Способ определения динамических напряжений в лопатках рабочего колеса турбомашины

Изобретение предназначено для использования в энергомашиностроении и может найти широкое применение при создании систем определения динамических напряжений в лопатках рабочих колес осевых турбомашин в авиации и энергомашиностроении. Устанавливают датчики на корпус турбомашины над лопатками рабочего колеса, регистрируют пульсации давления воздушного потока при помощи по меньшей мере четырех датчиков, определяют наличие резонансных колебаний лопаток рабочего колеса и выделяют резонансные временные отрезки для каждого из датчиков в осциллограмме, определяют моменты прохождения лопаток под датчиками в выделенных резонансных временных отрезках, определяют отклонения от теоретического момента прохождения каждой из лопаток под каждым из датчиков в отсутствие колебательных процессов, по которым определяют характер колебаний, диагностируют форму резонансных колебаний путем сравнения полученных данных с эталонными формами колебаний лопаток рабочего колеса турбомашины, устанавливают методом конечных элементов поля перемещений и напряжений в лопатке, на диагностированной форме колебания лопатки рабочего колеса с учетом условий работы и геометрии лопатки, находят коэффициент пропорциональности между установленными перемещениями и отклонением от теоретического момента прохождения лопаткой в отсутствие колебательных процессов в местах установки датчиков и устанавливают картину распределения динамических напряжений в лопатке в процессе испытаний на выявленной форме колебаний и их максимальное значение. Технический результат изобретения – определение динамических напряжений в любой области пера лопаток рабочего колеса турбомашины без установки датчиков на вращающихся элементах, повышение надежности измерительной системы, сокращение количеств стендовых испытаний турбомашины. 8 ил.

 

Изобретение предназначено для использования в энергомашиностроении и может найти широкое применение при создании систем определения динамических напряжений в лопатках рабочих колес осевых турбомашин в авиации и энергомашиностроении.

В качестве наиболее близкого аналога (прототипа) выбран способ определения максимальных динамических напряжений при резонансных колебаниях лопаток рабочего колеса осевой турбомашины методом тензометрирования, включающий регистрацию и обработку сигнала с датчиков, размещенных на лопатках рабочего колеса в зоне максимальных динамических напряжений, при работе турбомашины (Основы конструирования, производства и эксплуатации авиационных газотурбинных двигателей и энергетических установок в системе CALS технологий: в 3 кн. / Н.Н. Сиротин, А.С. Новиков, А.Г. Пайкин, А.Н. Сиротин. - 2-е изд., перераб. и доп. - М.: Наука, 2011. Кн. 1: Конструкция и прочность ГТД и ЭУ. - 2011. - 1087 с., см. стр. 1013) /1/.

Известный способ позволяет определить максимальные динамические напряжения при резонансных колебаниях лопаток рабочего колеса в процессе работы турбомашины только при условии установки значительного количества тензодатчиков в места их реализации и наличии токосъемника в конструкции турбомашины. При этом токосъемник имеет ограничение по количеству регистрирующих каналов, а тензодатчики теряют работоспособность при переборках.

Техническим результатом, достигаемым при использовании заявленного способа, является возможность определить динамические напряжения в любой области пера лопаток рабочего колеса турбомашины без установки датчиков на вращающиеся элементы последней, упрощение процесса конструкторской доводки, повышение надежности измерительной системы, сокращение количеств стендовых испытаний турбомашины и применяемого в них дорогостоящего требуемого оборудования, снижение стоимости разработки конструкции в целом.

Указанный технический результат достигается тем, что известном способе определения динамических напряжений в лопатках рабочего колеса турбомашины, включающем установку датчиков, регистрацию, преобразование в осциллограмму и обработку сигнала с них, согласно настоящему изобретению устанавливают датчики на корпус турбомашины над лопатками рабочего колеса, регистрируют пульсации давления воздушного потока при помощи по меньшей мере четырех датчиков, установленных с допустимым отклонением на корпусе турбомашины в поясе осевого размера периферийной части лопаток рабочего колеса, минимум два из которых расположены вдоль продольной оси турбомашины, а минимум три - поперек последней, определяют наличие резонансных колебаний лопаток рабочего колеса и выделяют резонансные временные отрезки для каждого из датчиков в осциллограмме, определяют моменты прохождения лопаток под датчиками в выделенных резонансных временных отрезках, определяют отклонения от теоретического момента прохождения каждой из лопаток под каждым из датчиков в отсутствие колебательных процессов, по которым определяют характер колебаний, диагностируют форму резонансных колебаний путем сравнения полученных данных с эталонными формами колебаний лопаток рабочего колеса турбомашины, устанавливают методом конечных элементов поля перемещений и напряжений в лопатке, на диагностированной форме колебания лопатки рабочего колеса с учетом условий работы и геометрии лопатки, находят коэффициент пропорциональности между установленными перемещениями и отклонением от теоретического момента прохождения лопаткой в отсутствие колебательных процессов в местах установки датчиков и устанавливают картину распределения динамических напряжений в лопатке в процессе испытаний на выявленной форме колебаний и их максимальное значение.

Определение динамических напряжений в любой области пера лопаток рабочего колеса турбомашины без установки датчиков на вращающиеся элементы последней позволяет упростить процесс конструкторской доводки, а именно, позволяет выявить слабые места в лопатках рабочих колес, при этом сократить количество стендовых испытаний турбомашины и применяемого при этом дорогостоящего требуемого оборудования, что, как следствие, снижает стоимость разработки конструкции в целом.

Доводка лопаток рабочих колес турбомашины до реализации в них допустимых динамических напряжений при колебаниях в работе требует проведения ряда дорогостоящих испытаний с применением дорогостоящей аппаратуры. При этом проводят испытания по диагностике всех резонансных колебаний лопаток рабочих колес турбомашины и выделяют опасные на основании их характеристик (амплитуды, частоты, формы, динамических напряжений и т.д.) во всех требуемых диапазонах частот вращения рабочих колес. Характеристики колебаний напрямую зависят от конструктивной реализации лопаток рабочих колес и влияющих на их работу деталей и узлов турбомашины, то есть их массы, жесткости, геометрической формы, количества и т.д. Известно, что резонансные колебания лопаток рабочего колеса являются синхронными, гармоническими и кратными частоте вращения рабочего колеса. Из этого следует, что закон колебания описывается синусоидой, а каждая лопатка будет проходить под каждым датчиком в одном и том же положении на этой синусоиде внутри каждого временного отрезка резонансных колебаний, выявленных в процессе испытаний. При этом характеристики резонансных колебаний лопаток рабочего колеса в каждом временном отрезке будут свои. Для чего регистрируют пульсации давления воздушного потока по меньшей мере четырьмя датчиками, установленными с допустимым отклонением на корпусе турбомашины, в поясе осевого размера периферийной части лопаток рабочего колеса (фиг. 1). Из обработки сигнала с каждого датчика выявляют временные отрезки резонансных колебаний лопаток рабочего колеса (фиг. 2), например, по признаку характерного увеличения (всплеска) амплитуды пульсаций давления в осциллограмме. Далее определяют амплитуду этих колебаний каждой лопатки рабочего колеса в момент прохождения последней под каждым датчиком внутри выделенных временных отрезков. Это реализуют путем сравнения времени максимума пульсации давления при прохождении лопатки в эксперименте с теоретическим значением времени прохождения этой же лопатки в условии отсутствия колебательного процесса под конкретным датчиком в привязке к оборотам рабочего колеса, который программно накладывается на сигналы с датчиков (фиг. 3). Разница этих двух значений времени определяет амплитуду и направление отклонения периферийной части лопатки под датчиком. При этом полученных амплитуд минимум с трех датчиков, расположенных поперек продольной оси турбомашины, достаточно, чтобы точно описать гармонический закон колебания каждой лопатки (общеизвестно, что синусоида точно описывается по минимум трем точкам, смещенным друг относительно друга по периоду колебания) в рассматриваемом временном отрезке. Перекладывают закон колебания лопатки на амплитуды под оставшимися датчиками, расположенными вдоль оси турбомашины, получают точно определенные колебания мест периферийной части лопатки под этими датчиками. Сравнивают полученный из испытаний характер колебания периферийной части лопатки (фиг. 4) с эталонными колебаниями периферийной части лопатки, полученными ранее расчетно или при испытании на вибростенде, после чего определяют форму колебания всех лопаток в каждом временном отрезке. Из графиков колебаний и месту расположения датчиков, разнесенных вдоль оси турбомашины, на экспериментальной и эталонной синусоидах колебаний, под этими датчиками, находят амплитуды и вычисляют их отношение, по близкому значению которых и определяют форму колебаний. Отношение амплитуд на эталонных синусоидах определяют аналогичным способом, представленным на фиг. 4. В частном случае реализации, два датчика, разнесенных вдоль оси турбомашины, устанавливают таким образом, чтобы каждая лопатка проходила под ними при условии отсутствия в ней колебательного процесса (фиг. 5), что упрощает анализ результатов эксперимента.

Указанного минимального количества датчиков достаточно, чтобы определить первую форму колебания лопатки, которая является более энергоемкой и, как следствие, наиболее опасной. Для определения более высоких по частоте форм колебания лопаток рабочего колеса, как правило, требуется большее количество датчиков.

Параллельно проводят методом конечных элементов расчет собственных форм и частот исследуемой лопатки рабочего колеса. При этом в расчетной модели закладывают условия закрепления на диске рабочего колеса и работы лопатки (температурную, газодинамическую центробежную нагрузки и т.д.), соответствующие конкретному временному отрезку в осциллограмме испытаний. Результатом расчета является определение полей условных перемещений (фиг. 7) и условных напряжений (фиг. 8) на выявленных при испытаниях собственных формах колебаний. Условными полученные результаты называются по причине правильной пропорциональной зависимости между расчетными перемещениями и расчетными напряжениями, но, при этом, абсолютные значения этих величин имеют неправильные (физически неверные) значения. Для дальнейшего анализа выбирается собственная форма колебаний, соответствующая рассматриваемому временному отрезку из осциллограммы. Из результатов расчета на выбранной собственной форме определяют значение максимальных условных перемещений периферийной части лопатки в месте установки датчика. Находят коэффициент пропорциональности между определенным значением условных перемещений и фактическим значением амплитуды колебаний лопатки под соответствующим датчиком в испытании. Вводят найденный коэффициент пропорциональности в результаты расчета. Получают поля перемещений и динамических напряжений, которые близки к реализовавшимся при испытании, в том числе максимальное значение динамических напряжений и место их локализации.

Пример реализации заявленного способа

Во время испытания турбомашины установили датчики пульсаций давления, как показано на фиг. 1. Пример сигнала приведен для верхнего датчика пульсаций давления во втором поясе фиг. 2, правый резонансный временной отрезок, выделенный эллипсом. По второму поясу датчиков был получен закон колебания периферийной части лопатки в области второго пояса, который переложили на датчик первого пояса (фиг. 6). Значения амплитуд колебаний по этим поясам A1=0,44 мм и A2=0,35. Их отношение равно B=1,25. Данное значение соответствует колебанию лопатки по первой форме. Расчетное поле условных перемещений, полученное в результате моделирования условий работы и закрепления лопатки с указанием места установки датчика, показано на фиг. 7. В этом месте смотрят значения условных перемещений A3=1,9 мм, которые соответствуют амплитуде колебания в испытании A1. Их отношение равно K=0,232. Учитывая коэффициент K для результата расчета условных напряжений (фиг. 8), получаем значение максимальных динамических напряжений при испытании, равное 9,9 кгс/мм2 (0,232⋅42,69 кгс/мм2), локализованных в области, выделенной кружком.

Применение данного способа позволяет при отстройке от полученных колебаний вносить конкретные изменения в конструкцию лопаток рабочего колеса и/или в конструкцию влияющих на их работу деталей и узлов турбомашины, направленных на исключение именно выявленных опасных колебаний, что упрощает процесс конструкторской доводки. При этом сокращается количество стендовых испытаний турбомашины и применяемого при этом дорогостоящего требуемого оборудования за счет повышения надежности измерительной системы, которая требует меньшего количества датчиков и размещения последних не на вращающихся деталях турбомашины. Это значительно снижает стоимость разработки конструкции в целом.

Способ для определения динамических напряжений в лопатках рабочего колеса турбомашины, включающий установку датчиков, регистрацию, преобразование в осциллограмму и обработку сигнала с них, отличающийся тем, что устанавливают датчики на корпус турбомашины над лопатками рабочего колеса, регистрируют пульсации давления воздушного потока при помощи по меньшей мере четырех датчиков, установленных с допустимым отклонением на корпусе турбомашины в поясе осевого размера периферийной части лопаток рабочего колеса, минимум два из которых расположены вдоль продольной оси турбомашины, а минимум три - поперек последней, определяют наличие резонансных колебаний лопаток рабочего колеса и выделяют резонансные временные отрезки для каждого из датчиков в осциллограмме, определяют моменты прохождения лопаток под датчиками в выделенных резонансных временных отрезках, определяют отклонения от теоретического момента прохождения каждой из лопаток под каждым из датчиков в отсутствие колебательных процессов, по которым определяют характер колебаний, диагностируют форму резонансных колебаний путем сравнения полученных данных с эталонными формами колебаний лопаток рабочего колеса турбомашины, устанавливают методом конечных элементов поля перемещений и напряжений в лопатке, на диагностированной форме колебания лопатки рабочего колеса с учетом условий работы и геометрии лопатки, находят коэффициент пропорциональности между установленными перемещениями и отклонением от теоретического момента прохождения лопаткой в отсутствие колебательных процессов в местах установки датчиков и устанавливают картину распределения динамических напряжений в лопатке в процессе испытаний на выявленной форме колебаний и их максимальное значение.



 

Похожие патенты:

Изобретение относится к испытаниям лопаточных машин - компрессоров и турбин. В способе лопаточные машины изготовляют с помощью аддитивных технологий (или AF-технологий), а работоспособность лопаточных машин обеспечивают уменьшением характерной температуры рабочего процесса в соответствии с зависимостью: Ти/Тн≤(σи×ρн)/(σн×ρи); где Ти - характерная температура газодинамического процесса при испытаниях; Тн - соответствующая температура в натурных условиях работы; σи - определяющая прочностная характеристика материала модели; σн - соответствующая определяющая прочностная характеристика материала критичных натурных деталей лопаточной машины; ρи - плотность материала модели; ρн - плотность материала критичных натурных деталей лопаточной машины.

Тестер остаточного ресурса (ТОР) предназначен для безразборного технического диагностирования кривошипно-шатунного механизма (КШМ) автомобильного рядного, V-образного или оппозитного бензинового или дизельного ДВС с числом цилиндров 2…12, рабочим объемом 0,903…22,3 л, оснащенного системой непрерывной или прерывистой подачи масла к шатунным подшипникам коленчатого вала (КВ).

Изобретение относится к автоматизированному способу неразрушающего контроля тканой заготовки, предназначенной для производства части турбомашины и содержащей множество первых маркирующих нитей, пересекающихся со вторыми маркирующими нитями, первые и вторые нити имеют свойства отражения света, отличные от свойств нитей заготовки, и сотканы с нитями заготовки таким образом, чтобы образовывать поверхностную сетку на заданной зоне заготовки.

Изобретение относится к области энергомашиностроения и предназначено для осуществления испытаний энергоустановок с последующим проведением контроля параметров и состава продуктов сгорания.

Изобретение может быть использовано для измерения амплитуд и фаз вибрации при балансировке роторов турбин и компрессоров в машиностроении, авиастроении и других областях.

Изобретения относятся к системе и способу контроля и диагностики аномалий выходных характеристик газовой турбины. Способ включает также прием входных данных реального времени и входных данных за прошлые периоды времени из системы контроля состояния, связанной с газовой турбиной, при этом входные данные относятся к параметрам, влияющим на характеристики газовой турбины, периодическое определение текущих значений параметров, сравнение исходных значений с соответствующими текущими значениями, определение ухудшения во времени по меньшей мере одного из следующего: КПД компрессора газовой турбины, выходная мощность газовой турбины, удельный расход тепла на газовую турбину и потребление топлива газовой турбиной, на основе упомянутого сравнения, и рекомендацию оператору газовой турбины набора корректирующих воздействий для корректировки этого ухудшения.

Группа изобретений относится к газотурбинной системе, содержащей блок термодинамической модели, генерирующий вычисленный эксплуатационный параметр на основе механической модели газотурбинного двигателя и на основе термодинамической модели газотурбинного двигателя.

Изобретение относится к устройствам для измерения параметров систем двигателя внутреннего сгорания и может быть использовано для диагностирования двигателей внутреннего сгорания.

Изобретение относится к области стендовых испытаний поршневых двигателей внутреннего сгорания и может быть использовано для определения индикаторной мощности многоцилиндровых двигателей.
Изобретение относится к области испытания и регулировки топливной аппаратуры дизельных двигателей внутреннего сгорания (ДВС). Предложен способ контроля технического состояния дизельной топливной аппаратуры, заключающийся в том, что обеспечивают при стендовых испытаниях дизельной топливной аппаратуры сначала постоянный, а затем переменный характер изменения скорости вращения приводного вала топливного насоса (ТНВД).

Изобретение относится к измерительной технике, а в частности для проведения оптико-акустических и газодинамических измерений в помещении, для создания свободного звукового поля в помещении, при продувке моделей элементов авиационных ГТД и позволяет повысить надежность и достоверность получаемой при измерении информации. Камера содержит корпус, внутренняя сторона которого облицована сетчатым оптическим экраном, выполнена из пористого звукопоглощающего материала. Корпус со стороны входной газовой магистрали имеет патрубок, снабженный напорным регулируемым вентилятором с регулируемой установкой углов, сообщенный с зазором между корпусом и камерой. Внутри камеры на выходе газовой магистрали, имеющей сопло, расположена оптическая сканирующая система регистрации акустических и газодинамических параметров, которая снабжена совмещенным датчиком полного, статического давления и температуры. На противоположной стороне корпуса имеется выходной патрубок, сообщенный с зазором между камерой и корпусом. Внутри патрубка установлен вентилятор с регулируемой установкой углов, перед входом которого установлена оптическая система контроля газодинамических параметров, регулируемая заслонка с датчиком обратной связи и блоком управления. 1 ил.

Устройство диагностики технического состояния электродвигателя подвижного роботизированного комплекса относится к области диагностики технических систем и может быть использовано для диагностирования промышленного оборудования и технических систем, к которым могут быть отнесены подшипники электродвигателей, ленточные конвейеры, промышленные вентиляторы и т.п. Устройство содержит: датчики - измерения электромагнитного поля, температуры обмоток электродвигателя и подшипниковых узлов и учета выработки часов, определения величины сопротивления изоляции электродвигателя, микроконтроллер, источник опорного питания, регистр результата, причем выходы датчиков и преобразователя подключены к входам микроконтроллера; выход источника опорного питания - к аналоговому входу микроконтроллера, а выход микроконтроллера - к регистру результата и системе управления. Технический результат заключается в том, что в предлагаемом устройстве диагностики дополнительно осуществляется диагностирование его механической прочности с помощью преобразователя акустической эмиссии. 1 ил.

Настоящее изобретение относится к системе обнаружения пропуска зажигания, используемой в двигателе внутреннего сгорания. Система обнаружения пропуска зажигания для двигателя включает в себя датчик угла поворота коленчатого вала, блок обнаружения пропуска зажигания, блок получения и блок коррекции. Блок обнаружения пропуска зажигания обнаруживает состояние пропуска зажигания в двигателе на основе индекса пропуска зажигания. Индекс пропуска зажигания выводится с использованием скорости вращения коленчатого вала в качестве опорного значения, соответствующей заданному порядку скорости двигателя, и имеет корреляцию с величиной вариации угловой скорости коленчатого вала таким образом, что величина индекса пропуска зажигания изменяется в соответствии с величиной вариации угловой скорости. Блок получения получает параметр, относящийся к давлению в конце такта сжатия в цилиндре двигателя. Блок коррекции корректирует индекс пропуска зажигания или заданный параметр обнаружения пропуска зажигания, используемый вместе с индексом пропуска зажигания, во время обнаружения пропуска зажигания на основе этого параметра. 8 з.п. ф-лы, 13 ил.

Способ испытания заключается в задании режима работы гидромеханической части (ГМЧ) САУ ВГТД, измерении расхода топлива, формировании по нему с помощью модели турбокомпрессора частоты вращения рессоры всережимного регулятора, формировании с помощью модели электронного регулятора выходного сигнала канала регулирования по частоте вращения, задании с помощью модели приводного компрессора нагрузки на электрогидравлическом исполнительном механизме и/или на имитаторе гидроцилиндра, формировании выходного сигнала канала регулирования электронного регулятора по направляющему аппарату, задании нагрузки на ГМЧ, воспроизведении ее с помощью загрузочного устройства, дополнительной корректировки выходных сигналов моделей канала регулирования электронного регулятора по регулируемому параметру и по углу поворота направляющего аппарата до достижения ими заданных значений. Изобретение относятся к области испытаний дозаторов топлива электронно-гидромеханических и супервизорных систем автоматического управления (САУ) вспомогательного газотурбинного двигателя (ВГТД). Предлагаемый стенд позволяет расширить функциональные возможности стенда при одновременном повышении точности результатов испытаний, что достигается дополнительным введением модели канала регулирования электронного регулятора по частоте вращения, задатчика режима, регулятора давления в гидроцилиндре, электрогидравлического исполнительного механизма, модели приводного компрессора, имитатора гидроцилиндра, модели канала регулирования электронного регулятора по направляющему аппарату. 2 н. и 3 з.п. ф-лы, 1 ил.

Предложены способы и системы диагностирования каждого из множества компонентов системы охлаждения двигателя, включающих в себя различные клапаны и заслонки решетки радиатора. Каждый клапан может быть по отдельности закрыт и открыт в течение указанного периода времени, и может осуществляться мониторинг соответствующих изменений температуры хладагента. Если все компоненты являются функционирующими, различные клапаны могут регулироваться для задерживания хладагента в двигателе и ускорения прогрева двигателя во время холодного запуска. Достигается диагностирование системы охлаждения двигателя. 3 н. и 17 з.п. ф-лы, 12 ил.

Изобретение относится к области управления работой двигателя внутреннего сгорания, в частности к диагностике неисправности датчиков влажности. Способ диагностики для емкостного датчика влажности, содержащего нагреватель и элемент считывания емкости, который по отдельности идентифицирует ухудшение характеристик нагревателя, элемента считывания температуры или элемента считывания емкости. Посредством этого способа, отдельные элементы датчика могут заменяться и компенсироваться, чтобы предоставлять возможность для дальнейшей эксплуатации. Технический результат заключается в повышении достоверности при диагностировании датчика влажности. 3 н. и 17 з.п. ф-лы, 12 ил.

Изобретение относится к области стендовых испытаний деталей и корпусов турбомашин, в частности авиационного двигателестроения, а именно к конструкции стендовых силовых рам для статических и циклических испытаний. Универсальная модульная портальная силовая рама содержит силовые стойки, вспомогательные балки и прямоугольное основание. Вспомогательные балки выполнены с возможностью крепления на силовые стойки и между собой посредством разъемного соединения. На каждой большей стороне прямоугольного основания жестко и неразъемно закреплены как минимум по три силовые стойки, причем как минимум одна из силовых стоек расположена в области середины соответствующей большей стороны, а по одной в углах прямоугольного основания. Сверху на силовых стойках закреплены цельные балки посредством жесткого неразъемного соединения, сориентированные вдоль соответствующих больших сторон прямоугольного основания и образующие с последними и силовыми стойками четырехугольные порталы. На угловых силовых стойках посредством жесткого неразъемного соединения закреплено как минимум по одной проушине. Силовая рама снабжена как минимум одной П-образной балкой, установленной поперек силовых стоек и выполненной с возможностью перемещения вдоль последних и фиксацией на них в требуемом положении. Изобретение позволяет за счет наличия жесткой неразъемной конструкции, реализованной с учетом специфики стендовых испытаний деталей и корпусов турбомашин, возможности различных комбинаций установки силовых модулей, профиля и соединений элементов силовой рамы увеличить жесткость, прочность и универсальность последней. 19 з.п. ф-лы, 3 ил.

Изобретение относится к электрическим испытаниям транспортных средств. В способе испытаний электрооборудования автотранспортных средств на восприимчивость к внешнему электромагнитному полю испытываемое электрооборудование устанавливают в бортовую сеть транспортного средства и подвергают воздействию внешнего излучения с заданными параметрами. На каждой частоте воздействующего излучения транспортное средство позиционируется в горизонтальной плоскости по отношению к внешнему источнику электромагнитного поля в диапазоне определенных углов. Во время испытаний угловая скорость вращения транспортного средства относительно внешнего источника излучения не должна превышать 5 град/с. При этом минимальное расстояние между внешним источником излучения и транспортным средством выбирается исходя из максимального линейного размера транспортного средства в горизонтальной плоскости и угла главного лепестка диаграммы направленности в горизонтальной плоскости внешнего источника излучения. Повышается полнота определения помехоустойчивости. 2 ил.

Стенд для «холодной» обкатки турбокомпрессоров энергетических установок включает источник подачи газа, напорный и выпускной воздуховоды, соединенные с рабочей камерой турбины, датчик частоты вращения и цифровой указатель оборотов, блок управления источником подачи газа. Дополнительно введены два модуля измерения параметров газа, модуль измерения параметров масла, перепускной клапан, емкость с нагревательным элементом для масла, масляный насос, электропривод масляного насоса, масляный фильтр, блок регистрации положения вала в подшипнике, блок обработки информации и управления стендом и фильтрующий элемент. Напорный воздуховод разделен на три части фильтрующим элементом и первым модулем измерения параметров газа. Первая часть напорного воздуховода соединена с источником подачи газа и фильтрующим элементом. Вторая часть напорного воздуховода соединена с фильтрующим элементом и первым модулем измерения параметров газа. Третья часть напорного воздуховода соединена с первым модулем измерения параметров газа и рабочей камерой турбины турбокомпрессора. Выпускной воздуховод разделен на две части, первая часть выпускного воздуховода соединена с рабочей камерой турбины турбокомпрессора и второй частью выпускного воздуховода, вторая часть выпускного воздуховода соединена с первой частью выпускного воздуховода и источником подачи газа. Источник подачи газа соединен с блоком управления источником подачи газа. Выход первого модуля измерения параметров газа соединен с блоком обработки информации и управления стендом. Второй модуль измерения параметров газа соединен с выходом рабочей камеры компрессора турбокомпрессора, выход второго модуля измерения параметров газа соединен с блоком обработки информации и управления стендом. Выход электропривода масляного насоса подключен к блоку обработки информации и управления стендом. Выход модуля измерения параметров масла соединен с блоком обработки информации и управления стендом. Выход с нагревательного элемента емкости для масла подключен к блоку обработки информации и управления стендом. Масляный насос соединен с электроприводом масляного насоса. Выход емкости с нагревательным элементом для масла подключен к входу масляного насоса. Выход масляного насоса соединен с входом перепускного клапана. Первый выход перепускного клапана соединен с входом масляного фильтра. Выход масляного фильтра соединен с входом модуля измерения параметров масла, первый выход модуля измерения параметров масла соединен с отверстием для подачи масла к подшипнику турбокомпрессора. Второй выход перепускного клапана соединен с первым входом емкости с нагревательным элементом для масла. Сливное отверстие подшипника турбокомпрессора соединено со вторым входом емкости с нагревательным элементом для масла. Выход цифрового указателя оборотов соединен с блоком обработки информации и управления стендом, выход блока регистрации положения вала в подшипнике подключен к блоку обработки информации и управления стендом. Выход блока управления источником подачи газа подключен к блоку обработки информации и управления стендом. Достигается повышение качества и информативности обкатки турбокомпрессоров, снижение энергозатрат и обеспечение режима «холодной» обкатки при номинальной частоте вращения ротора турбокомпрессора под нагрузкой. 1 ил.

Изобретение относится к области двигателестроения и может найти применение при стендовых испытаниях и в эксплуатации газотурбинных двигателей, а также для создания систем диагностики. Техническим результатом, на достижение которого направлен предлагаемый способ, является повышение надежности работы подшипника и двигателя в целом, снижение трудоемкости и затрат на реализацию способа за счет сохранения неизменной материальной части (не требуется внесения конструктивных изменений в опору), расширение области его использования, включая эксплуатацию двигателей. Предварительно определяют частоту вращения сепаратора подшипника, измеряют динамические сигналы с датчиков вибрации, установленных в осевом и вертикальном направлениях, преобразуют их в амплитудно-частотные спектры осевой и радиальной вибрации, строят график изменения амплитуды осевой вибрации с частотой вращения ротора от времени, исключают из рассмотрения участки графика, на которых повышение амплитуды осевой вибрации вызвано отсутствием влияния осевой силы, определяют максимальную амплитуду осевой вибрации, которая соответствует максимальному значению осевой силы, действующей на радиально-упорный подшипник, и определяют соответствующий ей режим работы двигателя, выбирают участки графика, на которых происходит снижение осевой вибрации, при этом в спектре радиальной вибрации при наборе и снижении частоты вращения ротора выполняют поиск дискретной составляющей на предварительно определенной частоте вращения сепаратора подшипника, наличие которой соответствует минимальному значению осевой силы, действующей на радиально-упорный подшипник, и определяют соответствующие ей режимы работы двигателя. 4 з.п. ф-лы, 4 ил.

Изобретение предназначено для использования в энергомашиностроении и может найти широкое применение при создании систем определения динамических напряжений в лопатках рабочих колес осевых турбомашин в авиации и энергомашиностроении. Устанавливают датчики на корпус турбомашины над лопатками рабочего колеса, регистрируют пульсации давления воздушного потока при помощи по меньшей мере четырех датчиков, определяют наличие резонансных колебаний лопаток рабочего колеса и выделяют резонансные временные отрезки для каждого из датчиков в осциллограмме, определяют моменты прохождения лопаток под датчиками в выделенных резонансных временных отрезках, определяют отклонения от теоретического момента прохождения каждой из лопаток под каждым из датчиков в отсутствие колебательных процессов, по которым определяют характер колебаний, диагностируют форму резонансных колебаний путем сравнения полученных данных с эталонными формами колебаний лопаток рабочего колеса турбомашины, устанавливают методом конечных элементов поля перемещений и напряжений в лопатке, на диагностированной форме колебания лопатки рабочего колеса с учетом условий работы и геометрии лопатки, находят коэффициент пропорциональности между установленными перемещениями и отклонением от теоретического момента прохождения лопаткой в отсутствие колебательных процессов в местах установки датчиков и устанавливают картину распределения динамических напряжений в лопатке в процессе испытаний на выявленной форме колебаний и их максимальное значение. Технический результат изобретения – определение динамических напряжений в любой области пера лопаток рабочего колеса турбомашины без установки датчиков на вращающихся элементах, повышение надежности измерительной системы, сокращение количеств стендовых испытаний турбомашины. 8 ил.

Наверх