Способ электрохимической обработки высокоточных профильных углублений

Изобретение относится к области электрохимической обработки, в частности к способам размерной электрохимической обработки в проточном электролите при обработке углублений, выборок, выемок. В способе обрабатываемую деталь устанавливают в катодное устройство с обеспечением ее плотного прилегания к изолятору, при этом катодное устройство с деталью устанавливают на стол электрохимического станка и осуществляют обработку детали в проточном электролите с помощью неподвижного электрода-инструмента. При этом используют изолятор, выполненный с пазом для электрода-инструмента, который имеет эквидистантно заниженные размеры боковой поверхности относительно размеров контура паза на 0,2…0,3 мм, а обработку осуществляют в 6%-ном растворе натриевой селитры и с низкой линейной скоростью электрохимического растворения металла Vp мм/с в пределах 0,1-0,5 долей от величины поля допуска Δt мм на размер глубины выборки h мм, причем Vp=[0,1…0,5]⋅Δt. Техническим результатом изобретения является обеспечение высокой геометрической и статической степени точности обработки выемок, углублений, выборок за счет стабилизации линейной скорости растворения металла и стабилизации электропроводности электролита. 2 ил., 1 пр.

 

Изобретение относится к области электрохимической обработки, в частности к способам размерной электрохимической обработки в проточном электролите, и может найти применение при обработке углублений, выборок, выемок.

Известен способ электрохимической размерной обработки в проточном электролите, при котором на деталь накладывают изолятор (трафарет) и выполняют электрохимическую обработку (Патент на изобретение РФ №2230636 от 22.07.2002, опубл. 20.06.2004, МПК В23Н 3/00, В23Н 9/14).

Недостатками способа является низкая размерная точность и низкая шероховатость получаемых поверхностей.

Наиболее близким является способ электрохимической обработки высокоточных профильных углублений с неподвижным электродом-инструментом, включающим установку обрабатываемой детали в катодное устройство таким образом, чтобы изолятор плотно прилегал к обрабатываемой детали, затем устанавливают катодное устройство с деталью на стол электрохимического станка и осуществляют обработку с большим межэлектродным зазором в электролите низкой концентрации («Технологическое обеспечение проектирования и производства газотурбинных двигателей», под ред. Б.Н. Леонова, А.С. Новикова, Рыбинск, ОАО «Рыбинский дом печати». - 407 с., стр. 270-271).

Недостатками данного способа являются неустойчивость протекания процесса электрохимической обработки, связанная с неравномерностью растворения обрабатываемого металла, что приводит к низкой геометрической точности получаемых выемок, углублений, выборок.

Техническим результатом, на который направлено изобретение, является обеспечение высокой геометрической и статистической степени точности обработки выемок, углублений, выборок за счет стабилизации линейной скорости растворения металла и стабилизации электропроводности электролита.

Технический результат достигается тем, что в способе электрохимической обработки высокоточных профильных углублений в проточном электролите с неподвижным электродом-инструментом, включающим установку обрабатываемой детали в катодное устройство таким образом, чтобы изолятор плотно прилегал к обрабатываемой детали, затем катодное устройство с деталью устанавливают на стол электрохимического станка и осуществляют обработку с большим межэлектродным зазором в электролите низкой концентрации, в отличие от известного электрод-инструмент установлен в пазу изолятора с эквидистантно заниженными размерами боковой поверхности относительно размеров контура паза в изоляторе, обработка осуществляется с низкой линейной скоростью электрохимического растворения металла Vp мм/с в пределах 0,1-0,5 долей от величины поля допуска Δt мм на размер глубины выборок h мм: Vp=[0,1…0,5]⋅Δt, эквидистантное занижение размеров боковой поверхности относительно размеров контура паза в изоляторе на величину 0,2…0,3 мм, в состав электролита входит 6% раствор натриевой селитры.

На Фиг. 1 и 2 показан способ электрохимической обработки высокоточных профильных углублений.

Способ осуществляется следующим образом.

Обрабатываемую деталь 1 устанавливают в катодное устройство таким образом, чтобы изолятор 2 плотно прилегал к обрабатываемой детали 1. Затем устанавливают катодное устройство с деталью 1 на стол электрохимического станка и осуществляют обработку с большим межэлектродным зазором «а» (порядка 1 мм) в электролите низкой концентрации (Фиг. 1). В состав электролита входит 6% раствор натриевой селитры.

Причем обработку ведут с неподвижным электродом-инструментом 3 в проточном электролите.

Электрод-инструмент установлен в пазу 4 изолятора 2 с эквидистантно заниженными размерами боковой поверхности 5 относительно размеров контура паза 4 в изоляторе 2 на величину «b» 0,2…0,3 мм (фиг. 2).

Обработка осуществляется с низкой линейной скоростью электрохимического растворения металла Vp мм/с в пределах 0,1-0,5 долей от величины поля допуска Δt мм на размер глубины выборок h мм:

Vp=[0,1…0,5]⋅Δt,

где Δt - величина поля допуска глубины выборки на обрабатываемой детали;

h – глубина выборки на обрабатываемой детали.

Благодаря тому, что в способе электрохимической обработки высокоточных профильных углублений в проточном электролите с неподвижным электродом-инструментом, включающим установку обрабатываемой детали в катодное устройство таким образом, чтобы изолятор плотно прилегал к обрабатываемой детали, затем катодное устройство с деталью устанавливают на стол электрохимического станка и осуществляют обработку с большим межэлектродным зазором в электролите низкой концентрации, в отличие от известного электрод-инструмент установлен в пазу изолятора с эквидистантно заниженными размерами боковой поверхности относительно размеров контура паза в изоляторе, обработка осуществляется с низкой линейной скоростью электрохимического растворения металла Vp мм/с в пределах 0,1-0,5 долей от величины поля допуска Δt мм на размер глубины выборок h мм: Vp=[0,1…0,5]⋅Δt, эквидистантное занижение размеров боковой поверхности относительно размеров контура паза в изоляторе на величину 0,2…0,3 мм, в состав электролита входит 6% раствор натриевой селитры достигается стабилизация линейной скорости растворения металла и стабилизация электропроводности электролита, и, следовательно, достигается высокая геометрическая и статическая степени точности обработки выемок, углублений, выборок.

Пример реализации способа

Согласно заявляемому способу электрохимической обработки высокоточных профильных углублений в проточном электролите с неподвижным электродом-инструментом обработано 50 профильных углублений «выемок» или так называемых «подъемных площадок» в детали «Втулка упорного гидродинамического подшипника» газотурбинного двигателя.

Глубина выборок составляла h=0,018--0,0015+0.0030 мм. Выборки обрабатывались на поверхности с хромовым покрытием. Обработка производилась с использованием катодного устройства, в которое устанавливали деталь с плотным прилеганием к изолятору. Обработку производили на следующих режимах:

Рабочее напряжение 14 В (стабилизированное)
Рабочий ток 2,1 А
Состав электролита 6% NaNO32O
Давление электролита 0,05 МПа
Температура электролита 19…21°С
Величина межэлектродного зазора 1,0 мм
Время обработки 29…31 сек
Линейная скорость растворения металла 0,00067 мм/сек

Выемки, обработанные в детали «Втулка упорного гидродинамического подшипника», полностью соответствовали требованиям чертежа на деталь. Разброс размеров по глубине и форме дна выемок составил не более 0,0015 мм, что в три раза меньше поля допуска.

Способ электрохимической обработки высокоточных профильных углублений в металлической детали, включающий установку обрабатываемой детали в катодное устройство с обеспечением ее плотного прилегания к изолятору, установку катодного устройства с деталью на стол электрохимического станка и ее обработку в проточном электролите с помощью неподвижного электрода-инструмента, отличающийся тем, что используют изолятор, выполненный с пазом для электрода-инструмента, который имеет эквидистантно заниженные размеры боковой поверхности относительно размеров контура паза на 0,2…0,3 мм, при этом обработку осуществляют в 6%-ном растворе натриевой селитры и с низкой линейной скоростью электрохимического растворения металла Vp мм/с в пределах 0,1-0,5 долей от величины поля допуска Δt мм на размер глубины выборки h мм, причем Vp=[0,1…0,5]⋅Δt.



 

Похожие патенты:

Изобретение относится к области электрофизической и электрохимической обработки, в частности к электроэрозионному легированию, и может применяться для обработки поверхностей элементов импульсных торцевых уплотнений (ИТУ).
Изобретение относится к области электрофизических методов обработки материалов, в частности к электроискровому легированию, и может быть использовано для получения покрытий с регламентированными свойствами.

Изобретение относится к области машиностроения и может быть использовано для создания на металлических поверхностях различных покрытий методом электроискрового легирования.

Изобретение относится к покрытию изделий, инструментов и конструктивных элементов, которые должны иметь хорошие скользящие свойства или которые применяются в трибологических системах, в которых, как правило, должно применяться смазочное вещество для снижения трения.
Изобретение относится к области машиностроения, а именно к способам нанесения покрытий методами электроискрового легирования. Способ формирования износостойкого слоя на поверхности деталей из титана или сплавов на его основе включает проведение процесса методом электроискрового легирования на различных режимах, при этом на обрабатываемую поверхность упрочняемой детали предварительно наносят слой материала на основе углерода, который для адгезии к поверхности детали наносят в виде краски или пасты толщиной не менее 0,01 мм.

Изобретение относится к электроискровому нанесению покрытия и может быть использовано в машиностроительном и ремонтном производстве для получения износостойких покрытий на деталях.

Изобретение относится к электрическим методам обработки материалов и может быть использовано для повышения ресурса работы и надежности электроискровым легированием скользящих электрических контактов (СЭК), применяемых в коллекторах, вращающихся контактных устройствах (ВКУ), коммутаторах и других прецизионных контактных узлах приборов и систем автоматического управления.

Изобретение относится к области электрофизической и электрохимической обработки, в частности к электроэрозионному легированию. Способ оребрения наружной поверхности стальной трубы теплообменного аппарата включает формирование на трубе поверхностных слоев путем электроэрозионного легирования поверхности стальной трубы электродом из меди, бронзы, стали или графита, при котором задают шероховатость легированной поверхности от 1 до 200 мкм изменением энергии разряда в диапазоне Wp = 0,01-6,8 Дж.

Изобретение относится к области машиностроения, в частности к электрофизическим методам обработки закаленных стальных деталей электроискровым легированием. В способе электроискрового легирования закаленных стальных деталей осуществляют перенос легирующего материала электрода-инструмента на поверхность детали под действием импульсных электроискровых разрядов между подключенными к источнику постоянного электрического тока в качестве анода электродом-инструментом, а в качестве катода деталью.

Изобретение относится к области порошковой металлургии и катализаторной промышленности и может быть использовано для получения мелкодисперсных порошков электропроводных металлов методом электроэрозионного диспергирования.

Изобретение относится к электрохимической обработке деталей. Установка содержит источник тока, электрод-анод и катод, трубу для подвода электролита, механизм управления электродом-анодом, выполненный в виде пантографа, состоящего из нижней и верхней штанг, и устройство для удержания пантографа в рабочем положении, состоящее из пары: постоянный магнит - геркон и электромагнита.

Изобретение относится к электрохимической обработке металлов и сплавов и предназначено для обработки ступенчатых валов. Устройство содержит диэлектрический корпус, внутренняя часть которого выполнена в виде призмы, в каждой плоскости которой встроены регулируемые опоры осевой фиксации заготовки, оси которых пересекаются в центре оси заготовки и расположены друг относительно друга под углом 90°.

Изобретение относится к области размерной электрохимической обработки и может быть использовано, например, при финишной обработке профиля двигательной лопатки. При осуществлении способа используют стержневой электрод-инструмент, содержащий цилиндрическую державку с центральным каналом для подвода электролита, переходящую в рабочую часть электрод-инструмента, выполненную с эксцентриситетом относительно продольной оси державки, при этом на поверхности рабочей части со стороны максимального эксцентриситета рабочей поверхности от продольной оси державки выполнен продольный боковой паз для прокачки электролита, который также сообщается с центральным каналом для подвода электролита.

Изобретение относится к области электрохимической обработки и может быть использовано в электролитических режущих инструментах. Устройство содержит источник питания, первый катод, расположенный с возможностью образования первого зазора между ним и первой стороной заготовки для протекания электролита, второй катод, расположенный с возможностью образования второго зазора между ним и второй стороной заготовки для протекания электролита.

Изобретение относится к области высокоточной электрохимической обработки. Способ включает обработку анода-заготовки двумя катодами-инструментами на малых рабочих межэлектродных зазорах с подачей пакетов импульсов технологического напряжения, при этом сначала обрабатывают одним катодом-инструментом, а затем, после поворота анода-заготовки на 180° - вторым катодом-инструментом.

Изобретение относится к оборудованию для электрохимической обработки винтового зубчатого профиля внутренней поверхности в отверстии трубчатой заготовки для изготовления статоров с равномерной толщиной обкладки из эластомера, применяемых в винтовых героторных гидравлических двигателях для бурения нефтяных скважин.

Изобретение относится к электрохимической обработке отверстий. Установка содержит камеру, внутри которой установлена стойка с держателем для крепления электрода в зажимном устройстве с возможностью линейного перемещения электрода по горизонтальной оси, корпус, стол для закрепления детали и источник питания.

Изобретения относятся к электрохимической обработке и могут быть использованы для полирования, чистовой обработки заготовки или придания ей формы с помощью электрохимической обработки.

Изобретение относится к электрохимической размерной обработке и может быть использовано при получении углублений, формирующих турбулизаторы в узких пазах, например в охлаждающих системах тепловых двигателей.

Изобретение относится к области электрохимической обработки металлов и сплавов импульсным током и может быть использовано для получения сложнофасонных поверхностей деталей авиационных газотурбинных двигателей.
Наверх