Способы получения кремнийзамещенного гидроксиапатита и биоактивного покрытия на его основе

Изобретение относится к медицине. Описан способ получения кремнийзамещенного гидроксиапатита, включающий синтез кремнийзамещенного гидроксиапатита методом осаждения из водного раствора реагентов, содержащих ортофосфорную кислоту, гидроксид кальция и тетраэтилортосиликат, отстаивание, выделение осадка, высушивание и термообработку осадка, отличающийся тем, что термообработку осадка ведут при температуре 200-250°С в течение 2-3 часов, затем его охлаждают в течение 1-2 часов, размалывают в течение 15 мин и производят фракционирование до 90 мкм. Технический результат заключается в повышении адгезии и биоактивности за счет использования кремнийзамещенного гидроксиапатита. 2 ил.

 

Изобретение относится к технологии получения неорганических материалов, которые могут быть использованы для получения, биосовместимого покрытия металлических внутрикостных имплантатов, стимулирующих восстановление дефектов костной ткани, в том числе в стоматологии.

Известен способ получения нанокристаллического кремнийзамещенного гидроксилапатита (патент РФ на изобретение №2489534, МПК С30В 29/14, С01В 25/32, С01В 33/24, A61L 27/12, В82В 3/00, B82Y 30/00, опубл. 10.08.2013), включающий смешение фосфатов, соединений кальция и кремния, размол и механохимический синтез, при этом в качестве исходных компонентов используют двузамещенный безводный фосфат кальция, отожженный оксид кальция и аморфный гидратированный оксид кремния с содержанием воды менее 0,5 моль. Данный способ позволяет получить порошкообразный нанокристаллический однофазный продукт с размерами частиц 55-35 нм.

Однако полученные частицы с дисперсностью 55-35 нм могут найти применение только в качестве наполнителя для восстановления дефектов костной ткани и лечебных паст.

Наиболее близким к заявляемому способу получения порошка является способ получения нанокристаллического кремнийзамещенного гидроксиапатита (патент РФ на изобретение №2500840, МПК С30В 29/14, С01В 25/32, С01В 33/24, A61L 27/12, В82В 3/00, B82Y 30/00, опубл. 10.12.2013), заключающийся в синтезе кремнийсодержащего гидроксиапатита методом осаждения из водного раствора реагентов, содержащих ортофосфорную кислоту, гидроксид кальция и тетраэтилортосиликат при рН не менее 9.

Однако, размер частиц, полученный в данном способе, является непригодным для плазменного напыления биоактивных покрытий, обладающих высокой прочностью и развитой морфологией поверхности, необходимой для ускоренного процесса остеоинтеграции.

Задачей изобретения является получение порошка кремнийзамещенного гидроксиапатита (Si-ГА), пригодного для последующего плазменного напыления.

Технический результат заключается в получении кремнийзамещенного гидроксиапатита жидкофазным синтезом дисперсностью до 90 мкм, используемого в качестве компонента, входящего в состав плазмонапыленного покрытия.

Поставленная задача решается тем, что при осуществлении способа получения кремнийзамещенного гидроксиапатита, заключающемся в синтезе кремнийзамещенного гидроксиапатита методом осаждения из водного раствора реагентов, содержащих ортофосфорную кислоту, гидроксид кальция и тетраэтилортосиликат, отстаивание, выделение осадка, высушивание и термообработку осадка. Новым является то, что термообработку осадка ведут при температуре 200-250°С в течение 2-3 часов, затем его охлаждают в течение 1-2 часов, размалывают в течение 15 мин и производят фракционирование 90 мкм.

Предлагаемое изобретение поясняется чертежами: фиг. 1,2 - ИК-спектр порошка Si-ГА.

Синтез кремнийзамещенного гидроксиапатита (Si-ГА) проводят следующим образом.

Навеску гидроксида кальция массой 0,8 г при комнатной температуре добавляют к 1000 мл дистиллированной воды, перемешивают с помощью магнитной мешалки в течение 10-15 минут и оставляют на 6 часов до полного растворения гидроксида кальция.

После чего к 1000 мл 0,08%-ного водного раствора гидроксида кальция при непрерывном перемешивании добавляют 0,44 мл тетраэтилортосиликата (ТЭОС, 0,42 г, ω=99%) и раствор интенсивно перемешивают с помощью электрической мешалки еще в течение 5-10 минут. Затем 1,72 мл ортофосфорной кислоты (1,96 г 20% конц. Н3РО4) помещают в делительную воронку и добавляют по каплям в водный раствор, содержащий композицию гидроксид кальция/ТЭОС, со скоростью 0,6 мл/мин. После добавления всего объема раствора ортофосфорной кислоты проверяют рН смеси. Реакционную смесь перемешивают в течение 30 минут, а затем оставляют для старения около 24 часов при комнатной температуре. Образовавшийся осадок отфильтровывают с помощью воронки Бюхнера, с использованием фильтровальной бумаги и вакуумного насоса. Затем осадок с фильтра количественно переносят в фарфоровую чашку и сушат при 90°С в сушильном шкафу до постоянной массы.

После этого Si-ГА измельчают в мелкий порошок с использованием ступки и пестика и помещают в муфельную печь, где его термообрабатывают при 200-250°С в течение 2-3 часов при скорости нагрева 10°С/мин.

В ходе экспериментальных исследований установлено, что для сушки порошка Si-ГА целесообразно использовать интервал температур 200-250°С, так как температура сушки менее 200°С не способствует полному удалению влаги из порошка, а температура сушки более 250°С приводит к спеканию таблетки порошка и образованию его в конгломераты. Выбор времени термообработки также является технологически обоснованным, т.к. время меньше 2 часов недостаточно для проведения данной технологической операции, а время более 3 часов нецелесообразно ввиду дополнительных энергозатрат.

Полученный порошок охлаждают при комнатной температуре в течение 1-2 часов, после чего размалывают в керамической ступе нажатием пестика в течение 15 мин и выполняют фракционирование с применением сит (до 90 мкм).

Исследование ИК-спектров порошка Si-ГА проводилось с применением Фурье-спектрометра FT-801 (ООО НПФ «Симмекс», г. Новосибирск) в интервале волновых чисел 500…4000 см-1, таблетки с KBr.

ИК-анализ порошка Si-ГА показал, что образец в основном соответствует образцу синтетического гидроксиапатита, а именно имеется наличие характеристических линий валентных колебаний Р/O43- с максимумами 1065, 874,69 см-1, а также структурированной полосы деформационных плоскостного и внеплоскостного колебаний РО43- (О-Р-О) с максимумами 874,96 и 584,3 см-1. Также имеются линии, определяющие степень монокристалличности ГА (частота 3415,2 см-1 и 584,3 см-1) (Фиг. 1).

В ходе проведения эксперимента установлено, что использование порошка дисперсностью менее 100 нм технологически неэффективно, т.к. происходит слипание порошка при его нахождении в порошковом питателе, а также частичное его сжигание в процессе плазменного напыления. Крупные частицы (более 90 мкм) стабильно образуют агломераты, что приводит к неоднородности покрытия, что также нежелательно.

Таким образом, разработан способ получения кремнийзамещенного гидроксиапатита жидкофазным методом с дисперсностью до 90 мкм, предназначенного для использования в качестве компонента, входящего в состав плазмонапыленного покрытия.

Способ получения кремнийзамещенного гидроксиапатита, включающий синтез кремнийзамещенного гидроксиапатита методом осаждения из водного раствора реагентов, содержащих ортофосфорную кислоту, гидроксид кальция и тетраэтилортосиликат, отстаивание, выделение осадка, высушивание и термообработку осадка, отличающийся тем, что термообработку осадка ведут при температуре 200-250°C в течение 2-3 часов, затем его охлаждают в течение 1-2 часов, размалывают в течение 15 мин и производят фракционирование до 90 мкм.



 

Похожие патенты:

Изобретение относится к технологии получения кристаллического кремний-замещенного гидроксилапатита (Si-ГА), который может быть использован в ортопедии и стоматологии.

Изобретение относится к технологии выращивания водорастворимых оптических монокристаллов группы дигидрофосфата калия (KDP), которые могут быть использованы, например, при изготовлении активных элементов параметрических преобразователей лазерного излучения для квантовой оптики.

Изобретение относится к технологии выращивания кристаллов, предназначенных для использования в оптико-электронных устройствах. Способ выращивания кристаллов из пересыщенного раствора включает испарение растворителя с поверхности пересыщенного раствора, находящегося внутри кристаллизационного сосуда, конденсацию паров растворителя в верхней части сосуда, перетекание образовавшегося конденсата в нижнюю зону сосуда, при этом конденсат растворителя, собранный в верхней части кристаллизационного сосуда, основным насосом подают в расположенный вне сосуда контейнер, заполненный кристаллическим материалом, что обеспечивает постепенное контролируемое растворение материала, образовавшийся раствор из контейнера подают в зону кристаллизационного сосуда, заполненную пересыщенным раствором, часть раствора дополнительным насосом из верхней части контейнера по байпасной линии вновь направляют в нижнюю часть контейнера, в процессе выращивания кристалла обеспечивают контроль за изменением массы кристаллического вещества, которое находится внутри контейнера, причем по мере израсходования кристаллического вещества в контейнере в результате его растворения производят повторную загрузку контейнера кристаллическим материалом, не прерывая процесс выращивания кристалла.

Изобретение относится к технологии получения неорганических материалов, которые могут быть использованы для производства медицинских материалов, стимулирующих восстановление дефектов костной ткани, в том числе в стоматологии.

Изобретение относится к области химии, а именно к механохимическим способам получения нанокристаллического кремний-замещенного гидроксилапатита, являющегося биологически активным материалом, который может быть использован для покрытия металлических и керамических имплантатов, в качестве наполнителя для восстановления дефектов костной ткани при изготовлении медицинской керамики и композитов для стоматологии и челюстно-лицевой хирургии, а также лечебных паст.

Изобретение относится к неорганической химии, в частности к синтезу гидросульфатфосфата цезия состава Cs5(HSO 4)2(H2PO4)3 , который может быть использован в качестве твердого протонпроводящего материала.

Изобретение относится к способам получения ориентированных монокристаллов, применяемых в лазерной физике, акустоэлектронике, оптоэлектронике для реализации пьезоэлектрических и нелинейно-оптических эффектов.

Изобретение относится к технике выращивания кристаллов из растворов солей, в частности для выращивания кристаллов группы KDP (КН2РO4), которые широко применяются для изготовления элементов нелинейной оптики.

Изобретение относится к области техники, связанной со скоростным выращиванием кристаллов типа КН2РО4 (KDP) при постоянной фильтрации раствора. .

Изобретение относится к технологии переработки кальцийсодержащих техногенных отходов борного производства. Способ включает обработку отходов борного производства раствором гидроксида щелочного металла с образования гидросиликата кальция.

Изобретение относится к технологии переработки кальций- и кремнийсодержащих техногенных отходов борного производства (борогипса) и может быть использовано при производстве игольчатого волластонита для применения в цветной металлургии, в шинной, асбоцементной и лакокрасочной промышленности, в производстве керамики.

Изобретение относится к технологии получения кристаллического кремний-замещенного гидроксилапатита (Si-ГА), который может быть использован в ортопедии и стоматологии.

Изобретение относится к технологии получения неорганических материалов, которые могут быть использованы для производства медицинских материалов, стимулирующих восстановление дефектов костной ткани, в том числе в стоматологии.

Изобретение относится к области химии, а именно к механохимическим способам получения нанокристаллического кремний-замещенного гидроксилапатита, являющегося биологически активным материалом, который может быть использован для покрытия металлических и керамических имплантатов, в качестве наполнителя для восстановления дефектов костной ткани при изготовлении медицинской керамики и композитов для стоматологии и челюстно-лицевой хирургии, а также лечебных паст.

Изобретение относится к области медицины, а именно к производству лекарственных средств. .

Изобретение относится к отвержденной форме силиката кальция, которая в основном содержит тоберморит и демонстрирует картину дифракции рентгеновских лучей на порошке, в которой интенсивность дифракционного пика Ib, приписываемого плоскости (220) тоберморита, и минимальная интенсивность дифракции Ia, наблюдаемая в диапазоне углов дифракции между двумя дифракционными пиками, приписываемыми соответственно плоскости (220) и плоскости (222) тоберморита, удовлетворяет отношению Ib/Ia 3,0; демонстрирующая дифференциальную кривую распределения размеров пор, полученную с помощью ртутной порометрии, в котором логарифмическая ширина распределения диаметров пор, как измерено на высоте 1/4 от высоты максимального пика дифференциальной кривой распределения размеров пор, составляет от 0,40 до 1,20, а также описывается композитная структура армированного силиката кальция и способы для ее производства.

Изобретение относится к способу осаждения различных форм кремнезема из гидротермального сепарата, который может применяться в условиях ГеоЭС, ГеоТЭС и на гидротермальных месторождениях.

Изобретение относится к области медицины. Описан способ получения биомиметического кремний-содержащего кальций-фосфатного покрытия на сплавах титана из модельного раствора межклеточной жидкости человека, в котором предварительно готовят раствор состава: CaCl2 - 3.7424 г, MgCl2 - 0.6092 г, К2НРO4 - 2.8716 г, NaHCO3 - 4.5360 г, Na2SO4 - 0,0144 г, NaCl - 8.8784 г, Na2SiO3 - 0,0488÷0,2444 г, полученный раствор осаждают при: температуре T1=20÷25°С, значении рН 7.40±0.05 в течение 48 часов, затем осадок промывают, фильтруют, высушивают при температуре Т2=80÷85°С в течение 5 часов, из полученного кремний-содержащего кальций-фосфатного порошка готовят водную суспензию при концентрации С=1÷5 масс.
Наверх