Устройство для микродугового оксидирования металлов и сплавов



Устройство для микродугового оксидирования металлов и сплавов
Устройство для микродугового оксидирования металлов и сплавов

 


Владельцы патента RU 2635120:

Акционерное общество Научно-исследовательский и конструкторско-технологический институт подвижного состава (АО "ВНИКТИ") (RU)

Изобретение относится к оборудованию для электролитической обработки поверхностей металлов и сплавов и может быть использовано для получения оксидно-керамических покрытий. Устройство содержит источник трехфазного переменного или постоянного напряжения, подключенный к трехфазному мостовому выпрямителю, фильтр, первый и второй датчики напряжения, высокочастотный трансформатор, вторичная обмотка которого одним выходом подключена к обрабатываемой детали, а другим - к катодному электроду ванны, датчик тока, компьютер, управляющий микроконтроллером, выходы которого подключены к входам блока драйверов, первый и второй комбинированные стабилизаторы напряжения, мостовой инвертор напряжения, при этом силовые входы комбинированных стабилизаторов напряжения объединены и подключены к выходу фильтра, а силовые выходы - к первому и второму датчикам напряжения и к мостовому инвертору напряжения, состоящему из двух транзисторных полумостов, первый из которых подключен к силовым выходам первого комбинированного стабилизатора напряжения, а второй - к силовым выходам второго комбинированного стабилизатора напряжения, а в диагональ мостового инвертора напряжения включены последовательно соединенные датчик тока и первичная обмотка высокочастотного трансформатора. Технический результат - упрощение конструкции и системы управления и повышение надежности всего устройства. 1 ил.

 

Изобретение относится к оборудованию для электролитической обработки поверхностей металлов и сплавов и может быть использовано для получения оксидно-керамических покрытий.

Известно устройство для микродугового оксидирования металлов и их сплавов, содержащее источник питания, соединенный со вторичным источником питания, ванну для электролита, корпус которой соединен через последовательно соединенные датчик напряжения и датчик тока с оксидируемой деталью, управляющую машину, повышающий трансформатор, блок драйверов, тиристорный преобразователь напряжения, систему импульсно-фазового управления, пульт ручного управления, пульт дистанционного управления, последовательно соединенные первый выпрямитель, первый фильтр, первый импульсный преобразователь напряжения, а также последовательно соединенные второй выпрямитель, второй фильтр, второй импульсный преобразователь напряжения, входы которых соединены с выходами повышающего трансформатора, а выходы подключены к входам переключателя режимов (RU, патент №2422560, МПК C25D 11/02, опубл. 27.06.2011 г.).

Недостатками известного устройства являются сложная система управления и большие массогабаритные размеры.

Известно устройство для микродугового оксидирования изделий из металлов и металлических сплавов, содержащее источник питания, ванну с электролитом, повышающий трансформатор, управляющую электронно-вычислительную машину, датчик тока и датчик напряжения, входы которых соединены с оксидируемым изделием, вторичный источник питания, импульсные преобразователи напряжения, систему импульсно-фазового управления, пульты дистанционного и ручного управления, два фильтра, переключатель режимов работы, два выпрямителя, тиристорный преобразователь напряжения, выход которого соединен со входом силового повышающего трансформатора, выходы которого подключены к входам первого и второго выпрямителей (RU, патент №2395631, МПК C25D 11/00, 21/12, опубл. 27.07.2010 г.).

Недостатками известного устройства являются сложная система управления и большие массогабаритные размеры.

Известно устройство для плазменно-электролитического оксидирования металлов и сплавов (принятое за прототип), содержащее источник питания, ванну с электролитом для оксидирования изделия, два выпрямителя, два фильтра, два импульсных преобразователя напряжения, блок драйверов, переключатель режима работы, датчик тока и датчик напряжения, микроконтроллер, управляющую электронно-вычислительную машину, подключенную к микроконтроллеру, управляемый электронный разрядник, два измерителя напряжения, два высокочастотных силовых повышающих трансформатора, два регулятора напряжения, два коммутатора, два логических элемента «И», генератор высокочастотных сигналов, выход которого через два логических элемента «И» соответственно подключен к первым входам коммутаторов, вторые входы которых соединены вместе и подключены к источнику питания, выходы первого и второго коммутаторов подключены к входам соответственно первого и второго высоковольтных силовых повышающих трансформаторов, выходы которых соответственно подключены к входам первого и второго выпрямителей, при этом выходы первого и второго фильтров подключены к входам первого и второго измерителей напряжения и к первым входам соответственно первого и второго регуляторов напряжения, выходы которых подключены к вторым входам импульсных преобразователей напряжения (RU, патент №2441108, МПК C25D 11/00, 19/00, опубл. 27.01.2012 г.).

Недостатком известного устройства является сложность конструкции и системы управления.

Техническим результатом изобретения является упрощение конструкции и системы управления и как следствие повышение надежности.

Указанный технический результат достигается тем, что устройство для микродугового оксидирования металлов и сплавов, содержащее источник трехфазного переменного или постоянного напряжения, подключенный к трехфазному мостовому выпрямителю, выходы которого соединены с фильтром, первый и второй датчики напряжения, высокочастотный трансформатор, вторичная обмотка которого одним выходом подключена к обрабатываемой детали, а другим выходом подключена к катодному электроду ванны, заполненной электролитом, датчик тока, компьютер, управляющий микроконтроллером, выходы которого подключены к входам блока драйверов, а первый, второй и третий входы соответственно подключены к информационным выходам первого и второго датчиков напряжения и датчика тока, дополнительно содержит первый комбинированный стабилизатор напряжения и второй комбинированный стабилизатор напряжения, мостовой инвертор напряжения, при этом силовые входы комбинированных стабилизаторов напряжения объединены и подключены к выходу фильтра, информационные входы подключены соответственно к первому и второму выходам блока драйверов, а силовые выходы соответственно подключены к первому и второму датчикам напряжения и к мостовому инвертору напряжения, состоящему из двух транзисторных полумостов, при этом первый транзисторный полумост подключен к силовым выходам первого комбинированного стабилизатора напряжения, а второй транзисторный полумост подключен к силовым выходам второго комбинированного стабилизатора напряжения и в диагональ мостового инвертора напряжения, образованную последовательно включенными транзисторами первого транзисторного полумоста и транзисторами второго транзисторного полумоста, включены последовательно соединенные датчик тока и первичная обмотка высокочастотного трансформатора.

На чертеже представлена структурная схема устройства для микродугового оксидирования металлов и сплавов.

Устройство для микродугового оксидирования металлов и сплавов содержит источник 1 трехфазного переменного или постоянного напряжения, подключенный к трехфазному мостовому выпрямителю 2, выходы которого соединены с фильтром 3, первый и второй датчики напряжения 4 и 5, высокочастотный трансформатор 6, вторичная обмотка 7 которого одним выходом подключена к обрабатываемой детали 8, а другим выходом подключена к катодному электроду 9 ванны 10, заполненной электролитом 11, датчик тока 12, компьютер 13, управляющий микроконтроллером 14, выходы которого подключены к входам блока драйверов 15, а первый, второй и третий входы соответственно подключены к информационным выходам первого и второго датчиков напряжения 4 и 5 и датчика тока 12, первый комбинированный стабилизатор напряжения 16 и второй комбинированный стабилизатор напряжения 17, мостовой инвертор напряжения 18. При этом силовые входы комбинированных стабилизаторов напряжения 16, 17 объединены и подключены к выходу фильтра 3, информационные входы подключены соответственно к первому и второму выходам блока драйверов 15, а силовые выходы соответственно подключены к первому и второму датчикам напряжения 4 и 5 и к мостовому инвертору напряжения 18, состоящему из двух транзисторных полумостов 19, 20. Первый транзисторный полумост 19 подключен к силовым выходам первого комбинированного стабилизатора напряжения 16. Второй транзисторный полумост 20 подключен к силовым выходам второго комбинированного стабилизатора напряжения 17. В диагональ мостового инвертора напряжения 18, образованную последовательно включенными транзисторами 21, 22 первого транзисторного полумоста 19 и транзисторами 23, 24 второго транзисторного полумоста 20, включены последовательно соединенные датчик тока 12 и первичная обмотка 25 высокочастотного трансформатора 6.

Фильтр 3 представляет собой емкость, которая снижает уровень пульсаций после выпрямителя 2. Высокочастотный трансформатор 6 осуществляет гальваническую развязку напряжения, подводимого к детали 8 от источника 1 трехфазного переменного или постоянного напряжения.

Блок драйверов 15 усиливает по мощности сигналы, формируемые микроконтроллером 14 для управления комбинированными стабилизаторами напряжения 16, 17 и транзисторами 21, 22, 23, 24 мостового инвертора напряжения 18.

Комбинированные стабилизаторы 16, 17 формируют выходные напряжения выше или ниже напряжения с фильтра 3, величины которых задаются компьютером 13.

В зависимости от величины напряжения источника 1 трехфазного переменного или постоянного напряжения и от заданных значений амплитуд импульсов анодного и катодного напряжений, подводимых к обрабатываемой детали 8, первый и второй комбинированные стабилизаторы напряжения 16, 17 работают в режиме понижения напряжения или в режиме повышения напряжения независимо друг от друга.

Транзисторы 21, 22 транзисторного полумоста 19 и транзисторы 23, 24 транзисторного полумоста 20 представляют собой IGBT-транзисторы, включенные по полумостовой схеме, и попарно размещены в отдельных корпусах.

Устройство для микродугового оксидирования металлов и сплавов работает следующим образом.

Компьютером 13 задают микроконтроллеру 14 необходимые значения амплитуд анодного и катодного напряжений, длительность импульсов анодного напряжения, их частоту, ограничение по мощности и длительность технологического процесса. По заданным значениям амплитуд анодного и катодного напряжений и по сигналам обратной связи с первого и второго датчиков напряжения 4, 5 микроконтроллером 14 формируют импульсы управления первым и вторым комбинированными стабилизаторами напряжения 16, 17.

Значение длительности импульса катодного напряжения вычисляют микроконтроллером 14 из условия ненасыщения сердечника высокочастотного трансформатора 6:

Где Т2 - вычисленная длительность импульса катодного напряжения;

Ua - заданная амплитуда импульса анодного напряжения;

Т1 - заданная длительность импульса анодного напряжения;

Uk - заданная амплитуда импульса катодного напряжения.

В соответствии с заданным значением длительности импульса (Т1) анодного напряжения и вычисленным значением длительности импульса (Т2) катодного напряжения микроконтроллером 14 формируют импульсы управления, которые поочередно включают транзисторы 21, 24 и транзисторы 22, 23 мостового инвертора напряжения 18. Транзисторами 21, 24 подключают напряжение первого комбинированного стабилизатора напряжения 16 через датчик тока 12 к первичной обмотке 25 высокочастотного трансформатора 6 и формируют амплитуду импульса анодного напряжения. Транзисторами 22, 23 подключают напряжение второго комбинированного стабилизатора напряжения 17 через датчик тока 12 к первичной обмотке 25 высокочастотного трансформатора 6 и формируют амплитуду импульса катодного напряжения. Направление тока импульса анодного напряжения в первичной обмотке 25 высокочастотного трансформатора 6 противоположно направлению тока импульса катодного напряжения. При этом на первичной обмотке 25 высокочастотного трансформатора 6 формируются двухполярные импульсы с заданными параметрами по амплитуде и длительности, которые передаются в его вторичную обмотку 7, подключенную к обрабатываемой детали 8. По сигналам с датчика тока 12 микроконтроллером 14 осуществляют корректировку длительности импульса анодного напряжения и аварийное выключение устройства в случае короткого замыкания в нагрузке вторичной обмотки 7 высокочастотного трансформатора 6.

Предлагаемое устройство позволяет регулировать параметры выходного импульсного напряжения в широких пределах, при этом используются два идентичных канала (первый комбинированный стабилизатор напряжения 16 и первый транзисторный полумост 19, второй комбинированный стабилизатор напряжения 17 и второй транзисторный полумост 20), что упрощает конструкцию устройства и его систему управления и позволяет повысить надежность всего устройства.

Устройство для микродугового оксидирования металлов и сплавов, содержащее источник трехфазного переменного или постоянного напряжения, подключенный к трехфазному мостовому выпрямителю, выходы которого соединены с фильтром, первый и второй датчики напряжения, высокочастотный трансформатор, вторичная обмотка которого одним выходом подключена к обрабатываемой детали, а другим выходом подключена к катодному электроду ванны, заполненной электролитом, датчик тока, компьютер, управляющий микроконтроллером, выходы которого подключены к входам блока драйверов, а первый, второй и третий входы соответственно подключены к информационным выходам первого и второго датчиков напряжения и датчика тока, отличающееся тем, что оно дополнительно содержит первый комбинированный стабилизатор напряжения и второй комбинированный стабилизатор напряжения, мостовой инвертор напряжения, при этом силовые входы комбинированных стабилизаторов напряжения объединены и подключены к выходу фильтра, информационные входы подключены соответственно к первому и второму выходам блока драйверов, а силовые выходы соответственно подключены к первому и второму датчикам напряжения и к мостовому инвертору напряжения, состоящему из двух транзисторных полумостов, при этом первый транзисторный полумост подключен к силовым выходам первого комбинированного стабилизатора напряжения, а второй транзисторный полумост подключен к силовым выходам второго комбинированного стабилизатора напряжения и в диагональ мостового инвертора напряжения, образованную последовательно включенными транзисторами первого транзисторного полумоста и транзисторами второго транзисторного полумоста, включены последовательно соединенные датчик тока и первичная обмотка высокочастотного трансформатора.



 

Похожие патенты:

Изобретение относится к области гальванотехники. Способ включает изготовление каркаса гальванической линии, содержащего вертикальные стойки, которые связывают между собой с помощью верхних и нижних связей в виде металлических труб, при этом вертикальные стойки каркаса оснащают опорами и одной или двумя парами дополнительных связей, которые располагают напротив друг друга между верхними и нижними связями, причем на одной из сторон вертикальных стоек устанавливают кронштейны для крепления трубопроводов и размещения электрических линий, а дополнительные и нижние связи оснащают соединенными с ними поперечными связями, установку площадки обслуживания линии, вертикальные стойки каркаса которой соединены с вертикальными стойками каркаса линии и снабжены кронштейнами и/или креплениями-клипсами для размещения трубопроводов, установку ванн гальванической линии в виде ванн объемной гальванохимической обработки, объемной промывки и поверхностной струйно-динамической промывки в технологической последовательности на связи, поперечные дополнительным связям, а на связи, поперечные нижним связям, баки-сборники электролитов, растворов и промывной воды, причем грузоопоры для установки штанги и/или подвода тока размещают на верхнем обрамлении верхних связей или на горизонтальных направляющих вдоль площадки обслуживания, и установку коммуникаций и системы вентиляции.

Изобретение относится к области гальванотехники и может быть использовано для получения оксидно-керамических покрытий. Устройство содержит источник трехфазного переменного или постоянного напряжения, подключенного к трехфазному мостовому выпрямителю, выходы которого соединены с фильтром, первый и второй датчики напряжения, повышающий высокочастотный трансформатор, вторичная обмотка которого одним выходом подключена к обрабатываемой детали, а другим выходом к катоду ванны с электролитом, первый датчик тока, компьютер, управляющий микроконтроллером, при этом оно дополнительно содержит понижающий и повышающий стабилизаторы напряжения, второй датчик тока, информационный выход которого подключен к четвертому входу микроконтроллера, первый дроссель, активный делитель напряжения и полумостовой инвертор напряжения, при этом силовые входы понижающего стабилизатора подключены к фильтру, а силовые выходы - один напрямую и другой - через второй датчик тока и первый дроссель подключены к силовым входам повышающего стабилизатора, силовые выходы которого подключены к первому датчику напряжения, силовым входам активного делителя напряжения и полумостового инвертора, а информационные входы обоих стабилизаторов соединены соответственно с первым и вторым выходами блока драйверов, при этом активный делитель напряжения формирует амплитуды анодного и катодного напряжений.

Изобретение относится к области гальванотехники и может быть использовано при изготовлении ванн струйной обработки. Способ включает следующие операции: крепление на бортах ванны участков подводящих труб, подключение коллекторов с элементами формирования струйных потоков обрабатывающей среды к участкам подводящих труб через разъемные муфты и соединение коллекторов между собой с помощью установочно-соединительных элементов, выполненных в виде разъемного или неразъемного соединения, непосредственно или через промежуточные вставки требуемой высоты или элементы с регулируемой высотой опор-клипс с диаметрами, соответствующими диаметрам устанавливаемых в них труб соответствующих коллекторов.

Изобретение относится к оборудованию для электролитической обработки поверхности вентильных металлов и их сплавов для формирования оксидно-керамических покрытий.

Изобретение относится к электрохимической установке для формирования наноразмерного покрытия и может быть использовано в полупроводниковой и электронной промышленности.

Изобретение относится к области гальванотехники, в частности к оборудованию для нанесения химических и гальванических покрытий, и служит для гальванохимической обработки мелких деталей россыпью, в частности для нанесения гальванического покрытия на охватывающие контакты чип-резисторов.

Изобретение относится к химической жидкостной обработке деталей, помещенных в барабаны, и конструкции барабана. Линия включает расположенные в технологической последовательности ванны с барабанами, имеющими форму цилиндра или призмы, установленные соосно с возможностью вращения от общего привода в одну сторону с одинаковой угловой скоростью.

Изобретение относится к области гальванотехники и может быть использовано для хромирования длинномерных валов и штоков, в частности штоков гидроприводов силовых подъемных механизмов.
Изобретение относится к области гальванотехники, в частности к проточному электролитическому хромированию, и может быть использовано в машиностроении и других областях техники.

Изобретение относится к области гальванотехники и может быть использовано для электролитического нанесения покрытий на внутреннюю поверхность цилиндрических деталей гальваномеханическим способом.

Изобретение относится к области гальванотехники и может быть использовано для получения оксидно-керамических покрытий. Устройство содержит источник трехфазного переменного или постоянного напряжения, подключенного к трехфазному мостовому выпрямителю, выходы которого соединены с фильтром, первый и второй датчики напряжения, повышающий высокочастотный трансформатор, вторичная обмотка которого одним выходом подключена к обрабатываемой детали, а другим выходом к катоду ванны с электролитом, первый датчик тока, компьютер, управляющий микроконтроллером, при этом оно дополнительно содержит понижающий и повышающий стабилизаторы напряжения, второй датчик тока, информационный выход которого подключен к четвертому входу микроконтроллера, первый дроссель, активный делитель напряжения и полумостовой инвертор напряжения, при этом силовые входы понижающего стабилизатора подключены к фильтру, а силовые выходы - один напрямую и другой - через второй датчик тока и первый дроссель подключены к силовым входам повышающего стабилизатора, силовые выходы которого подключены к первому датчику напряжения, силовым входам активного делителя напряжения и полумостового инвертора, а информационные входы обоих стабилизаторов соединены соответственно с первым и вторым выходами блока драйверов, при этом активный делитель напряжения формирует амплитуды анодного и катодного напряжений.

Изобретение относится к электрохимическому способу нанесения покрытий и может найти применение в машиностроении и других отраслях промышленности. Устройство содержит источник силового питания, связанный с ним силовой блок управления, соединенный с ванной с электролитом с погруженной в нее деталью и измерительным блоком, причем силовой блок содержит регулирующий элемент, обеспечивающий управление напряжением, временем начала и конца и длительности анодного и катодного циклов.

Изобретение относится к области гальванотехники, в частности к твердому анодированию алюминиевых сплавов. Способ определения толщины оксидного покрытия в процессе твердого анодирования алюминиевого сплава включает измерение плотности тока и времени анодирования, а также измеряют напряжение на электролизере, рассчитывают удельное энергопотребление а толщину покрытия рассчитывают по формуле h=k⋅Q, где Q - удельное энергопотребление, кВт⋅ч/дм2, t - время анодирования, ч, J - плотность тока, A/дм2, U - напряжение на электролизере, В, h - толщина покрытия, мкм, k - эмпирический коэффициент, определяемый по тарировочной кривой зависимости h, мкм, и Q, кВт⋅ч/дм2, для анодируемого алюминиевого сплава и состава электролита.

Изобретение относится к области получения керамических покрытий методами электроплазменного напыления на изделиях из титановых сплавов и может быть использовано в приборостроении и машиностроении, в частности в деталях компрессоров и турбин газотурбинных двигателей, в имплантируемых медицинских конструкциях.

Изобретение относится к титановым лопаткам большого размера последних ступеней паротурбинных двигателей. Лопатка содержит сплав на основе титана и имеет переднюю кромку, включающую оксид титана, содержащий поры и верхний герметизирующий слой, заполняющий поры, выбранный из группы, состоящей из хрома, кобальта, никеля, полиимида, политетрафторэтилена и сложного полиэфира.

Изобретение относится к области гальванотехники и может быть использовано для изготовления катушек индуктивности для высоковольтного электрооборудования, силовых низковольтных трансформаторов, трансформаторов распределительных сетей.

Изобретение относится к области формирования функциональных покрытий, в частности оксида алюминия, на поверхности изделий из титана и его сплавов методами плазменного напыления и микродугового оксидирования.

Группа изобретений относится области медицины и может быть использовано для получения антибактериального покрытия на медицинских изделиях. Способ обработки поверхности медицинского изделия включает стадии, на которых: получают коллоидно-диспергированную систему, подвергают медицинское изделие обработке коллоидно-диспергированной системой путем погружения, создают разность потенциалов цепи переменного тока между медицинским изделием в качестве первого электрода и/или вторым электродом, помещенным в коллоидно-диспергированную систему, для превращения погруженной поверхности в оксидную пленку посредством плазменного электролитического оксидирования, при этом превращенная поверхность частично покрывается островками, образованными коллоидно-диспергированными частицами коллоидно-диспергированной системы.

Изобретение относится к медицине, а именно к ортопедической стоматологии, и предназначено для использования при изготовлении металлокерамических зубных протезов.

Изобретение относится к электрохимической обработке поверхности металлов и сплавов для получения коррозионно-стойких покрытий и может быть использовано для осуществления локальной обработки поверхности конструкций, например, из титановых сплавов в машиностроении, медицине, авиации.
Наверх