Ультразвуковая система обнаружения препятствий движению подвижного объекта

Изобретение относится к ультразвуковым системам обнаружения препятствий, предназначенным для регистрации и обработки сигналов, получаемых с акустических датчиков, и может быть использовано в подвижных дистанционно-управляемых объектах военного или двойного назначения для определения расстояний до препятствий. Ультразвуковая система обнаружения препятствий движению подвижного объекта содержит излучающие и приемные приборы средств обнаружения объектов, выполненные в виде n приемопередающих преобразователей (ППП) 1, располагающихся по периметру подвижного объекта (ПО) 2, блок обработки данных состоит из независимых каналов оцифровки (НКО) 3 аналоговых сигналов ППП 1, содержащих предварительные широкополосные операционные усилители (ШОУ) 4, усилители (У) 5 для согласования по уровню сигналов предварительных усилителей и аналого-цифровых преобразователей и аналого-цифровые преобразователи (АЦП) 6, обеспечивающие оцифровку аналоговых сигналов, устройства дальнейшей реализации алгоритма цифровой обработки и регистрации сигналов, выполненного на базе программируемой логической интегральной схемы (ПЛИС) 7, генератора тактовой частоты (ГТЧ) 8, импульсного преобразователя напряжения (ИПН) 9, преобразователя интерфейса USB 2.0 (ПИ) 10 для передачи результатов измерений, транзисторных ключей (К) 11, предназначенных для реализации цифрового управления ППП 1 по сигналам, поступающим с ПЛИС 7. Обеспечивается определение расстояния до препятствия с высокой точностью, работа в режиме локатора с возможностью измерения как очень малых, так и больших расстояний. 5 ил.

 

Изобретение относится к ультразвуковым системам обнаружения препятствий, предназначенным для регистрации и обработки сигналов, получаемых с акустических датчиков, и может быть использовано в подвижных дистанционно-управляемых объектах военного или двойного назначения для определения расстояний до препятствий.

Известна система управления (см. патент RU №2386507, B21D 5/02, B23Q 15/22, F16P 3/00, 20.04.2010 г.), принятая за прототип. Система управления содержит средства обнаружения объектов, расположенных на траектории движения или рядом с ней, и средства обработки данных и управления, выполненные с возможностью определения расстояния. Средства обнаружения объектов на траектории движения содержат светоизлучающие средства, выполненные с возможностью освещения области около указанной траектории, и светоприемные средства, выполненные с возможностью приема света, прошедшего через указанную область, так что находящиеся в ней объекты отбрасывают тени на светоприемные средства, которые находятся во взаимодействии со средствами обработки данных и управления, так что они определяют наличие препятствий в упомянутой области на основе изображений, полученных указанными светоприемными средствами. Средства обработки данных и управления содержат средства запоминания, которые выполнены с возможностью хранения изображений, полученных светоприемными средствами, в качестве известных изображений.

Недостатками прототипа являются:

- недостаточная точность констатации конфигуративной сложности обнаруженного объекта;

- необходимость проведения большого объема регулировочных работ при настройке системы;

- невозможность обеспечить четкое обнаружение объектов при наличии атмосферных осадков;

- невозможность обеспечить обнаружение объектов различной структуры (твердых, жидких, зернообразных и порошкообразных), прозрачности и цвета.

Предлагаемым изобретением решается задача по повышению степени автономности дистанционно-управляемых подвижных объектов и безопасности во время движения при выполнении задач по назначению.

Технический результат, получаемый при осуществлении изобретения, заключается в создании ультразвуковой системы обнаружения препятствий движению подвижного объекта, устанавливаемой на самодвижущейся платформе дистанционно-управляемого объекта и обладающей способностью определять расстояние до препятствия с высокой точностью, обеспечивать работу в режиме локатора с возможностью измерения как очень малых, так и больших расстояний.

Указанный технический результат достигается тем, что в предлагаемой ультразвуковой системе обнаружения препятствий движению подвижного объекта, содержащей имеющие излучающие и приемные приборы средства обнаружения объектов, которые находятся во взаимодействии со средствами обработки данных и управления таким образом, что они определяют наличие препятствий, новым является то, что излучающие и приемные приборы средств обнаружения объектов выполнены в виде n приемо-передающих преобразователей, располагающихся по периметру подвижного объекта, приемо-передающие преобразователи выполнены с возможностью поочередного излучения зондирующих ультразвуковых импульсов, сканирующих поверхность идентифицируемого объекта, а после отражения от нее - их параллельного во времени приема и регистрации впоследствии в блоке обработке данных, блок обработки данных состоит из независимых каналов оцифровки аналоговых сигналов приемо-передающих преобразователей, содержащих предварительные широкополосные операционные усилители, выполненные с возможностью обеспечения высокой величины входного сопротивления каналов, усилители для согласования по уровню сигналов предварительных усилителей и аналого-цифровых преобразователей и аналого-цифровые преобразователи, обеспечивающие оцифровку аналоговых сигналов, устройства дальнейшей реализации алгоритма цифровой обработки и регистрации сигналов, выполненного на базе программируемой логической интегральной схемы, генератора тактовой частоты, импульсного преобразователя напряжения, преобразователя интерфейса USB 2.0 для передачи результатов измерений, транзисторных ключей, предназначенных для реализации цифрового управления приемо-передающими преобразователями по сигналам, поступающим с программируемой логической интегральной схемы.

Выполнение излучающих и приемных приборов средств обнаружения объектов в виде n приемо-передающих преобразователей, располагающихся по периметру подвижного объекта, позволяет:

- получить полную информацию о размещении препятствий вокруг дистанционно-управляемого подвижного объекта;

- исключить возникновение «мертвых» зон во время сканирования местности при движении.

Выполнение приемо-передающих преобразователей с возможностью поочередного излучения зондирующих ультразвуковых импульсов, сканирующих поверхность идентифицируемого объекта, а после отражения от нее - их параллельного во времени приема и регистрации в блоке обработке данных, позволяет:

- зафиксировать наиболее полную картину конфигуративной сложности обнаруженного объекта;

- подготовить формирование цифровых массивов данных для получения полной картины о форме и размерах возникшего препятствия;

- получить устойчивый поток «полезной» информации при различных метеорологических условиях.

Наличие в блоке обработки данных независимых каналов оцифровки аналоговых сигналов приемо-передающих преобразователей позволяет:

- регистрировать получаемые от приемо-передающих преобразователей аналоговые сигналы;

- обеспечить необходимую величину входного сопротивления каналов блока;

- обеспечить согласование по уровню сигналов входных усилителей и аналого-цифровых преобразователей;

- обеспечить первичную оцифровку аналоговых сигналов.

Включение в состав блока обработки данных программируемой логической интегральной схемы позволяет обеспечить регистрацию и дальнейшую цифровую обработку.

Включение в состав блока обработки даны преобразователя интерфейса USB 2.0 позволяет обеспечить передачу результатов измерений.

Включение в состав блока обработки данных транзисторных ключей позволяет обеспечить реализацию цифрового управления приемо-передающими преобразователями по сигналам, поступающим с программируемой логической интегральной схемы.

Технические решения с признаками, отличающими заявляемое решение от прототипа, не известны и явным образом из уровня техники не следуют. Это позволяет считать, что заявляемое решение является новым и обладает изобретательским уровнем.

Сущность изобретения поясняется чертежами, где на фиг. 1 показан пример схемы расположения приемо-передатчиков S1…S4 относительно отражающей поверхности идентифицируемого объекта; на фиг. 2 - пример графиков регистрируемых сигналов; на фиг. 3 - пример схемы определения положения подвижного объекта; на фиг. 4 - пример схемы перекрытия диаграмм направленности; на фиг. 5 - функциональная схема блока обработки данных.

Ультразвуковая система обнаружения препятствий движению подвижного объекта содержит излучающие и приемные приборы средств обнаружения объектов, выполненые в виде n приемопередающих преобразователей (ППП) 1, располагающихся по периметру подвижного объекта (ПО) 2, блок обработки данных состоит из независимых каналов оцифровки (НКО) 3 аналоговых сигналов ППП 1, содержащих предварительные широкополосные операционные усилители (ШОУ) 4, усилители (У) 5 для согласования по уровню сигналов предварительных усилителей и аналого-цифровых преобразователей и аналого-цифровые преобразователи (АЦП) 6, обеспечивающие оцифровку аналоговых сигналов, устройства дальнейшей реализации алгоритма цифровой обработки и регистрации сигналов, выполненного на базе программируемой логической интегральной схемы (ПЛИС) 7, генератора тактовой частоты (ГТЧ) 8, импульсного преобразователя напряжения (ИПН) 9, преобразователя интерфейса USB 2.0 (ПИ) 10 для передачи результатов измерений, транзисторных ключей (К) 11, предназначенных для реализации цифрового управления ППП 1 по сигналам, поступающим с ПЛИС 7.

Ультразвуковая система обнаружения препятствий движению подвижного объекта функционирует следующим образом. Работа системы заключается в поочередном излучении n ППП 1 ультразвуковых сканирующих импульсов с последующей регистрацией и обработкой эхо-сигналов, получаемых с объекта обнаружения. Рассмотрим работу системы на примере, когда n=4. В момент времени t=0 i-м ППП 1 излучается зондирующий ультразвуковой импульс длительностью τ. Пройдя расстояние ri импульс достигает точки на поверхности идентифицируемого объекта, и, отразившись от нее, проходит расстояние rj до j-ого приемо-передатчика. При этом зондирующий импульс проходит путь:

где (x, y) - координаты идентифицируемого объекта A;

(xi, yi) - координаты i-ого приемопередатчика;

(xj, yj) - координаты j-ого приемопередатчика.

Распространяясь, в пространстве зондирующий импульс приобретает задержку:

где c - скорость звука в среде.

Сигналы ППП 1 регистрируются параллельно во времени - оцифровываются и записываются в цифровые массивы данных с частотой fАЦП.

Расстояние, проходимое зондирующим импульсом, определяется по его временной задержке, исходя из (2):

Пройденному lij расстоянию соответствует объект, местоположение которого определяется эллипсом, ограниченным перекрытием диаграмм направленности соответствующих ППП 1.

Определение положения объекта по величинам l11, l12, l13, l14 рассмотрим на примере. Фокусы эллипса соответствуют точкам расположения i-ого излучателя и j-ого приемника с большей полуосью, определяемыми выражениями:

Местоположение объекта и его контуры определяются по пресечению двух и более эллипсов. Общее (максимальное) число эллипсов определяется квадратом числа ППП 1 n2, из них независимых 1/2(n2+n).

Для системы из четырех ППП 1 n=4:

В силу тождественности сигналов Fij(t)=Fji(t):

Для построения ультразвукового изображения объекта достаточно анализа лишь независимых сигналов 1/2(n2+n)=10:

При этом число пересечений всех независимых сигналов 1/4(n2+n)2=100:

В силу тождественности сигналов Fijkl(t)=Fklji(t) и вырожденности Fijij(t) число пересечений уменьшается до n/8(n3+2n2-n-2)+45:

Для получения ультразвуковой картинки производится суммирование независимых пересечений.

Пример подобной картинки приведен на фиг. 4, при этом изображение получается лишь в зоне перекрытия диаграмм направленности ППП 1: S1*S2, S2*S3, S3*S4, S1*S2*S3, S2*S3*S4, S1*S2*S3*S4.

В данном примере отраженные от объекта идентификации сигналы ППП 1 поступают по четырем НКО 3 в ПЛИС 7, реализующие алгоритмы цифровой обработки аналоговых сигналов. Цифровое управление ППП 1 осуществляется транзисторными ключами К 11, сигналы управления поступают с ПЛИС 7. В состав каждого НКО 3 входят:

- предварительные ШОУ 4, обеспечивающие высокие величины входного сопротивления каналов;

- усилители У 5, которые обеспечивают согласование по уровню сигналов ШОУ 4 и АЦП 6;

- 12-ти разрядные АЦП 6, обеспечивающие оцифровку аналоговых сигналов с частотой дискретизации f=2,5 МГц.

Оцифрованные сигналы поступают в ПЛИС 7 для регистрации и дальнейшей цифровой обработки. Для передачи результатов измерений служит ПИ 10 USB-2.0.

Таким образом, в предлагаемом изобретении решена задача по достижению технического результата, заключающегося в создании ультразвуковой системы обнаружения препятствий движению подвижного объекта, устанавливаемой на самодвижущейся платформе дистанционно-управляемого объекта и обладающей способностью определять расстояние до препятствия с высокой точностью, обеспечивать работу в режиме локатора с возможностью измерения как очень малых, так и больших расстояний.

Ультразвуковая система обнаружения препятствий движению подвижного объекта, содержащая имеющие излучающие и приемные приборы средства обнаружения объектов, которые находятся во взаимодействии со средствами обработки данных и управления таким образом, что они определяют наличие препятствий, отличающаяся тем, что излучающие и приемные приборы средств обнаружения объектов выполнены в виде n приемо-передающих преобразователей, располагающихся по периметру подвижного объекта, приемо-передающие преобразователи выполнены с возможностью поочередного излучения зондирующих ультразвуковых импульсов, сканирующих поверхность идентифицируемого объекта, а после отражения от нее - их параллельного во времени приема и регистрации впоследствии в блоке обработке данных, блок обработки данных состоит из независимых каналов оцифровки аналоговых сигналов приемо-передающих преобразователей, содержащих предварительные широкополосные операционные усилители, выполненные с возможностью обеспечения высокой величины входного сопротивления каналов, усилители для согласования по уровню сигналов предварительных усилителей и аналого-цифровых преобразователей и аналого-цифровые преобразователи, обеспечивающие оцифровку аналоговых сигналов, устройства дальнейшей реализации алгоритма цифровой обработки и регистрации сигналов, выполненного на базе программируемой логической интегральной схемы, генератора тактовой частоты, импульсного преобразователя напряжения, преобразователя интерфейса USB 2.0 для передачи результатов измерений, транзисторных ключей, предназначенных для реализации цифрового управления приемо-передающими преобразователями по сигналам, поступающим с программируемой логической интегральной схемы.



 

Похожие патенты:

Изобретение относится к области электротехники, а именно к океанологическим измерениям, и может быть использовано для контроля солености морской воды на разных акваториях Мирового океана.

Предлагаемые устройства относятся к радиолокационным и гидролокационным системам с импульсным сжатием многофазных кодов. Технический результат заключается в повышении качества сжатия сигналов, производится подавление боковых лепестков, возникающих в процессе сжатия, при котором обеспечивается увеличение числа многофазных кодов длины N, для всех значений временных сдвигов (отсчетов), исключая двух ±N, в которых относительный уровень боковых лепестков находится в диапазоне от -20 lgN -6 до -20 lgN -8 dB за счет использования симметрично усеченных кодов, образованных последовательным удалением равного числа первых и последних символов кодов большей длины.

Изобретение относится к радиолокации, а именно к способам формирования диаграммы направленности цифровыми антенными решетками при обзоре пространства и земной поверхности, и может быть использовано в радиолокационных станциях (РЛС).

Изобретение относится к области радиолокации и может быть использовано при радиолокационном обзоре заданной зоны с помощью мобильных радиолокационных станций кругового обзора с антенной в виде одномерной фазированной антенной решетки с электронным управлением лучом по углу места и механическим вращением по азимуту.

Изобретение относится к радиолокации, в частности к способам определения эффективной площади рассеяния (ЭПР) объектов, и может быть использовано для расчета эффективной площади рассеяния летательных аппаратов в полете штатными средствами радиолокационных станций.

Изобретение относится к обзорным радиолокационным станциям (РЛС), конкретно к РЛС кругового обзора со стационарными антеннами, и может быть использовано в системах контроля и управления воздушным движением (УВД).

Изобретение относится к области радиолокации и может быть использовано для обнаружения, сопровождения и получения координатной и некоординатной информации о ракетах-носителях и космических аппаратах в секторе электронного сканирования (СЭС), оценки помеховой обстановки в СЭС, а также обобщения информации о целевой и помеховой обстановке, полученной в активном и пассивном режимах функционирования.

Изобретение относится к способам обработки сверхширокополосных сигналов (СШС) с линейной частотной модуляцией (ЛЧМ) в радио и акустических системах локации, навигации и связи при наличии искажений этих сигналов за счет нелинейности фазочастотных характеристик приемопередающих трактов и канала распространения.

Изобретение относится к области радиолокации и может быть использовано в радиолокационных станциях (РЛС), в которых в качестве антенны используется активная фазированная антенная решетка.

Изобретение относится к радиолокации и предназначено для построения обзорных радиолокационных станций с цифровыми антенными решетками. Достигаемый технический результат - уменьшение времени обзора и повышение точности измерения координат объектов.

Изобретение относится к способам дистанционного охранного мониторинга местности и может быть использовано в случаях применения однопозиционного радиоволнового средства обнаружения (СО) для сигнализационного прикрытия двух лежащих рядом дорог, одна из которых имеет изгиб. Способ заключается в развертывании СО на участке дорог, где они лежат к друг другу на расстоянии, не превышающем 80% от максимально возможной длины зоны обнаружения (ЗО) СО, так, чтобы СО находилось с внешней стороны угла изгиба дороги, за дорогой с прямым участком; ось ЗО совпадала с биссектрисой угла изгиба дороги; выдаче сигнала тревоги СО в случае пересечения нарушителем его ЗО; анализе доплеровской добавки частоты отраженного сигнала на выходе схемы обработки сигналов СО в течение всего времени нахождения нарушителя в его ЗО; последующем применении алгоритма определения направления движения нарушителя по дороге с прямым участком по наличию положительной или отрицательной доплеровской добавки частоты отраженного сигнала и определения движения по дороге с изгибом по наличию знакопеременной доплеровской добавки частоты отраженного сигнала. Обеспечивается повышение точности указания направления движения обнаруженного нарушителя и получение высокой достоверности результата с применением только одного однопозиционного радиоволнового средства обнаружения. 8 ил.

Изобретение относится к области радиолокации и может быть использовано в радиолокационных станциях (РЛС). Достигаемый технический результат - обеспечение быстрого сканирования по азимуту и обеспечение высокого коэффициента усиления антенны при гибком управлении перемещением луча антенны в широко распространенных РЛС с фазированной антенной решеткой (ФАР), имеющих одномерное электронное сканирование по углу места. Указанный технический результат по первому варианту достигается тем, что в способе радиолокационного обзора пространства, заключающемся в электронном и механическом сканировании по углу места и механическом по азимуту с помощью фазированной антенной решетки при обзоре азимутального сектора с наибольшей вероятностью появления скоростных и малоразмерных целей электронное сканирование перемещают в азимутальную плоскость путем поворота ФАР вокруг оси, перпендикулярной к ее плоскости. Указанный технический результат по второму варианту достигается тем, что в способе радиолокационного обзора пространства, заключающемся в электронном и механическом сканировании по углу места и механическом по азимуту с помощью фазированной антенной решетки при обзоре азимутального сектора с наибольшей вероятностью появления скоростных или малоразмерных целей электронное сканирование перемещают в азимутальную плоскость путем поворота ФАР вокруг оси, перпендикулярной к ее плоскости, и выполняют дополнительно к механическому электронное сканирование в угломестной плоскости путем изменения несущей частоты зондирующего сигнала. 2 н.п. ф-лы, 2 ил.

Изобретения (варианты) относятся к области радиолокации и могут быть использованы в радиолокационных станциях (РЛС). Достигаемый технический результат изобретения - обеспечение накопления энергии в процессе электронного сканирования лучом фазированной антенной решетки (ФАР) с одномерным электронным сканированием и повышение помехозащищенности, при действии помехи в области боковых лепестков диаграммы направленности антенны. Указанный технический результат по первому варианту достигается тем, что в способе радиолокационного обзора пространства, заключающемся в электронном и механическом сканировании лучом ФАР по углу места и механическом по азимуту увеличивают затраты энергии в выбранной зоне в процессе вращения ФАР по азимуту, перемещая область электронного сканирования в зону путем наклона ФАР за счет ее поворота вокруг оси, перпендикулярной к ее плоскости. Указанный технический результат по второму варианту достигается тем, что в способе радиолокационного обзора пространства, заключающемся в электронном и механическом сканировании и снижении уровня боковых лепестков диаграммы направленности фазированной антенной решетки в направлении на постановщика помехи перемещают область электронного сканирования пространства РЛС с одномерным электронным сканированием за счет поворота ФАР вокруг оси, перпендикулярной к ее плоскости так, чтобы направление на постановщика помех перемещалось в область между направлениями главных осей ФАР. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области радиолокации и может быть использовано в радиолокационных системах с зондирующими сигналами, кодированными по фазе (фазокодоманипулированными сигналами), для измерения поляризационной матрицы рассеяния объекта. Достигаемый технический результат - повышение точности измерения поляризационной матрицы рассеяния объекта за счет компенсации возникающих искажений (погрешности измерения). Технический результат достигается тем, что в способе измерения поляризационной матрицы рассеяния объекта с компенсацией искажений при зондировании на одной несущей частоте на ортогональных поляризациях одновременно излучают соответствующие ортогональные по структуре радиосигналы, принимают одновременно все ортогонально поляризованные составляющие отраженных от объекта радиосигналов, выходные радиосигналы каждого соответствующего по поляризации канала приемника подают на фильтры, каждый из которых согласован с одним из излученных ортогональных по структуре радиосигналов, при этом для компенсации искажений, обусловленных неидентичностью используемых передающих и приемных каналов, радиосигналы на выходах согласованных фильтров умножают на весовые коэффициенты, которые находят до излучения зондирующих радиосигналов по объекту локации на основе анализа результатов работы радиолокационной станции, после чего измеряют на выходах умножителей параметры радиосигналов, определяющие соответствующие элементы поляризационной матрицы рассеяния объекта, при этом измеренные значения кроссовых элементов поляризационной матрицы рассеяния объекта объединяют. 1 ил.

Изобретение относится к классу геофизических приборов, предназначенных для исследований, не нарушающих структуры грунта, на глубины от нескольких десятков до нескольких сотен метров. Достигаемый технический результат - расширение диапазона обрабатываемых значений сигналов, поступающих в ответ на подачу зондирующих импульсов, что позволяет без искажений принимать информацию с различных глубин зондирования, практически исключая искажения, связанные с нелинейностью входных характеристик приемных элементов. Указанный результат достигается за счет того, что устройство содержит передающую часть и приемную часть. Передающая часть включает в себя последовательно связанные высоковольтный источник питания, формирователь зондирующих импульсов и передающую антенну, а приемная часть - последовательное связанные приемную антенну, средство обработки сигналов, средство представления результатов обработки сигналов. Средство обработки сигналов содержит двухканальный аналого-цифровой преобразователь, выходы которого подключены к входам средства объединения канальных сигналов преобразователя для передачи средству представления результатов обработки. 5 з.п. ф-лы, 8 ил.

Изобретение относится к области радиолокации, в частности к радиолокационным станциям, устанавливаемым на летательных аппаратах, и предназначено для решения задач картографирования земной поверхности. Достигаемый технический результат - повышение разрешающей способности по азимуту вблизи линии пути носителя бортовой радиолокационной станции (БРЛС). Указанный результат достигается за счет того, что когерентно излучают и накапливают сигнал в процессе сканирования лучом диаграммы направленности антенны вблизи линии пути носителя БРЛС, когда луч диаграммы направленности антенны, плавно перемещаясь, охватывает весь передний сектор, осуществляют сигнальную обработку накопленного сигнала, заключающуюся в определении и компенсации фазового набега, определении крутизны частотной модуляции сигналов, выделении сигналов, накопленных слева и справа от линии пути носителя БРЛС, спектральной обработке сигналов, объединении сигналов, накопленных слева и справа от линии пути носителя, затем повторно сканируют тот же участок земной поверхности с когерентным накоплением отраженного сигнала, осуществляют обработку повторно накопленного сигнала, аналогичную обработке первого сигнала, причем выделение сигналов с положительной и отрицательной крутизнами частотной модуляции осуществляют с компенсацией разности фаз относительно первого накопленного сигнала, после обработки обоих сигналов суммируют поэлементно полученные массивы амплитуд сигналов и формируют радиолокационное изображение из суммарного массива амплитуд. 3 ил.

Изобретение относится к прецизионным устройствам усиления сигналов. Технический результат заключается в повышении разомкнутого коэффициента усиления по напряжению операционного усилителя. Каскодный дифференциальный операционный усилитель содержит: входной дифференциальный каскад с общей эмиттерной цепью, согласованной с первой шиной источника питания, первый, второй, третий, четвертый дополнительные транзисторы, базы первого и второго дополнительных транзисторов подключены к первому токовому выходу входного дифференциального каскада, базы третьего и четвертого дополнительных транзисторов подключены ко второму токовому выходу входного дифференциального каскада, объединенные эмиттеры первого и второго дополнительных транзисторов связаны с эмиттером второго выходного транзистора, объединенные эмиттеры третьего и четвертого дополнительных транзисторов соединены с эмиттером первого выходного транзистора, коллекторы второго и третьего дополнительных транзисторов соединены с первым токовым выходом входного дифференциального каскада а коллекторы первого и четвертого дополнительных транзисторов связаны со вторым токовым выходом входного дифференциального каскада. 1 з.п. ф-лы, 11 ил.

Изобретение относится к системам для обнаружения объекта путем отражения от его поверхности радиоволн и может быть использовано в радиолокации для распознавания разрушения (подрыва) самолета. Достигаемый технический результат - обеспечение возможности распознавания разрушения (подрыва) самолета. Технический результат достигается тем, что в способе распознавания разрушения (подрыва) самолета, заключающемся в излучении в сторону самолета электромагнитной энергии, приеме отраженных от самолета сигналов, получении спектра отраженного сигнала, проведении узкополосной фильтрации составляющих частоты Доплера, дополнительно определяют наличие частоты Доплера на частоте, вызванной перемещением со скоростью, близкой к скорости фронта ударной волны, обеспечивают ее воспроизведение, индицируют и сигнализируют о наличии данного сигнала. Устройство, реализующее способ, содержит последовательно соединенные антенну и радиолокационную станцию (РЛС), фильтр, настроенный на частоту Доплера, вызванную перемещением со скоростью, близкой к скорости фронта ударной волны, динамик, детектор, пороговое устройство и схему индикации, причем вход фильтра соединен с выходом РЛС, выход фильтра соединен со входами динамика и детектора, выход которого через пороговое устройство соединен со схемой индикации. 2 н.п. ф-лы, 1 ил.

Изобретение относится к метеорологии и может быть использовано в системах мониторинга опасных явлений погоды, а также в исследованиях электрических процессов в атмосфере и геофизических исследованиях. Достигаемый технический результат – упрощение определения объемной плотности грозоопасного заряда на основе использования сетевых геомагнитных, метеорологических и спутниковых данных, а также расширение возможностей его определения в случае движущихся облаков по их собственному магнитному полю, что в свою очередь открывает возможность получения прогностических оценок развития грозы. Указанный результат достигается за счет того, что: величину объемной плотности движущегося на определенной высоте заряда облака определяют по величине скорости движения V, индукции его собственного магнитного поля ΔВ и по геометрическим параметрам расположения центральной части объемного заряда относительно точки регистрации магнитной индукции в соответствии с формулой: ,где ρ - объемная плотность заряда облака (Кл/м3);ΔВ - магнитная индукция движущегося объемного заряда облака (Тл);V - скорость движения объемного заряда (м/с);Hh и - высоты верхней и нижней границ облаков, соответственно (м);L - ширина массива движущихся облаков по линии, перпендикулярной вектору скорости (м);α - угол между вертикалью и направлением на центр объемного заряда от точки регистрации магнитной индукции (рад);μ0 - магнитная постоянная, равная 4π×10-7 (Гн/м).Среднюю скорость и направление движения облаков V в районе наблюдения определяют по результатам измерения вертикального профиля скорости ветра на сетевых аэрологических станциях с помощью радиозондов, а также по спутниковым наблюдениям. Величину индукции ΔВ движущегося объемного заряда облаков определяют по разности индукций геомагнитного поля, регистрируемых на ближайшей сетевой геомагнитной обсерватории, где по спутниковым снимкам не наблюдается облаков, и на аналогичной геомагнитной обсерватории, где наблюдается прохождение потенциально опасной облачности. Ширину облачного массива L по линии, перпендикулярной вектору скорости движения, и высоту верхней границы облаков Hh определяют по данным спутниковых наблюдений. Высоту нижней границы облаков определяют по данным измерителя нижней границы облачности на ближайшей метеостанции, входящей в состав гидрометеорологической сети.

Изобретение относится к радиолокации протяженных целей, в частности к радиолокационным измерителям высоты, скорости и наклона вектора скорости летательного аппарата (ЛА) относительно земной поверхности, и может быть использовано при пикирующих траекториях ЛА, в том числе на беспилотных летательных аппаратах и снарядах. Результаты измерений высоты и вектора скорости ЛА могут быть использованы в интересах автономной навигации ЛА или коррекции инерциальной системы управления. Достигаемый технический результат - измерение высоты, истинной скорости ЛА и угла между направлением вектора скорости и плоскостью горизонта (угла пикирования) при использовании однолучевой антенной системы, ориентированной в направлении, совпадающем с продольной осью ЛА. Указанный результат достигается тем, что производится зондирование земной поверхности радиолокационным сигналом в направлении продольной оси ЛА, когерентный прием отраженного сигнала с получением двумерного радиолокационного изображения (РЛИ) местности в координатах дальность - доплеровская частота, нахождение зависимости максимальной доплеровской частоты (МДЧ) от дальности по данным РЛИ, формирование исходной гипотезы о координатах ЛА по имеющимся априорным данным, при этом итерационно уточняют гипотезу о значениях измеряемых параметров за счет расчета гипотетической кривой МДЧ, соответствующей гипотезе, формируют сигнал ошибки гипотетической кривой МДЧ относительно кривой МДЧ по данным РЛИ, преобразуют сигнал ошибки кривой МДЧ в сигнал ошибки измеряемых параметров, суммируют его с уточняемой гипотезой, повторяют итерации и выдают в режиме слежения измеренных параметров высоты, истинной скорости и угла наклона вектора скорости ЛА относительно горизонта потребителю. 2 н. и 1 з.п. ф-лы, 4 ил.
Наверх