Способ очистки технического кремния

Изобретение относится к цветной металлургии, а именно к способам очистки технического кремния. Способ включает обработку расплава в присутствии флюса, состоящего из бикарбоната натрия и известняка в соотношении 1:1, при температуре кремния выше 1600°С окислительными газами, при этом 45-60% флюса загружают в ковш, затем проводят выпуск кремния в ковш, остальной флюс загружают по мере заполнения ковша через равные промежутки времени. Количество флюса, загружаемого в ковш, составляет 6-11% от массы кремния в ковше. Изобретение позволяет повысить качество технического кремния за счет снижения содержания фосфора до содержания менее 0,002%. 1 табл., 3 пр.

 

Изобретение относится к цветной металлургии, а именно к способам очистки технического кремния.

Технический кремний получают карботермическим восстановлением минерального сырья, кварца или кварцитов в электрических печах. В процессе восстановительной плавки, кроме ведущего элемента кремния, восстанавливаются и другие элементы, которые являются примесями в минеральном сырье и входят в состав золы восстановителей. Все восстановленные элементы, в подавляющем большинстве, ухудшают качество технического кремния (Ёлкин К.С., Зельберг Б.И. и др. Производство кремния. Справочник металлурга, С-Пб, МАНЭБ, 2013, 364 с.). Повышенные требования к высококачественным алюминиевым сплавам, в которых основным легирующим элементом является кремний, ограничивают содержание фосфора в кремнии и заставляют производителей кремния разрабатывать технологии по удалению фосфора.

Известен способ рафинирования расплава кремния (SU 835063, С01В 33/02, опубл. 27.07.1996), включающий в себя обработку расплава флюсом, состоящим из SiO2, NaF, Al2O3, СаО, с одновременной продувкой расплава через графитовую трубку кислородом. Недостатком данного способа рафинирования кремния является невысокая степень удаления алюминия и кальция. При этом содержание фосфора в кремнии остается прежним.

Известен способ очистки металлургического кремния увлажненной плазмой переменного тока в вакууме (RU 2465202, С30В 29/06, опубл. 27.12.2012). Способ включает разогрев в тигле кремния до получения расплава и обработку расплава плазменным факелом, направленным под острым углом к поверхности, содержащим инертный газ и пары воды, при этом разогрев и плавление неочищенного кремния производят в кварцевом тигле цилиндрической формы в вакууме с помощью графитового нагревателя. Технический результат направлен на получение из металлургического кремния чистотой 98-99.9% слитка поликристаллического кремния степени чистоты 99.9999%, при содержании фосфора не более 0.1 ppm, бора от 0.1 до 1 ppm, пригодного для изготовления фотопреобразователей промышленным способом. Недостатком данного способа является сложность аппаратурного оформления процесса и высокие затраты на очистку кремния от фосфора до малых величин, что не требуется при производстве технического кремния.

Известен способ выплавки кремния (RU 2082783, C01B 33/00, C22B 5/02, опубл. 27.06.97), для осуществления которого при выпуске кремния в ковш или изложницу в жидкий кремний вводят хлориды щелочных металлов в количестве, которое зависит от массы выпускаемого кремния. После дробления слитков кремния куски кремния промывают водой. Недостатком данного способа является недостаточно эффективная очистка кремния от примесей.

Близким по технической сути является способ рафинирования кремния и его сплавов (патент RU 2146650, C01B 33/037, опубл. 20.03.2000), включающий обработку расплава в ковше в присутствии флюса, в состав которого входят чистый кварцевый песок, известь и/или плавиковый шпат, при этом обработку расплава ведут в две стадии: на первой стадии расплав продувают смесью кислорода с воздухом и/или инертным газом в процессе выливки расплава из печи в ковш до его заполнения при непрерывной и равномерной подаче флюса на поверхность расплава, на второй стадии после заполнения ковша расплав обрабатывают воздухом и/или инертным газом до достижения температуры расплава в ковше 1450-1550°C, причем продувку расплава газами осуществляют через пористую часть днища ковша.

Недостатком данного способа является то, что при данном способе не происходит снижения содержания фосфора.

В основу изобретения положена задача, направленная на повышение качества технического кремния, получаемого восстановительной плавкой в рудно-термических печах. При этом техническим результатом является снижение содержания фосфора в кремнии до содержания менее 0,0020%.

Технический результат достигается тем, что в способе очистки технического кремния, включающем обработку расплава в ковше в присутствии флюса окислительными газами, новым является то, что в качестве флюса используют бикарбонат натрия в смеси с известняком в соотношении 1:1 в количестве 6-11% от массы кремния в ковше, загружая 45-60% флюса перед выпуском кремния из печи, остальной загружают в ковш по мере его заполнения, обработку расплава ведут при температуре кремния выше 1600°С.

Способ осуществляется следующим образом. В ковш перед заполнением его кремнием загружают флюс, состоящий из бикарбоната натрия и известняка, который может окислять и/или переводить находящийся в расплаве кремния фосфор в газообразное состояние, затем проводят выпуск кремния в ковш. По мере заполнения ковша в расплав вводят дополнительное количество флюса. Продувку кремния в ковше окислительными газами ведут все время нахождения кремния в ковше. За счет тепла кремния происходит разложение бикарбоната натрия

и окисление фосфора реакции

Газообразный РН3 удаляется в газоочистную установку, а Р2О3 переходит в шлак, где взаимодействует с СаО, образовавшегося от разложения известняка, образуя прочное химическое соединение.

При производстве кремния на промышленной печи проводили опытную очистку кремния от фосфора.

Пример 1. Во время рафинирования кремния отрабатывали соотношение составляющих флюса, при температуре кремния 1645-1680°С:

- соотношение, мас.%: бикарбонат натрия 20%, известняк 80%; исходное содержание фосфора 0,0026%, после рафинирования 0,0024%;

- соотношение, мас.%: бикарбонат натрия 30%, известняк 70%; исходное содержание фосфора 0,0026%, после рафинирования 0,0024%;

- соотношение, мас.%: бикарбонат натрия 20%, известняк 80%; исходное содержание фосфора 0,0028%, после рафинирования 0,0025%;

- соотношение, мас.%: бикарбонат натрия 40%, известняк 60%; исходное содержание фосфора 0,0024%), после рафинирования 0,0022%;

- соотношение, мас.%: бикарбонат натрия 50%, известняк 50%; исходное содержание фосфора 0,0026%, после рафинирования 0,0020%;

- соотношение, мас.%: бикарбонат натрия 60%, известняк 40%; исходное содержание фосфора 0,0025%, после рафинирования 0,0021%;

- соотношение, мас.%: бикарбонат натрия 70%, известняк 30%; исходное содержание фосфора 0,0026%, после рафинирования 0,0023%.

Оптимальным соотношением составляющих флюса можно считать соотношение, мас.%: бикарбонат натрия - 50%, известняк - 50%, или соотношение составляет 1:1.

Пример 2. Дальнейшие испытания проводили при различных соотношениях количества флюса к количеству кремния в ковше и одновременно замеряли температуру кремния во время рафинирования. Результаты опытной очистки кремния сведены в таблицу.

При температурах кремния ниже 1600°С не достигается заявленный технический результат, с использованием флюса и без флюса, примеры 1, 5, 17, 22, 23, 26, 28. При температурах выше 1600°С происходит снижение содержания фосфора в кремнии до заявленных величин.

При использовании флюса менее 6,0% и более 11% от массы кремния в ковше не происходит снижения содержания фосфора до необходимых величин, примеры 2-14, 31-34.

Оптимальное количество флюса 6-11% от массы кремния, при температуре кремния выше 1600°С, примеры 15-16, 18-21, 24-25, 27, 29-30.

Пример 3. Во время испытаний контролировали время и количество подаваемого флюса в течение рафинирования, при общем расходе флюса 7% от массы кремния, температура кремния составляла 1660-1690°C:

- подача флюса равномерно в течение выпуска; исходный фосфор 0,0026%, конечный 0,0022%;

- подача флюса в ковш перед выпуском 30%, 70% - в течение выпуска; исходный фосфор 0,0028%, конечный 0,0021%;

- подача флюса в ковш перед выпуском 40%, 60% - в течение выпуска; исходный фосфор 0,0024%, конечный 0,0020%;

- подача флюса в ковш перед выпуском 45%, в течение выпуска 55%; исходный фосфор в кремнии 0,0025%, конечный 0,0019%;

- подача флюса в ковш перед выпуском 50%, в течение выпуска 50%; исходный фосфор 0,0028%, конечный 0,0018%;

- подача флюса в ковш перед выпуском 60%, в течение выпуска 40%; исходный фосфор 0,0027%, конечный 0,0019%;

- подача флюса в ковш перед выпуском 70%, 30% - в течение выпуска; исходный фосфор 0,0025%, конечный 0,0022%.

Оптимальным вариантом подачи флюса в ковш во время рафинирования: перед выпуском 45-60%, оставшийся флюс 55-40% равномерно в течение выпуска.

Способ очистки технического кремния, включающий обработку расплава в ковше в присутствии флюса окислительными газами, отличающийся тем, что в качестве флюса используют бикарбонат натрия в смеси с известняком в соотношении 1:1 в количестве 6-11% от массы кремния в ковше, загружая 45-60% флюса перед выпуском кремния из печи, остальной загружают в ковш по мере его заполнения, обработку расплава ведут при температуре кремния выше 1600°С.



 

Похожие патенты:

Изобретение относится к области металлургии, в частности к рафинированию магния и его сплавов от неметаллических включений. Способ включает ввод рафинируемого металла с помощью заливочной трубы в печь с расплавленным флюсом, удельный вес которого больше, чем удельный вес рафинируемого металла, и пропускание металла через упомянутый слой.

Изобретение относится к технологии производства технического кремния в рудно-термических печах и его дальнейшего рафинирования для последующего производства полупроводникового и солнечного кремния.

Изобретение относится к металлургии, в частности к флюсам для электрошлаковых технологий, для сталелитейного производства и для рафинирования и модифицирования сталей.

Изобретение относится к металлургической промышленности и может быть использовано для рафинирования стали в агрегатах «ковш-печь» и вакууматорах. Шлакообразующая смесь содержит в качестве флюса отходы производства вторичного алюминия и шлаковую составляющую и дополнительно двууглекислый натрий при следующем соотношении компонентов, мас.%: двууглекислый натрий 1,0-2,0, отходы производства вторичного алюминия 10,0-30,0, шлаковая составляющая остальное.

Изобретение относится к специальной металлургии и может быть использовано при электрошлаковом переплаве отработанных изделий из различных металлов и сплавов в слитки.

Изобретение относится к технологии производства технического кремния в рудно-термических печах и его дальнейшего рафинирования. Способ рафинирования технического кремния осуществляют методом направленной кристаллизации, при этом расплав кремния охлаждают до 1420°С, погружают в него на 3-30 с металлические кристаллизаторы с начальной температурой примерно 150-200°С, выделяют на их поверхностях примеси металлов в виде интерметаллических соединений и твердых растворов с кремнием, после чего кристаллизаторы вместе с примесями удаляют из расплава и перемещают в перегретый флюс для стекания с них кремния, обогащенного примесями.

Изобретение относится к области металлургии цветных металлов и может быть использовано для производства лигатуры алюминий-скандий-иттрий, применяемой для модифицирования алюминиевых сплавов.
Изобретение относится к области металлургии и может быть использовано при получении из вторичного алюминиевого сырья глиноземсодержащих гранул для рафинирования и формирования шлакообразующего материала при выплавке стали, а также при производстве упомянутых гранул.
Изобретение относится к металлургии и может быть использовано при электрошлаковой выплавке сплошных и полых слитков из конструкционных борсодержащих сталей. Флюс содержит, мас.%: оксид алюминия 7-10, оксид магния 3-8, фторид кальция 48-57, фторид магния 28-35.

Изобретение относится к литейному производству, в частности к карбонатным смесям, используемым при рафинировании и модифицировании алюминиевых сплавов. Карбонатная смесь содержит, мас.%: 50-95 карбоната кальция и 5-50 карбоната стронция, при этом смесь состоит из частиц фракции 40-60 мкм.

Представлены способ и устройство для анодного рафинирования меди, в которых применяют технологию когерентной струи для нагрева загрузок расплавленной черновой меди и/или металлического скрапа с использованием плавильного пламени, окисления серы в расплавленной черновой меди и восстановления кислорода в расплавленной черновой меди с использованием вдуваемых сверху газовых потоков в виде когерентной струи из одной или более монофункциональных когерентно-струйных фурм в сборе.

Изобретение относится к способу и печи для получения расплава сырьевого материала, содержащего металлооксидные агломераты. Способ включает восстановление и плавление сырьевого материала, содержащего металлооксидные агломераты, и периодическое удаление мелких фракций из печи через одно или более отверстий, расположенных в ее нижней части, с обеспечением заданных характеристик постели или слоя материала по прошествии длительного времени.
Изобретение относится к области металлургии редких элементов, а именно к способу глубокой очистки висмута. Способ глубокой очистки висмута от примесей, в частности от примесей свинца и хлора, включает хлорирование расплава висмута барботированием смесью четыреххлористого углерода и инертного газа при 550-600°C и расходе четыреххлористого углерода 2-4 мл на 1 кг рафинируемого висмута с расходом инертного газа 30-35 л/час.
Изобретение относится к области металлургии редких элементов, а именно к способам глубокой очистки висмута от радиоактивных загрязнений 210Ро при использовании солянокислых растворов.
Изобретение относится к способу получения высокочистого титана для распыляемых мишеней. .

Изобретение относится к металлургии и может быть использовано для рафинирования расплава алюминия или его сплавов. .

Изобретение относится к области металлургии цветных металлов и может быть использовано при производстве распыляемых магнетронных мишеней в технологии производства кремниевых интегральных схем в микроэлектронике.

Изобретение относится к области металлургии, в частности к способу переработки стружки металлов подгруппы титана и их сплавов. .

Изобретение относится к области цветной металлургии и может быть использовано в способе и установке для рафинирования жидких металлов и сплавов из цветных металлов газами.
Изобретение относится к способу рафинирования благородных металлов и оно может быть использовано для увеличения степени извлечения благородных металлов из сплавов и их чистоты.

Изобретение относится к технологии производства технического кремния в рудно-термических печах и его дальнейшего рафинирования для последующего производства полупроводникового и солнечного кремния.
Наверх