Состав электролита антифрикционного электролитического сплава "цинк-железо" для осаждения в условиях гидромеханического активирования

Изобретение относится к области гальваностехники и может быть использовано для восстановления изношенных поверхностей деталей машин. Электролит содержит, г/л: сульфат цинка 200-240; сульфат железа 15-20; сульфат алюминия 31-40; карбонат натрия 80-120; гидрохлорид тетраэтиламмония 3-4. Технический результат: повышение физико-механических характеристик покрытия: адгезии, оптимальной структуры осадка, стабильности электролита и снижение дендридообразования.

 

Изобретение относится к гальваностегии, в частности к электролитическому осаждению сплава "цинк-железо" с целью восстановления изношенных поверхностей деталей машин, например, подшипников скольжения автомобильных двигателей.

Известны растворы электролитов для осаждения сплавов "цинк-железо", содержащие сернокислое железо, сернокислый цинк, сернокислый алюминий, сернокислый натрий, натровую соль нафталиндисульфо кислоты, борную и аскорбиновую кислоту. Однако покрытия, получаемые из этих составов электролитов, имеют слабую сцепляемость с основным металлом. Электролиты имеют слабую рассеивающую способность, недостаточно производительны и в условиях осаждения сплава гидромеханической активацией подвержены окислению и загрязнению [1, 2].

Наиболее близким техническим решением, выбранным в качестве прототипа, является известный состав электролита [3], используемый для осаждения цинк-железного сплава, содержащий, г/л:

сульфат цинка 250-300
хлорид железа 60-100
фторид натрия 10
борная кислота 25
первичный гидрохлорид алкиламмония (С612) 1-2

Данный электролит использовался для восстановления изношенных деталей из алюминиевых и железоуглеродистых сплавов при температурах 20-30°C, катодной плотности тока 40-60 А/дм2 и расходом электролита 1,5 л/с.

Использование данного способа для восстановления стальных изделий затруднено, так как электролит имеет сложный состав. Затруднена его корректировка по составу в технологическом процессе.

Осадки имеют крупнозернистую структуру, низкую адгезию с основой и при восстановлении деталей из стали имеют высокий удельный температурный коэффициент линейного расширения. Электролит склонен к окислению, так как при электролизе хлорида железа и фторида натрия выделяется хлор и фтор. Используемый для флотации первичный гидрохлорид алкиламмония представляет смесь RNH2NCl, где R=C6H13-C12H25 имеет не всегда воспроизводимый состав.

Помимо этого, электролит склонен к дендридообразованию при повышенных плотностях тока и малопроизводителен в нестационарных условиях осаждения сплава.

Задачей изобретения является повышение физико-механических характеристик покрытия: прочности сцепления, улучшения структуры осадка, химической стойкости раствора и снижение дендридообразования.

Сущность изобретения заключается в следующем. Предложен высокоэффективный состав антифрикционного электролитического сплава "цинк-железо" для осаждения в условиях гидромеханического активирования. Он содержит сульфат алюминия, в качестве соли железа - сульфат железа, в качестве соли натрия - карбонат натрия, а в качестве органической добавки - гидрохлорид тетраэтиламмония при следующих соотношениях компонентов, г/л:

сульфат цинка 200-240
сульфат железа 15-20
сульфат алюминия 31-40
карбонат натрия 80-120
гидрохлорид тетраэтиламмония 3-4

Для приготовления электролита "цинк-железо" все компоненты растворяют в отдельных емкостях в дистиллированной воде, подогретой до 60-70°C. Затем растворы фильтруют и сливают в рабочую ванну. В электролите должно быть столько солей железа, цинка, карбоната натрия, сульфата аммония и гидрохлорида тетраэтиламмония, сколько требуется по расчету на рабочую емкость ванны. После этого доливают воду до метки, соответствующей верхнему уровню электролита. Проверяют величину pH, прорабатывают в течение 8-10 ч при плотности тока 0,8-1,5 А/дм2 со стальными катодами и после того приступают к покрытию.

Гидромеханическое активирование осаждения металла характеризуется принудительной циркуляцией электролита и вращением анода. Проток через раствор электролита и вращение анода изменяют ионную обкладку диффузионного слоя у поверхности катода и, как следствие этого, увеличивается скорость процесса диффузии ионов к поверхности катода, что обеспечивает повышение производительности в 3-4 раза, высокую равномерность покрытия, полученное мелкодисперсной структуры и снижению остаточных напряжений.

Исследования внутренних напряжений показали, что они растут с увеличением плотности тока и уменьшаются с повышением температур электролита и с увеличением концентрации активных солей.

При высокой плотности тока значительно искажается и уплотняется кристаллическая решетка. При высокой температуре уменьшается наводораживание осадков, и, если взять низкую плотность тока и высокую температуру электролита, то можно получить мягкие, ненапряженные осадки.

Прочность сцепления для различных электролитов и условий работы ванн изменялась в пределах от 3000 до 12000 Н/см2. Наибольшее значение прочности сцепления были показаны на стальных образцах, покрытие которых проводилось в ваннах заявленного электролита. Добавление в ванну солей натрия, аммония, гидрохлорида тетраэтиламмония увеличило прочность сцепления осадка с основой. Обеспечило получение уплотненной кристаллической решетки, а также уменьшение наводораживающего осадка.

Режим осаждения сплава "цинк-железо": температура 20-25°C, катодная плотность тока 30-35 А/дм2, рН 2,0-2,5, анод - цинк (растворимый).

Заявленный состав электролита отличается снижением концентрации активных солей, так как с увеличением их концентрации может быть значительно повышена допустимая плотность тока. Это приводит к образованию крупнозернистой структуры осадков "цинк-железо" с пониженными механическими свойствами.

Осаждение осадка "цинк-железо" на изделие производится при более низкой катодной плотности тока 30-35 А/дм2 по сравнению с известной катодной плотностью тока 40-60 А/дм2, так как с увеличением плотности тока увеличивается твердость осадка, его внутреннее напряжение. Покрытия трескаются, на краях деталей образуются наросты и при дальнейшем повышении плотности тока покрытие получается аморфным, порошкообразным с низкой адгезией к деталям.

Применение фтор- и хлоранионов в составе входящих в электролит солей, а также использование карбоната натрия позволяет снизить агрессивность электролита и исключить коррозию стальных изделий.

Упрощение состава электролита достигается также использованием в качестве органической добавки гидрохлорида тетраэтиламмония (C6H12NCl), который хорошо растворим в воде, имеет постоянный состав и не изменяется в ходе электролиза.

Таким образом, предлагаемый состав электролита отличается от известного тем, что он более прост по содержанию, производителен и отвечает технологическому процессу при восстановлении деталей подшипников в нестационарных условиях (проточное, на различных формах тока). Покрытия получаются гладкими, плотными с мелкодисперсной структурой, обладающие повышенной износо- и коррозионной стойкостью.

Осаждение проводится в виде твердых сплавов замещения ионов цинка ионами железа, что обеспечивает физико-механические характеристики осадка, идентичные характеристикам основы подшипников из нержавеющей стали и повышает стабильность электролита.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Авторское свидетельство СССР №755897, С25D 3/56, 1980.

2. Авторское свидетельство СССР №374383, С25D 3/56, 1973/

3. Патент RU №2086712, G01M 17/06, 10.08.1997 - прототип.

Состав электролита для осаждения в условиях гидромеханического активирования антифрикционного электролитического сплава цинк-железо, содержащий сульфат цинка, соль железа, соль натрия и органическую добавку, отличающийся тем, что он содержит сульфат алюминия, в качестве соли железа - сульфат железа, в качестве соли натрия - карбонат натрия, а в качестве органической добавки - гидрохлорид тетраэтиламмония, при следующем соотношении компонентов, г/л:

сульфат цинка 200-240
сульфат железа 15-20
сульфат алюминия 31-40
карбонат натрия 80-120
гидрохлорид тетраэтиламмония 3-4



 

Похожие патенты:

Изобретение относится к области гальванотехники и может быть использовано в машиностроении, приборостроении и автомобилестроении для защиты от коррозии стальных изделий.

Изобретение относится к области гальванотехники, в частности к осаждению сплава пермаллоя Ni81Fe19 для получения магнитомягкого материала элементов интегральных микросистем, концентрирующих или экранирующих магнитное поле.
Изобретение относится к области гальваностегии и может найти применение в радиоэлектронной промышленности, машиностроении и других областях, требующих получения тонких защитных пленок либо нанесения подслоя никель-алюминий.

Изобретение относится к области гальваностегии и может быть использовано в машиностроении, автомобилестроении, морском транспорте и других отраслях промышленности.

Изобретение относится к области гальваностегии, в частности к нанесению гальванических покрытий сплавом олово-цинк с содержанием цинка в сплаве 20-80%, и может быть использовано для нанесения защитных покрытий, в том числе в виде альтернативы кадмиевым покрытиям.

Изобретение относится к области гальванотехники и может быть использовано для нанесения на изделия гальванических покрытий цинковым сплавом. Способ электролитического осаждения цинкового сплава в щелочной ванне включает подачу тока через щелочную ванну для электролитического осаждения цинкового сплава, содержащую катод и анод, причем катодная область, включающая катод, и анодная область, включающая анод, отделены друг от друга сепаратором, содержащим электропроводящий электролитный гель, при этом содержащийся в катодной области католит представляет собой щелочной электролит для электролитического осаждения никель-цинкового сплава, содержащий хелатообразователь на основе амина, а анолит, содержащийся в анодной области, представляет собой водный щелочной раствор.

Изобретение относится к области гальванотехники. Способ включает подачу тока через щелочную ванну для электролитического осаждения цинкового сплава, содержащую катод и анод, причем катодная область, включающая катод, и анодная область, включающая анод, отделены друг от друга анионообменной мембраной, католит, содержащийся в катодной области, представляет собой щелочной электролит для электролитического осаждения цинкового сплава, содержащий хелатообразователь на основе амина, а анолит, содержащийся в анодной области, представляет собой водный щелочной раствор.

Изобретение относится к области получения гальванических покрытий цинк-никелевыми сплавами на сталях и может быть использовано в машиностроении, приборостроении, автомобильной промышленности и других областях.
Изобретение относится к области гальванотехники. Электролит содержит соль меди и соль никеля, вещество, образующее комплексы с металлами, множество обеспечивающих проводимость солей, отличающихся друг от друга, соединение, выбранное из группы, состоящей из дисульфидных соединений, серосодержащих аминокислот и их солей, соединение, выбранное из группы, состоящей из сульфоновых кислот, сульфимидных соединений, соединений сульфаминовых кислот, сульфонамидов и их солей, и продукт реакции простого глицидилового эфира и многоатомного спирта.

Изобретение относится к области гальванотехники и может быть использовано в машиностроении, приборостроении, автомобилестроении и других отраслях промышленности.
Изобретение относится к области электролитического осаждения твердых износостойких покрытий, в частности железо-кобальтовых покрытий, применяемых для восстановления и упрочнения поверхностей деталей. Способ включает осаждение покрытия из электролита, содержащего хлорид железа 350-400 кг/м3, хлорид кобальта 5-50 кг/м3, соляную кислоту 0,5-2,0 кг/м3 и воду, на переменном асимметричном токе с коэффициентом асимметрии тока 1,2-6,0 при температуре электролита 30-50°C, при этом в состав электролита вводят хлорид натрия в количестве 5-20 кг/м3, а осаждение ведут в интервале катодных плотностей тока 60-100 А/дм2. Технический результат: повышение стабильности электролита, предотвращение быстрого его окисления, увеличение электропроводности электролита и скорости осаждения покрытия.

Изобретение относится к изготовлению дырчатых пластин аэрозольных устройств. Изготовление заготовки аэрозолеобразующей дырчатой пластины для ингаляционного распылителя лекарственного средства включает обеспечение матрицы из проводящего материала, нанесение на матрицу защитного покрытия в виде набора столбиков, гальванизацию областей вокруг столбиков, удаление защитного покрытия с получением заготовки из нанесенного гальваническим образом материала с образующими аэрозоль отверстиями в местах, где были столбики защитного покрытия, и удаление заготовки с матрицы. Указанные столбики имеют глубину в диапазоне от 5 до 40 мкм, ширину в плоскости матрицы в диапазоне от 1 до 10 мкм и плотность в диапазоне от 111 до 2500 мм-2. При этом за указанными стадиями нанесения защитного покрытия и гальванизации следует по меньшей мере один последующий цикл нанесения защитного покрытия и гальванизации поверх указанного нанесенного гальваническим образом материала для увеличения толщины заготовки. Общую толщину заготовки в по меньшей мере одном последующем цикле доводят до значения более 50 мкм. По меньшей мере один последующий цикл обеспечивает после удаления защитного покрытия области, по меньшей мере некоторые из которых перекрывают множество образующих аэрозоль отверстий, и нанесенный гальваническим образом материал, который закрывает некоторые из образующих аэрозоль отверстий. Указанный по меньшей мере один последующий цикл выполняют в соответствии с необходимым расходом через дырчатую пластину. В результате обеспечивается увеличение производительности распылителя. 7 н. и 18 з.п. ф-лы, 14 ил., 1 табл.

Изобретение относится к области гальваностехники и может быть использовано для восстановления изношенных поверхностей деталей машин. Электролит содержит, гл: сульфат цинка 200-240; сульфат железа 15-20; сульфат алюминия 31-40; карбонат натрия 80-120; гидрохлорид тетраэтиламмония 3-4. Технический результат: повышение физико-механических характеристик покрытия: адгезии, оптимальной структуры осадка, стабильности электролита и снижение дендридообразования.

Наверх