Боевой элемент с координатором цели



Боевой элемент с координатором цели
Боевой элемент с координатором цели
Боевой элемент с координатором цели

 


Владельцы патента RU 2634875:

Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации (RU)

Изобретение относится к области ракетной техники и, в частности, к боевым элементам реактивных снарядов. Технический результат - повышение надежности работы устройства за счет возможности корректирования траектории его движения для сближения с целью. Боевой элемент с координатором цели содержит корпус с боевой частью. Предусмотрен парашют, обеспеченный возможностью вращения. Внутри корпуса перпендикулярно его продольной оси установлены выдвижные подпружиненные тормозные щитки. Устройство содержит систему автономного наведения. Она включает как минимум соединенные между собой контроллер управления перемещением и координатор цели боевого элемента. В нижней части корпуса установлены с возможностью качания два ракетных двигателя твердого топлива. Каждый из этих двигателей содержит как минимум две камеры. Сопла двигателей в выходной части состыкованы между собой по плоскости, с образованием смежных площадок. Органы управления двигателей связаны с системой автономного наведения через контроллер управления перемещением. Продольная ось одного из упомянутых двигателей параллельна продольной оси боевого элемента. Продольная ось другого двигателя перпендикулярна продольной оси боевого элемента. Парашют установлен с возможностью отстыковки от корпуса по команде контроллера управления перемещением. 3 ил.

 

Изобретение относится к области ракетной техники, а именно: к боевым элементам реактивных снарядов.

В настоящее время для повышения точности поражения разработаны и совершенствуются самоприцеливающиеся боевые элементы (СПБЭ), осуществляющие поиск цели на конечном участке полета. Для торможения и стабилизации СПБЭ широко используются парашюты. На участке поиска СПБЭ обычно расположен под определенным углом к вертикали и совершает вращение вокруг продольной оси. Датчик цели совершает обзор местности, и форма площади обзора представляет собой сходящуюся спираль.

Широко известны СПБЭ SMArt (Германия), SADARM (США), приведенные в журналах «Зарубежное военное обозрение», №11, 1994 г.; «ARMADA», 1998 г., №6, с 32; «GLOBAL DEFENCE REVEW», 1998 г.

СПБЭ SADARM содержит корпус с боевой частью и вращающуюся многокупольную парашютную систему.

Недостатком многокупольного парашюта является ограничение скорости вращения из-за его скручивания, а следовательно, ограничение площади обзора элемента, высока вероятность промаха датчика обзора мимо цели, что снижает боевую эффективность СПБЭ. У данной парашютной системы высока ветровая чувствительность, что приводит к боковому отклонению элемента.

СПБЭ SMArt содержит корпус с боевой частью и вращающийся парашют. Для уменьшения вращения элемента при вылете из артиллерийского ствола на его корпусе установлены раскрывающиеся лопасти.

Общим признаком с предложенной конструкцией самоприцеливающегося боевого элемента является наличие в составе аналогов корпуса с боевой частью и вращающегося парашюта.

Известен парашют для самоприцеливающегося боеприпаса по патенту РФ №2197711, кл. МПК F42B 15/00, содержащий купол с полюсным отверстием.

Наличие полюсного отверстия является одним из конструктивных решений, позволяющих уменьшить динамические нагрузки на парашют в момент ввода, обеспечить надежность раскрытия и отсутствие колебаний при обтекании воздушным потоком.

Известен самоприцеливающийся боевой элемент, содержащий корпус с боевой частью, вращающийся парашют с полюсным отверстием, при этом что внутри корпуса элемента перпендикулярно его продольной оси установлены выдвижные подпружиненные тормозные щитки шириной 0,5…1,0 максимального диаметра корпуса и размахом в раскрытом положении, не превышающим диаметр полюсного отверстия вращающегося парашюта, при этом расстояние от носовой части корпуса до тормозных щитков, измеряемое вдоль продольной оси корпуса, равно 1,2…2,0 координаты центра масс элемента от его носовой части (патент РФ №2451262, заявка №2011101010 от 12.01.2011 МПК: F42B 15/00, F42B 10/50-прототип).

Вышеописанный самоприцеливающийся боевой элемент работает следующим образом.

В заданной точке траектории полета реактивного снаряда выбрасывают СПБЭ, при этом вращающийся парашют вводится в набегающий воздушный поток. Стабилизирующий момент вращающегося парашюта парирует начальные угловые возмущения боевого элемента и обеспечивает ему устойчивый полет. За счет полюсного отверстия уменьшаются динамические нагрузки на парашют в момент ввода. Далее происходит выдвижение тормозных щитков в рабочее положение. За счет совместного действия щитков и парашюта происходит уменьшение скорости движения элемента до заданной величины. Одновременно с этим происходит вращение парашюта и элемента, датчик которого совершает обзор местности в поиске цели. При ее нахождении происходит срабатывание боевой части элемента.

Основными недостатками указанного самоприцеливающегося боевого элемента является значительная зависимость попадания в цель от ветровой нагрузки, возможность изменения скорости движения только по вертикальной составляющей, и соответственно невозможность корректирования траектории его движения для сближения с целью.

Задачей указанного изобретения является устранение указанных недостатков и создание боевого элемента с координатором цели, конструкция которого позволит изменять траекторию его движения для обеспечения максимально возможного сближения с целью.

Решение указанной задачи достигается тем, что предложенный боевой элемент с координатором цели, содержащий корпус с боевой частью, вращающийся парашют с полюсным отверстием, при этом внутри корпуса элемента, перпендикулярно его продольной оси установлены выдвижные подпружиненные тормозные щитки, согласно изобретению, содержит систему автономного наведения, включающую как минимум соединенные между собой контроллер управления перемещением и координатор цели боевого элемента, включающий оптический инфракрасный датчик цели, радиолокационный высотомер, соединенные с электронным блоком, при этом координатор цели дополнительно содержит магнитометрический датчик цели, соединенный с электронным блоком, включающим модуль анализа уровня инфракрасного излучения и модуль контроля изменения внешнего магнитного поля, логический модуль, один вход которого соединен с модулем анализа уровня инфракрасного излучения, другой с - модулем контроля изменения внешнего магнитного поля, выполненный с возможностью формирования на выходе управляющего сигнала на срабатывание боевого элемента, причем сигнал на выходе логического модуля формируется при условии наличия одновременно на обоих входах логического модуля сигналов, формирующихся в случае превышения установленных пороговых значений инфракрасного излучения и изменения внешнего магнитного поля, при этом в нижней части корпуса установлены с возможностью качания два ракетных двигателя твердого топлива, каждый из которых содержит как минимум две камеры, причем их сопла в выходной части состыкованы между собой по плоскости, с образованием смежных площадок, при этом органы управления их работой связаны с системой автономного наведения через контроллер управления перемещением, при этом продольная ось одного из упомянутых двигателей параллельна продольной оси боевого элемента, а продольная ось другого двигателя перпендикулярна продольной оси боевого элемента, при этом парашют установлен с возможностью отстыковки от корпуса по команде контроллера управления перемещением.

Сущность изобретения иллюстрируется чертежами, где на фиг. 1 представлен общий вид боевого элемента с выдвинутыми в рабочее положение тормозными щитками, вид сбоку, на фиг. 2 представлен общий вид боевого элемента с выдвинутыми в рабочее положение тормозными щитками, вид сверху, на фиг. 3 - вид на ракетные двигатели твердого топлива со стороны среза сопла, на фиг. 4 представлена принципиальная схема координатора цели. Цифрами «1» и «2» на фиг. 4 показаны входы в контроллер управления перемещением/логический модуль.

Координатор цели боевого элемента 1 содержит оптический инфракрасный датчик цели 2 для сканирования местности в инфракрасных лучах, радиолокационный высотомер 3 для определения высоты нахождения боевого элемента над подстилающей поверхностью, магнитометрический датчик 4 для осуществления контроля изменения внешнего магнитного поля, электронный блок 5, модуль анализа уровня инфракрасного излучения 6, модуль контроля изменения внешнего магнитного поля 7 и контроллер управления перемещением/логический модуль 8, соединенные между собой.

На корпусе боевого элемента 1 установлен вращающийся парашют 9 с полюсным отверстием 10 и два ракетных двигателя твердого топлива (РДТТ) 11 и 12. Каждый РДТТ 11 и 12 содержит камеры 13, 14 и 15, 16 соответственно.

Предложенный боевой элемент работает следующим образом.

В заданной точке траектории полета реактивного снаряда выбрасывают предложенный боевой элемент, при этом вращающийся парашют 9 вводится в набегающий воздушный поток. Стабилизирующий момент вращающегося парашюта парирует начальные угловые возмущения боевого элемента и обеспечивает ему устойчивый полет. За счет полюсного отверстия 10 уменьшаются динамические нагрузки на парашют в момент ввода. Далее происходит выдвижение тормозных щитков (не обозначены) в рабочее положение. За счет совместного действия щитков и вращающегося парашюта 9 происходит уменьшение скорости движения элемента до заданной величины. Одновременно с этим происходит вращение парашюта и координатора цели, датчики которого совершают обзор местности в поиске цели.

При включении координатора цели начинают работать высотомер 3 и электронный блок 5. При достижении заданной высоты над подстилающей поверхностью электронный блок 5 подает команду на включение оптического инфракрасного датчика цели 2 и магнитометрического датчика 4. Оптический инфракрасный датчик цели 2 осуществляет сканирование местности. Сигнал от инфракрасного датчика цели 2 поступает на вход модуля анализа уровня инфракрасного излучения 6, и, в случае превышения порогового уровня излучения, соответствующего признакам цели, с выхода модуля анализа уровня инфракрасного излучения 6 на вход логического модуля 8 подается сигнал.

Одновременно на вход модуля контроля изменения внешнего магнитного поля 7 поступает сигнал от магнитометрического датчика 4, осуществляющего контроль изменения внешнего магнитного поля. При превышении заданного порогового уровня, обусловленного присутствием объекта с заданными ферромагнитными характеристиками, с выхода модуля контроля изменения внешнего магнитного поля 7 на вход логического модуля 8 подается сигнал. При наличии на обоих входах логического модуля 8 сигналов, на выходе логического модуля 8 формируется управляющий сигнал на срабатывание боевого элемента 1.

При значительном удалении боевого элемента от цели, например при движении цели или значительной ветровой нагрузке, логический модуль 8 выдает команду на отстрел вращающегося парашюта 9 и включение ракетного двигателя твердого топлива 11 или 12, или обоих одновременно, при этом время работы двигателей 11 и 12 определяется требуемой траекторией движения к цели и требуемой тягой, создаваемой камерами 13, 14 и 15, 16. При необходимости для незначительной коррекции траектории включается камера 13 или 14, 15 или 16. При необходимости значительной коррекции траектории, включаются все камеры, в зависимости от направления полета и высоты.

При включении камер 13 и 14 двигателя 11 происходит замедление падения СПБЭ и набор требуемой высоты полета, а включение камер 15 и 16 двигателя 12 позволит приблизиться к цели на требуемое расстояние, после чего происходит срабатывание боевой части СПБЭ.

Использование предложенного технического решения позволит повысить эффективность применения боевого элемента за счет активного изменения траектории его движения для обеспечения максимально возможного сближения с целью.

Боевой элемент с координатором цели, содержащий корпус с боевой частью, парашют с полюсным отверстием, имеющий возможность вращения, при этом внутри корпуса перпендикулярно его продольной оси установлены выдвижные подпружиненные тормозные щитки, отличающийся тем, что он содержит систему автономного наведения, включающую как минимум соединенные между собой контроллер управления перемещением и координатор цели боевого элемента с оптическим инфракрасным датчиком цели, радиолокационный высотомер, соединенный с электронным блоком, при этом координатор цели дополнительно содержит магнитометрический датчик цели, соединенный с электронным блоком, включающим модуль анализа уровня инфракрасного излучения и модуль контроля изменения внешнего магнитного поля, логический модуль, один вход которого соединен с модулем анализа уровня инфракрасного излучения, другой - с модулем контроля изменения внешнего магнитного поля, выполненный с возможностью формирования на выходе управляющего сигнала на срабатывание боевого элемента, причем сигнал на выходе логического модуля имеет возможность формирования при условии наличия одновременно на обоих входах логического модуля сигналов, формирующихся в случае превышения установленных пороговых значений инфракрасного излучения и изменения внешнего магнитного поля, при этом в нижней части корпуса установлены с возможностью качания два ракетных двигателя твердого топлива, каждый из которых содержит как минимум две камеры, причем их сопла в выходной части состыкованы между собой по плоскости с образованием смежных площадок, при этом органы управления их работой связаны с системой автономного наведения через контроллер управления перемещением, при этом продольная ось одного из упомянутых двигателей параллельна продольной оси боевого элемента, а продольная ось другого двигателя перпендикулярна продольной оси боевого элемента, при этом парашют установлен с возможностью отстыковки от корпуса по команде контроллера управления перемещением.



 

Похожие патенты:

Изобретение относится к области вооружений и может быть использовано в ракетной технике. Радиоуправляемый снаряд содержит разгонный двигатель, отделяемый поддон, установленный на кормовую часть корпуса снаряда, радиоаппаратуру с антенной системой, выполненной в виде антенны с коническим диэлектрическим наконечником, размещенным на заднем торце корпуса, и наружной антенны, размещенной за стабилизатором и выполненной в виде волновода с наконечником, соединенной с торцевой антенной посредством соединительного фланца, установленного на диэлектрический наконечник и механически связанного с поддоном.

Изобретение относится к области вооружения, в частности к управляемым снарядам. Cнаряд содержит корпус с кольцевым упором внутри его передней части и поджимной гайкой в задней части, между которыми последовательно установлены боевая часть и блоки аппаратуры управления.

Реактивный двигатель включает корпус, консольный стержень, полое центральное тело, средство регулирования перемещения полого центрального тела при открытии сопла и средство перемещения полого центрального тела для закрытия сопла в заданный момент времени путем обеспечения заданной равнодействующей сил давления газообразных продуктов горения метательного вещества на центральное тело.

Изобретение относится к ракетной технике и предназначено для использования в реактивных снарядах систем залпового огня. Ракетная часть реактивного снаряда содержит корпус с теплозащитным покрытием и блок стабилизаторов.

Изобретение относится к ракетной технике и предназначено для использования в реактивных снарядах систем залпового огня. Ракетная часть реактивного снаряда содержит корпус с теплозащитным покрытием и блок стабилизаторов.

Изобретение относится к области военной техники, в частности к управляемым реактивным снарядам. Технический результат - расширение боевых возможностей реактивной артиллерии при стрельбе по малоразмерным целям.

Изобретение относится к ракетно-космической технике. В способе минимизации зон отчуждения для отделяемых частей (ОЧ) ракеты-носителя (РН) на этапе предполетной подготовки РН производят расчет параметров движения ОЧ до момента падения их на землю.
Изобретение относится к области ракетной техники. Способ парного пуска противосамолетных ракет включает запуск первой противорадиолокационной ракеты, нацеленной на радиолокатор самолета противника или на его сигнатуру от постороннего радиолокатора, летящей по упреждающей пересекающейся траектории, а затем с перерывом вслед ей запуск второй ракеты с инфракрасной головкой самонаведения, нацеленной на сопло противорадиолокационной ракеты.

Изобретение относится к боеприпасам, в частности к артиллерийским снарядам. Снаряд содержит корпус, взрыватель и взрывчатое вещество, при этом корпус выполнен из керамики, на которую намотаны концентричные слои растянутых параллельно лежащих волокон, ориентированных послойно под углом 0º, +45º, -45º к продольной оси снаряда, скрепленных между собой посредством полимерного связующего, волокна выполнены с поперечным сечением в виде равностороннего треугольника, при этом площадь поперечного сечения волокон уменьшается послойно в направлении от оси снаряда, а соседние волокна контактируют между собой взаимообращенными гранями.

Группа изобретений относится к вариантам выполнения крылатой ракеты для поражения преимущественно наземных целей. Технический результат – повышение эффективности поражения целей крылатой ракетой.

Изобретение относится к самоприцеливающимся боевым элементам реактивных снарядов. .

Изобретение относится к устройствам стабилизации тел, обтекаемых газом или жидкостью, в частности для стабилизации тел, движущихся в атмосфере и в водной среде. .

Изобретение относится к ракетной технике и может быть использовано в конструкции спасаемых исследовательских ракет в качестве устройства начального торможения, а также для торможения сбрасываемых с воздушных носителей на больших скоростях устройств.

Изобретение относится к способу имитации беспилотного летательного аппарата (БЛА) для отработки системы наведения при проведении летных испытаний. Для этого задают полетное задание с помощью модуля программатора беспилотному летательному аппарату, проводят предстартовый контроль, включают систему наведения, выставляют инерциальную систему управления, размещают имитатор БЛА на авиационном носителе, подключают бортовой разъем имитатора к аппаратуре носителя, подают питание на бортовой разъем имитатора, осуществляют полет авиационного носителя по траектории, приближенной к заданной для БЛА, производят имитацию пуска, функционирования и токопотребления БЛА, записывают информационный обмен на внутреннее запоминающее устройство, регистрируют телеметрическую информацию, производят ее обработку и анализ после полета. Обеспечивается отработка и проверка системы самонаведения при проведении летных испытаний. 2 з.п. ф-лы, 2 ил.
Наверх