излучаемой анодом, так и при столкновениях с электронами, ускоренными в электрическом поле между анодом и дополнительным электродом. Этим увеличивают газовую температуру плазмы ВЧ-разряда до значений, характерных для плазмы дугового разряда при электронной температуре, близкой к электронной температуре плазмы факельного разряда.

На фиг. 2 приведена фотография внешнего вида плазмы высокочастотного разряда.

ПРИМЕР

Для генерации плазмы высокочастотного разряда использовали устройство, содержащее анод 1 и дополнительный электрод 2, выполненные из графита марки МПГ-7. Анод 1 ориентирован вертикально и электрически соединен с фидером (на фиг. 1 не показан) высоковольтного ВЧ-генератора 3 марки ВЧГ2-4/27. Дополнительный электрод 2 установлен под углом 90° к аноду 1 и электрически соединен с воздушным конденсатором переменной емкости 4, пластины которого изготовлены из дюралюминия марки Д16Т. Дополнительный электрод 2 и анод 1 закреплены в металлических держателях 5. Расстояние между электродами 1 и 2, для ВЧ-генератора (27,12 МГц, 4 кВт), выбрано равным 0,9 см.

На фиг. 3 приведены графики зависимости анодного тока высоковольтного ВЧ-генератора 3 от величины электрической емкости воздушного конденсатора переменной емкости 4, полученные для описанных выше условий проведения эксперимента. Емкость воздушного конденсатора изменяли в диапазоне 1-60 пФ. При расстояниях между катодом и анодом 0,3-0,7 см между ними стабильно наблюдается разрядный канал в виде дуги. При длине разрядного промежутка 1,0 см формирование разрядного канала в виде электрической дуги возможно лишь при емкости воздушного конденсатора 26 пФ. При емкости воздушного конденсатора 26 пФ стабильно наблюдается разряд в виде электрической дуги при расстояниях разрядного промежутка 0,3-1,0 см. В остальных случаях электрической разряд имеет вид вертикально ориентированного факела.

Плазму высокочастотного разряда, генерируемую с помощью предлагаемого устройства, поддерживают процессами, характерными для плазмы как факельного, так и дугового разрядов. Факельный разряд имеет существенно больший объем плазмы, чем дуговой. При уменьшении объема высокочастотного разряда увеличивается энерговклад в единицу объема газа в разрядном промежутке обратно пропорционально уменьшению объема. Это приводит к увеличению газовой температуры.

В синусоидальном электрическом поле ВЧ электромагнитного излучения электроны ускоряются или тормозятся при смене направления поля. Поэтому при отсутствии других частиц средняя энергия электронов остается постоянной. При столкновениях с ионами или нейтральными частицами мгновенная скорость электронов переходит в их скорость теплового движения. При достижении тепловой энергии электронов энергии одного из переходов между электронными уровнями атома или иона происходит передача энергии от электрона к тяжелой частице. Далее электрон вновь начинает набирать тепловую энергию за счет ускорения в ВЧ электрическом поле и столкновения с атомами или ионами.

При электрическом пробое межэлектродного пространства изменяющееся по гармоническому закону напряжение на аноде 1 заряжает и разряжает воздушный конденсатор. При этом напряжение на воздушном конденсаторе 4 и дополнительном электроде 2 отстает по фазе от напряжения на аноде 1, а между анодом 1 и дополнительным электродом 2 возникает синусоидальное ВЧ электрическое поле. Это поле вызывает синусоидальный ток электронов между анодом 1 и дополнительным электродом 2, что вызывает разогрев электродов. Разогрев анода 1 и дополнительного электрода 2 вызывает термоэмиссию электронов с указанных электродов, а также испарение материала электродов. Термоэмиссия электронов с анода и дополнительного электродов поддерживает ВЧ электрическую дугу между ними.

При этом в ВЧ-разряде одновременно протекают процессы, характерные как для ВЧ факельного разряда, так и для ВЧ-дуги. Поэтому использовании предложенного устройства для генерации плазмы ВЧ-разряда газовая температура плазмы разряда близка до значений, характерных для плазмы дугового разряда, а электронная температура близка к электронной температуре плазмы факельного разряда.

Устройство для генерации плазмы высокочастотного разряда, содержащее источник высоковольтного высокочастотного напряжения, анод и катод, установленные через разрядный промежуток, отличающееся тем, что анод непосредственно соединен с фидером высоковольтного высокочастотного генератора, катод выполнен в виде дополнительного электрода, соединенного электрически с одной из обкладок воздушного конденсатора переменной емкости, при этом другая обкладка этого конденсатора электрически изолирована как от шины заземления, так и от общего провода высоковольтного высокочастотного генератора.



 

Похожие патенты:

Группа изобретений относится к источникам излучения, в частности к лампам барьерного разряда, и может быть использована в различных областях науки и техники, где необходима подсветка коротковолновым ультрафиолетовым или вакуумным ультрафиолетовым излучением, например в фотохимии, в фотобиологии, фотоионизационных приборах.

Изобретение обеспечивает генерацию плотной объемной импульсной плазмы и может быть использовано для интенсификации процессов взаимодействия частиц в объеме и одновременного ограничения температуры поверхности изделий, нагреваемых ионным потоком из плазмы.

Изобретение относится к области переработки зольных отходов угольных тепловых электростанций с целью их утилизации в качестве, в частности, материалов для производства строительных изделий.

Изобретение относится к плазменной технике и технологии и может быть использовано для получения электрического разряда в большом объеме. Технический результат - увеличение объема горения электрического разряда.

Изобретение относится к области генерирования химически активных частиц физическими методами воздействия и может быть использовано в биомедицинских исследованиях.

Изобретение относится к электроду для плазменных горелок для плазменной резки и применению электрода для указанной плазменной горелки. Электрод для плазменных резаков, выполненный в соответствии с изобретением, содержит держатель электрода и эмиссионную вставку, которые соединены друг с другом запрессовкой и/или подгонкой по форме.

Изобретения относятся к способам и устройствам для осуществления тлеющего разряда и могут найти применение при обработке поверхности и нанесении покрытий на поверхности различных изделий в вакууме, в машиностроении для поверхностной термообработки, напыления и упрочнения, а также для получения излучения, например для накачки лазеров.

Изобретение относится к электротехнике и может быть использовано в малогабаритных приборах ЯМР- и ЭПР-спектроскопии высокого спектрального разрешения. Технический результат состоит в повышении степени однородности магнитного поля в рабочей области системы и увеличении его напряженности.

Изобретение относится к области исследования физических свойств вещества, в частности к исследованию процессов в газоразрядных приборах и плазме. Между электродами при фиксированном расстоянии между ними подается напряжение, возникающий ток плавит и испаряет тонкую проволочку, которая размещается между электродами, расстояние от катода до анода выбирается таким, при котором разряд без проволочки самопроизвольно не возникает, а между электродами создаются условия для лавинного пробоя разрядного промежутка, возникающего при наличии в воздухе паров испаряющейся проволочки.

Изобретение относится к плазменной технике и может быть использовано в газоразрядных устройствах с самонакаливаемым полым катодом. Способ изготовления самонакаливаемого полого катода из нитрида титана для систем генерации плазмы включает формирование трубчатого изделия из смеси порошков, содержащей нитрид титана, 10 вес.% титана, не более 2 вес.% пластификатора поливинилбутираля, импульсным или статическим прессованием, экструзией, шликерным литьем или альтернативным способом, отжиг трубчатого изделия в вакуумной печи в потоке азота при давлении 1 Па при температуре 500°С в течение 1 ч для термического разложения пластификатора и удаления продуктов разложения из объема трубчатого изделия, установку трубчатого изделия в качестве катодного электрода в электроразрядную систему, содержащую анодный электрод, постоянную прокачку азота через трубчатое изделие, приложение между анодом и трубчатым изделием напряжения и зажигание тлеющего разряда между трубчатым изделием и анодом, ток которого постепенно увеличивают по мере прекращения дугообразования, что обеспечивает удаление поверхностных загрязнений и рост температуры трубчатого изделия, переход разряда в термоэмиссионный дуговой режим и нагрев катода до температуры 2000°С.
Наверх