Способ экспериментального определения коэффициента теплоотдачи поверхности и устройство для его реализации



Способ экспериментального определения коэффициента теплоотдачи поверхности и устройство для его реализации
Способ экспериментального определения коэффициента теплоотдачи поверхности и устройство для его реализации

 


Владельцы патента RU 2634508:

Федеральное бюджетное учреждение науки Казанский научный центр Российской академии наук (КазНЦ РАН) (RU)
Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) (RU)

Изобретение относится к технологии измерения тепловых потоков между твердой поверхностью и текучей средой и может быть использовано в теплофизическом эксперименте при исследовании теплоотдачи. Способ заключается в том, что для экспериментального определения коэффициента теплоотдачи на границе текучая среда - твердая поверхность выполняется предварительный нагрев теплообменной поверхности (1), выполненной из неэлектропроводного материала, при пропускании тока большой величины через электропроводный слой (2) - тонкую металлическую фольгу с высоким температурным коэффициентом сопротивления, наклеенную на эту поверхность. В потоке охлаждающей среды измеряется темп охлаждения теплообменной поверхности (1), для чего через фольгу (2) пропускается ток минимальной величины, достаточной для измерения ее электрического сопротивления, по величине которого определяется температура фольги методом термометра сопротивления. Коэффициент теплоотдачи определяется по темпу охлаждения теплообменной поверхности (1) методом регулярного режима. Предлагаемый способ и устройство для его реализации позволяет снизить погрешность определения коэффициента теплоотдачи за счет использования одних и тех же элементов для нагрева теплообменной поверхности и измерения ее температуры, а также трудоемкость проведения опытов, т.к. нагрев осуществляется без переустановки объекта. 2 н. и 2 з.п. ф-лы, 3 ил.

 

Изобретение относится к технологии измерения тепловых потоков между твердой поверхностью и текучей средой и может быть использовано в теплофизическом эксперименте при исследовании теплоотдачи.

Известен способ определения коэффициента теплоотдачи конвективно охлаждаемой детали (патент № 2220409, МПК G01M 15/00, заявл. 2001.11.21, опубл. 2003.12.27), в котором деталь помещают в расплав кристаллического вещества и при температуре кристаллизации последнего продувают охлаждающей средой и измеряют температуру детали. При продувке непосредственно в расплаве измеряют температуру наружной поверхности стенки детали, фиксируют время проведения измерения от момента начала продувки и для вычисления коэффициента теплоотдачи используют алгебраическое уравнение, которое является решением системы уравнений математической модели процесса затвердевания равновесного расплава на охлаждаемой стенке, а именно граничного условия третьего рода на охлаждаемой (внутренней) поверхности стенки, теплового баланса на границе затвердевания расплава (условие Стефана) и граничного условия четвертого рода на наружной поверхности стенки детали. Недостатком такого способа является то, что точность определения коэффициента теплоотдачи в значительной мере зависит от достоверности входящих в расчетную формулу теплофизических параметров кристаллического вещества, которые изменяются скачкообразно при фазовом переходе (кристаллизации). Измерение температуры стенки детали при этом возможно лишь с помощью контактных измерителей температуры, что приводит к искажению температурного поля, а коэффициенты теплоотдачи определяются только в зонах установки измерителей температуры.

Из известных способов измерения теплового потока и устройств для его реализации наиболее близким по назначению и сущности к заявляемому является способ определения коэффициента теплоотдачи тела, обтекаемого потоком охлаждающей среды (Тепло- и массообмен. Теплотехнический эксперимент. Справочник / Под общей редакцией В.А. Григорьева и В.М. Зорина. - М.: Энергоатомиздат, 1982), основанный на теории регулярного теплового режима. В этом способе тело, выполненное из изолятора, оснащают металлическими тепловыми вставками простой геометрической формы, изготовленными из материалов с высокой теплопроводностью и оснащенные измерителями температуры (термопарами). Тело, изолированное от потока жидкости или газа, перегревают по отношению к температуре потока. Далее тело приводят в контакт с потоком и измеряют темп его охлаждения. Коэффициент теплоотдачи определяют методом регулярного режима, основанным на равенстве изменения энтальпии нагретого тела и теплоты, рассеиваемой в обтекаемую телом среду посредством теплоотдачи. К недостаткам способа относится необходимость изолировать тело от потока жидкости и газа при создании перегрева тела относительно потока. При реализации способа для создания перегрева необходимо отдельное устройство (например, термошкаф). За время установки (монтажа) нагретого тела в поток жидкости или газа возможно появление неравномерности температурного поля тела и вставок, что влияет на неопределенность измерения коэффициента теплоотдачи. Кроме того, установка вставок в исследуемой детали искажает ее температурное поле, что наряду с наличием теплообмена между вставками и телом приводит к увеличению неопределенности при измерении коэффициентов теплоотдачи.

Технический результат, на достижение которого направлено предлагаемое изобретение, заключается в снижении неопределенности измерения коэффициента теплоотдачи, снижении трудоемкости проведения опытов.

Технический результат достигается тем, что в способе экспериментального определения коэффициента теплоотдачи теплообменной поверхности, выполненной из неэлектропроводного материала, включающем предварительный нагрев поверхности, затем в потоке охлаждающей среды фиксирование изменения во времени температуры поверхности и определение коэффициента теплоотдачи на границе поверхность - охлаждающая среда по методу регулярного теплового режима, новым является то, что теплообменную поверхность нагревают, пропуская электрический ток, достаточный для создания разности температуры между теплообменной поверхностью и потоком охлаждающей среды, через электропроводный слой, которым покрывают вышеупомянутую теплообменную поверхность, а фиксируют изменение температуры теплообменной поверхности по времени в потоке охлаждающей среды, пропуская через вышеупомянутый электропроводный слой ток малой величины, достаточный для работы его в режиме термометра сопротивления.

Технический результат достигается тем, что в теплообменной поверхности для реализации способа, выполненной из неэлектропроводного материала, содержащей нагреваемые элементы, по изменению температуры которых в потоке охлаждающей среды определяют коэффициент теплоотдачи, новым является то, что нагреваемые элементы представляют собой, по меньшей мере, один электропроводный участок тонкой фольги из металла с высоким температурным коэффициентом сопротивления, нанесенный на теплообменную поверхность и подключенный к источнику питания с возможностью регулирования величины тока, которая в режиме нагрева имеет значение, достаточное для создания разности температуры между теплообменной поверхностью и потоком охлаждающей среды, а в режиме измерения температуры - значение, при котором электропроводный участок работает в режиме термометра сопротивления.

В каждом электропроводном участке методом травления выполнены зигзагообразные дорожки, подключенные к источнику питания.

На противоположной стороне теплообменной поверхности выполнены симметричные электропроводные участки, при этом вышеупомянутые электропроводные участки с обеих сторон теплообменной поверхности соединены между собой последовательно при помощи сквозных клипс.

На фиг. 1 представлена теплообменная поверхность с электропроводным слоем.

На фиг. 2 - теплообменная поверхность с участками, покрытыми электропроводным слоем.

На фиг. 3 - схема подключения участков электропроводного слоя к источнику питания.

Позиции на фигурах: 1 - теплообменная поверхность (пластина); 2 - участки электропроводного слоя (тонкая металлическая фольга в форме зигзагообразных дорожек); 3 - разъемы на периферийной, не участвующей в обдуве охлаждающей средой части теплообменной поверхности; 4 - выводы на периферийную часть пластины; 5 - сквозные прорези в пластине между соседними участками электропроводного слоя.

Сущность предлагаемого способа заключается в том, что для экспериментального определения коэффициента теплоотдачи на границе текучая среда - твердая поверхность выполняется предварительный нагрев теплообменной поверхности 1 (фиг. 1), выполненной из неэлектропроводного материала, при пропускании тока большой величины через электропроводный слой 2 - тонкую металлическую фольгу (фиг. 1) с высоким температурным коэффициентом сопротивления, наклеенную на эту поверхность. Затем в потоке охлаждающей среды измеряется темп охлаждения теплообменной поверхности 1, для чего через фольгу 2 пропускается ток минимальной величины, достаточной для измерения ее электрического сопротивления, по величине которого и по известному значению температурного коэффициента сопротивления материала фольги определяется температура поверхности. Коэффициент теплоотдачи определяется по темпу охлаждения теплообменной поверхности 1 методом регулярного режима.

В основе метода регулярного режима, используемого для измерения коэффициента теплоотдачи на границе стенка - охлаждающая среда, лежит равенство изменения энтальпии нагретой поверхности и теплоты, рассеиваемой посредством теплоотдачи в обтекаемую пластину среду:

dθ/dτ=-θFα/Wρc,

где θ=t-tf - разность температур пластины и потока; t - температура стенки; tf - температура потока; F - площадь контактной поверхности; W - объем нагретой теплообменной поверхности; ρ и c - плотность материала теплообменной поверхности и ее теплоемкость; τ - время.

Устройство для реализации заявляемого способа экспериментального определения коэффициента теплоотдачи поверхности содержит теплообменную поверхность 1 (фиг. 2), выполненную из неэлектропроводного материала с низким коэффициентом теплопроводности, на поверхность которой нанесен электропроводный слой 2 (тонкая медная фольга). Чтобы обеспечить достаточно большое сопротивление участка медной фольги 2, используемого в качестве термометра сопротивления при измерении темпа охлаждения теплообменной поверхности 1, в фольге 2 методом травления сформированы зигзагообразные дорожки. Допускается разбиение теплообменной поверхности 1 на несколько участков (фиг. 2), что позволяет измерять средние значения коэффициента теплоотдачи на каждом из участков. В этом случае дорожки каждого участка соединены последовательно, и каждый участок имеет заканчивающиеся разъемами 3 выводы 4 на периферийную (не участвующую в обдуве охлаждающей средой) часть теплообменной поверхности 1 (за границы ее рабочего участка). Для снижения перетекания тепла между соседними участками теплообменной поверхности 1 они могут быть разделены сквозными прорезями 5, которые заклеены тонкой пленкой. Аналогичные прорези отделяют участки теплообменной поверхности 1 от ее периферийной части. Нерабочая поверхность теплообменной поверхности 1 тщательно теплоизолируется. Возможен вариант изготовления теплообменной поверхности 1, в которой на ее обеих сторонах симметрично выполнены одинаковые дорожки из медной фольги 2 (одинаковые участки с дорожками из медной фольги). В этом варианте дорожки каждого участка с обеих сторон теплообменной поверхности 1 соединены последовательно при помощи специальных сквозных клипс. Организуется симметричное обтекание теплообменной поверхности 1, при этом коэффициент теплоотдачи определяется по результатам изменения электрического сопротивления дорожек фольги 2 с обеих сторон теплообменной поверхности 1. При таком выполнении теплообменной поверхности 1 неучтенные тепловые утечки существенно ниже. Принципиальная схема подключения дорожек теплообменной поверхности 1 к источнику питания, обеспечивающая ее нагрев и измерение температуры, представлена на фиг. 3. Дорожки каждого участка теплообменной поверхности 1 на фигуре изображены в виде резисторов Rj. Нагрев выполняется при замкнутом положении ключа K. После окончания процесса нагрева ключ K размыкается, а подводимая от источника питания мощность снижается до величины, при которой дорожка каждого участка Ri теплообменной поверхности 1 работает в режиме термометра сопротивления. Контроль за величиной тока на режиме измерения выполняется по измеренному падению напряжения на прецизионном резисторе RK.

Заявляемый способ и устройство для его реализации позволяет снизить неопределенность измерения коэффициента теплоотдачи за счет использования одних и тех же элементов для нагрева теплообменной поверхности и измерения ее температуры, а также исключения препарирования детали контактными датчиками температуры или калориметрическими вставками и снижения неучтенных утечек тепла при реализации симметричного обтекания исследуемой поверхности с двух сторон. Кроме того, заявляемое устройство позволяет снизить трудоемкость проведения опытов, т.к. нагрев осуществляется без переустановки объекта.

1. Способ экспериментального определения коэффициента теплоотдачи теплообменной поверхности, выполненной из неэлектропроводного материала, включающий предварительный нагрев поверхности, затем в потоке охлаждающей среды фиксирование изменения во времени температуры поверхности и определение коэффициента теплоотдачи на границе поверхность - охлаждающая среда по методу регулярного теплового режима, отличающийся тем, что теплообменную поверхность нагревают, пропуская электрический ток, достаточный для создания разности температуры между теплообменной поверхностью и потоком охлаждающей среды, через электропроводный слой, которым покрывают вышеупомянутую теплообменную поверхность, а фиксируют изменение температуры теплообменной поверхности по времени в потоке охлаждающей среды, пропуская через вышеупомянутый электропроводный слой ток малой величины, достаточный для работы его в режиме термометра сопротивления.

2. Теплообменная поверхность для реализации способа, выполненная из неэлектропроводного материала, содержащая нагреваемые элементы, по изменению температуры которых в потоке охлаждающей среды определяют коэффициент теплоотдачи, отличающаяся тем, что нагреваемые элементы представляют собой, по меньшей мере, один электропроводный участок тонкой фольги из металла с высоким температурным коэффициентом сопротивления, нанесенный на теплообменную поверхность и подключенный к источнику питания с возможностью регулирования величины тока, которая в режиме нагрева имеет значение, достаточное для создания разности температуры между теплообменной поверхностью и потоком охлаждающей среды, а в режиме измерения температуры - значение, при котором электропроводный участок работает в режиме термометра сопротивления.

3. Теплообменная поверхность по п. 2, отличающаяся тем, что в каждом электропроводном участке методом травления выполнены зигзагообразные дорожки.

4. Теплообменная поверхность по п. 2 или 3, отличающаяся тем, что на ее противоположной стороне выполнены симметричные электропроводные участки, при этом вышеупомянутые электропроводные участки с обеих сторон теплообменной поверхности соединены между собой последовательно при помощи сквозных клипс.



 

Похожие патенты:

Использование: для газового анализа горючих газов и паров. Сущность изобретения заключается в том, что микрочип планарного термокаталитического сенсора горючих газов и паров состоит из общей, для рабочего и сравнительного чувствительных элементов, пористой подложки из анодного оксида алюминия с расположенным на ней платиновым тонкопленочным конфигурированным покрытием, части которого находятся на противоположных сторонах подложки и выполненны в форме меандра, служат микронагревателями-измерителями и обеспечивают нагрев активных зон микрочипа до рабочих температур и дифференциальное измерение выходного сигнала, при этом размеры микронагревателей-измерителей ограничены до значений, при которых обеспечивается пленочный режим теплоотвода.

Изобретение относится к наноэлектронике и наноэлектромеханике. Для нагрева пленочного образца и измерения его электрического сопротивления помещают образец в корпус кварцевого реактора.

Изобретение может быть использовано при создании автоматических приборов контроля концентрации компонентов газовых смесей. Термокондуктометрический анализатор концентрации выполнен без применения подвижных механических элементов и содержит сенсорную камеру, размещенный в ней нагревательный элемент, датчик тока, источник питания, электронный коммутатор напряжения или тока нагревательного элемента и микропроцессорный контроллер со встроенным или подключенным к нему аналого-цифровым преобразователем, соединенный с устройством отображения информации и/или интерфейсным устройством.

Изобретение относится к области анализа газовых сред. Способ измерения заключается в том, что в термокаталитическом сенсоре, работающем в статическом режиме, ограничивают диффузию анализируемой газовой смеси в реакционную камеру, пропуская ее через калиброванное отверстие малого сечения, и устанавливают диффузионное равновесие между потоками поступающего и окисляющегося горючего газа на ЧЭ при неполном (половина и менее) задействовании производительности рабочего ЧЭ, обеспечивая резерв производительности, который по мере постепенного снижения чувствительности автоматически вступает в действие, поддерживая стабильность измерений и продлевая срок службы сенсора.

Использование: для измерения концентрации компонентов газовой смеси. Сущность изобретения заключается в том, что датчик для измерения концентрации одного из компонентов газовой смеси содержит канал в корпусе с насадком на входе и звуковым соплом на выходе, термоанемометрическим чувствительным элементом в канале, в стенке которого имеется отверстие для измерения давления.

Изобретение относится к термохимическим (термокаталитическим) сигнализаторам метана, предназначенным для контроля довзрывных концентраций метана в воздухе. .

Изобретение относится к измерительной технике и может быть использовано для определения фазового состояния газожидкостного потока в вертикальном сечении трубопровода, преимущественно для криогенных сред.

Изобретение относится к гигрометру с болометрическим термочувствительным элементом, к плите или печи с ним и к способу регулирования плиты или печи. .

Устройство для измерений теплопроводности относится к устройствам для измерений высоких значений теплопроводности стационарным методом, предусматривающим использование продольного теплового потока в образце исследуемого материала.

Использование: для качественного определения по меньшей мере одного физического и/или химического свойства ламинатной панели. Сущность изобретения заключается в том, что с помощью устройства мобильной радиосвязи выполняют следующие шаги: а) расположение устройства мобильной радиосвязи на поверхности ламинатной панели, б) измерение по меньшей мере одной физической и/или химической измеряемой величины посредством интегрированного в устройстве мобильной радиосвязи измерительного инструмента и в) по меньшей мере, качественное определение по меньшей мере одного физического и/или химического свойства из измеренной по меньшей мере одной физической и/или химической измеряемой величины.

Изобретение относится к теплофизическому приборостроению, а именно к приборам для измерения коэффициента теплопроводности волокнистых пищевых продуктов животного происхождения.
Настоящее изобретение относится к теплофизике и предназначено для определения теплопроводности снега в условиях естественного залегания снежного покрова и может быть использовано при изучении термических свойств снега разной структуры и плотности.

Изобретение относится к теплофизическим измерениям в области материаловедения и может быть использовано для определения теплопроводности твердых тел. В заявленном способе исследуемый образец приводят в тепловой контакт по плоскости с нагревателем с одной стороны, а с другой стороны приводят в тепловой контакт по плоскости с теплоприемником.

Изобретение относится к области энергетики и предназначено для определения темпов изменения температуры пород недр при извлечении или аккумулировании тепловой энергии.

Изобретение относится к области определения теплофизических характеристик ограждающих конструкций и может быть использовано в строительстве для оценки теплофизических свойств по результатам испытаний в натурных условиях.

Изобретение относится к области обогащения полезных ископаемых, а именно к способам обогащения различных пород полезных ископаемых по их теплофизическим свойствам, и может быть использовано при сепарации минеральных частиц, в том числе алмазосодержащей породы, на различных этапах.

Изобретение относится к области исследования и анализа технологических сыпучих материалов, в т.ч. пищевых, характеризующихся насыпной плотностью.

Изобретение относится к области технической физики, в частности к тепловым методам исследования материалов. Способ определения удельной теплоемкости сыпучих материалов заключается в том, что герметизируют объем с образцом известной массы, образец приводят в тепловой контакт по плоскости с источниками тепла, подводят тепло к образцу, измеряют температуру источников тепла и их удельную мощность, вычисляют тепловые потоки через образец.
Наверх