Способ дифференциальной экспресс-диагностики бруцеллеза крупного рогатого скота

Изобретение относится к ветеринарии, эпизоотологии, а именно к способам дифференциальной экспресс-диагностики бруцеллеза крупного рогатого скота. Способ дифференциальной экспресс-диагностики бруцеллеза крупного рогатого скота, включающий исследование сывороток животных в иммуноферментном анализе с использованием специфического антигена из типичных бруцелл вида abortus, ОПС-антигена и конъюгата на основе рекомбинантного белка G, отличается тем, что исследование сывороток проводят параллельно непрямым и конкурентным методами иммуноферментного анализа с использованием ОПС-антигена в качестве конкурирующего агента, а интерпретацию результатов проводят по формуле Кэо=D1/D2*100, где D1 - оптическая плотность, измеряемая в лунке, содержащей ОП-С антиген; D2 - оптическая плотность, измеряемая в лунке, не содержащей ОП-С антиген; Кэо - коэффициент, определяющий степень эпизоотической опасности по бруцеллезу животного, от которого получен исследованный образец сыворотки крови, и при 0≤К≤60 - отсутствие у животного эпизоотической опасности по бруцеллезу; 61≤К≤100 и выше - наличие у животного высокой эпизоотической опасности по бруцеллезу. 3 пр., 3 табл.

 

Изобретение относится к ветеринарии, эпизоотологии, а именно к способам дифференциальной экспресс-диагностики бруцеллеза крупного рогатого скота.

Принципиально важной является возможность не только выявить максимальное число бруцеллоносителей, спровоцированных вакцинацией, но и оценить степень их эпизоотической опасности, не допустив сдачу на убой животных с реакциями вакцинного происхождения (Косилов И.А., Аракелян П.К., Димов С.К., Хлыстунов А.Г. Бруцеллез сельскохозяйственных животных / под ред. И.А. Косилова. - Новосибирск, 1999. - 344 с.).

В настоящее время имеется ряд способов, направленных на дифференциальную диагностику бруцеллеза. Так, в нашей стране до настоящего времени реакция агглютинации (РА) и реакция связывания комплемента (РСК) с единым бруцеллезным диагностикумом, изготовленным из типичных бруцелл в S-форме, являются обязательным диагностическим комплексом при бруцеллезе животных (Наставление по диагностике бруцеллеза животных/ утверждено Минсельхозом РФ 29.09.2003 №13-5-02/0850), вполне приемлемым при условии использования в сроки, когда нет препятствий в виде поствакцинальных реакций (Косилов И.А., Аракелян П.К., Димов С.К., Хлыстунов А.Г. Бруцеллез сельскохозяйственных животных / под ред. И.А. Косилова. - Новосибирск, 1999. - 344 с.).

Однако, комплекс РА+РСК в ранние сроки после вакцинации, когда провоцирующие свойства вакцин, как аггллютиногенных, так и слабоагглютиногенных, проявляются наиболее ярко, оказались не способными объективно выявлять бруцеллоносителей, оценивать и прогнозировать степень эпизоотической опасности животных по бруцеллезу и уровень активности бруцеллезной инфекции в целом по стаду

Такой дифференциально-диагностической способностью даже в ранние сроки после вакцинации обладают О-ПС антигены (О-цепь полисохаридов) при исследовании сывороток крови животных в реакции иммунодиффузии(РИД) в агаровом геле. В частности, из бруцелл вида abortus был получен высокоочищенный О-ПС антиген. Принципиальный механизм его дифференцирующих возможностей заключается в том что у животных при их заражении вирулентными штаммами бруцелл синтез специфических преципитирующих антител (выявляемых в РИД) происходит, а при сенсибилизации слабовирулентными штаммами (включая вакцинные) - нет (Чекишев В.М., Колганова О.А. Средства и методы дифференциальной поствакцинальной серологической диагностики бруцеллеза животных / монография - Новосибирск, 2010. - 130 с.). Указанный антиген был внедрен в широкую ветеринарную практику в составе тест - системы (Наставление по диагностике бруцеллеза животных/ утверждено Минсельхозом РФ 29.09.2003 №13-5-02/0850).

Однако РИД с О-ПС антигеном не обладает свойствами способа экспресс-диагностики, так как на ее постановку и учет уходит 2 суток. Кроме того, она имеет такие существенные недостатки, как большая трудоемкость, субъективная оценка результатов диагностики, невозможность стандартизации проведения диагностики.

Наиболее близким к заявляемому способом (прототипом), является способ, основанный на использовании ИФА.

ИФА является наиболее современным и эффективным из известных способов экспресс-диагностики бруцеллеза у крупного рогатого скота. В частности, была разработана новая скрининговая тест-система ИФА. Ее использование возможно даже у животных, иммунизированных против бруцеллеза В случае выявления животных с положительными и сомнительными результатами ИФА необходимо прибегать к РА и РСК, а также дополнительным дифференциальным методам (Димова А.С., Димов С.К., Сизов А.А., Сизов Д.А., Аракелян П.К. Эффективность диагностики бруцеллеза крупного рогатого скота в новой тест-системе ИФА. - ж. Ветеринария, 2015. №8. С. 18-20).

Недостатком данного способа является то, что он в известных вариантах не может быть использован в дифференциальной поствакцинальной диагностике бруцеллеза крупного рогатого скота, иммунизированного живыми противобруцеллезными вакцинами.

Задачей заявляемого решения является расширение арсенала экспресс-методов диагностики бруцеллеза крупного рогатого скота, способных осуществлять дифференциацию реакций вакцинного и инфекционного происхождения и оценивать степень эпизоотической опасности реагирующих животных.

Поставленная техническая задача решается тем, что в способе дифференциальной экспресс-диагностики бруцеллеза крупного рогатого скота, включающем исследование сывороток животных в иммуноферментном анализе с использованием специфического антигена из типичных бруцелл вида abortus, ОПС-антигена и конъюгата на основе рекомбинантного белка G, согласно изобретению, исследование сывороток проводят параллельно непрямым и конкурентным методами иммуноферментного анализа с использованием ОПС-антигена в качестве конкурирующего агента, а интерпретацию результатов проводят по формуле

где

D1 - оптическая плотность, измеряемая в лунке, содержащей ОП-С антиген (конкурентный иммуноферментный анализ);

D2 - оптическая плотность, измеряемая в лунке, не содержащей ОП-С антиген (непрямой иммуноферментный анализ);

Кэо - коэффициент, определяющий степень эпизоотической опасности по бруцеллезу животного, от которого получен исследованный образец сыворотки крови, и имеющий две градации:

0≤К≤60 - отсутствие у животного эпизоотической опасности по бруцеллезу;

61≤К≤100 и выше - наличие у животного высокой эпизоотической опасности по бруцеллезу.

Способ осуществляют следующим образом:

1.1. Получение и использование антигенов

В качестве антигена, сорбированного на поверхность полистирольных планшет, применяется препарат, изготовленный только из типичных бруцелл (суточная культура штамма В. abortus 19, находящегося в стабильной S-форме), полученный следующим образом.

Жидкую суточную культуру В. abortus 19 разливают по 1 мл в пробирки типа «Эппендорф», центрифугируют в течение 15 минут при 5 тыс. об./мин. Супернатант удаляют, а осадок ресуспендируют в 0,15 М растворе хлористого натрия (NaCl), добавляя по 1 мл в каждую пробирку с осадком. Пробирки помещают в водяную баню при 85 градусах С и инкубируют в течение 15 минут, после чего охлаждают в ледяной бане в течение 5 минут. Охлажденные пробирки центрифугируют в течение 15 минут при 15 тыс. об./мин. Супернатант, содержащий антигены, сливают в стеклянный стакан, перемешивают, определяют концентрацию белка. Для сорбции используют раствор антигена с концентрацией белка 10 мкг/мл, для чего требуемое количество раствора антигена растворяют в необходимом количестве карбонатно-бикарбонатного буфера.

1.2 В качестве антигена для конкурентного анализа применяют ОПС-антиген, входящий в официально утвержденную и выпускаемую НПЦ «ВетБиоТест» тест-систему для диагностики бруцеллеза крупного рогатого скота и северных оленей в РИД».

2. Использование конъюгата

Для обеспечения возможности универсального использования при исследовании сывороток крови различных видов животных применяется конъюгат на основе существующего рекомбинантного белка G, позволяющий без потери чувствительности и специфичности тестировать сыворотки крови крупного и мелкого рогатого скота, лошадей, свиней, верблюдов, кроликов, в отличие от используемого в ближайшем прототипе конъюгата на основе моноклональных антител против иммуноглобулинов конкретно одного вида животных.

Для этого при приготовлении такого конъюгата используют метод периодатного окисления.

Коммерческий препарат пероксидазы хрена (POD) смешивают с раствором периодата натрия, инкубируют в течение 20 минут, после чего белок осаждают насыщенным раствором сульфата аммония. Осадок отделяют центрифугированием, растворяют в карбонатно-бикарбонатном буфере. К образовавшемуся раствору активированной пероксидазы добавляют коммерческий препарат рекомбинантного белка G, инкубируют при температуре 37 градусов С.

Синтезированный конъюгат осаждают насыщенным раствором сульфата аммония, отделяют центрифугированием, растворяют в буфере, определяют рабочий титр, после чего используют в иммуноферментной диагностике бруцеллеза.

3. Постановка ИФА:

в способе дифференциальной экспресс-диагностики бруцеллеза животных используется метод парного исследования сывороток, при котором каждая сыворотка исследуется параллельно двумя методами иммуноферментного анализа -

1. Классическим иммуноферментным методом, при котором находящиеся в сыворотке крови животного специфические иммуноглобулины класса G (жидкая фаза) связываются со специфическим антигеном из типичных бруцелл вида abortus, сорбированном на поверхность лунки полистиролового планшета (твердая фаза);

2. Методом конкурентного иммуноферментного анализа, при котором в жидкую фазу добавляется ОПС-антиген, обладающий дифференциально-диагностическими возможностями (дифференциация реакций вакцинного и инфекционного происхождения и оценка степени эпизоотической опасности реагирующих животных) в качестве агента, конкурирующего со специфическими иммуноглобулинами класса G сыворотки крови животного за связывание со специфическим антигеном из типичных бруцелл вида abortus, сорбированном на поверхность лунки полистиролового планшета (твердая фаза);

Связавшиеся с твердой фазой специфические иммуноглобулины класса G в обоих методах регистрируют с использованием конъюгата на основе рекомбинантного белка G - пероксидаза хрена с последующей ферментативной реакцией разложения перекиси водорода и окисления хромогена с переходом из бесцветной в окрашенную фазу.

Для постановки реакции в две лунки полистиролового планшета для ИФА добавляют буферный раствор: в первую лунку - стандартный буферный раствор для разведения сыворотки, обеспечивающий соответствующую рН и ионную силу, необходимую для проведения стадии специфического связывания антител сыворотки крови с бруцеллезным антигеном.

Во вторую лунку так же добавляют стандартный буферный раствор для разведения сыворотки, в который вносят ОП-С антиген в количестве, эквимолярном количеству бруцеллезного антигена, сорбированного на поверхность лунок планшета.

В обе лунки вносят одинаковое количество сыворотки крови от обследуемого животного, и инкубируют при 37°С в течение 30-60 мин при регулярном встряхивании.

После инкубации содержимое лунок удаляют, тщательно отмывают от следов сыворотки, и добавляют конъюгат на основе рекомбинантного белка G, после чего инкубируют при 37°С в течение 30-60 мин при регулярном встряхивании.

После инкубации содержимое лунок удаляют, тщательно отмывают от следов конъюгата. Для проявления результатов реакции в лунки добавляют хромоген (тетраметилбензидин, либо аналогичный) и инкубируют в темноте при 37°С в течение 10-15 мин. По окончании инкубации реакцию останавливают добавлением серной кислоты до конечной концентрации 0,2 М/Л.

Результаты реакции регистрируют на спектрофотометре. Оптическую плотность (ОП) измеряют при длине волны 450 нм.

Интерпретацию результатов осуществляют по формуле

где

D1 - оптическая плотность, измеряемая в лунке, содержащей ОП-С антиген (конкурентный иммуноферментный анализ);

D2 - оптическая плотность, измеряемая в лунке, не содержащей ОП-С антиген (классический иммуноферментный анализ);

К.эо - коэффициент, отражающий процентное отношение показателя D1 к показателю D2. Этот коэффициент определяет степень эпизоотической опасности по бруцеллезу животного, от которого получен исследованный образец сыворотки крови, и сопоставим с результатами, получаемыми при исследовании сывороток крови животных на бруцеллез в РИД с О-ПС антигеном

При этом установили следующую градацию:

0≤К≤60 - коэффициент, определяющий отсутствие у животного высокой эпизоотической опасности по бруцеллезу (РИД с О-ПС антигеном - отрицательная);

61≤К≤100 и выше - коэффициент, определяющий наличие у животного высокой эпизоотической опасности по бруцеллезу (РИД с О-ПС антигеном - положительная).

Для иллюстрации способа приведены примеры:

Пример 1

Изучали специфичность показаний ИФА с обычным антигеном, изготовленным из бруцелл вида abortus, с параллельным использованием О-ПС-антигена в конкурентном анализе, при исследовании сывороток крови крупного рогатого скота с отрицательными результатами РА+РСК и РИД с О-ПС антигеном из благополучных по бруцеллезу стад без вакцинации и с вакцинацией и против бруцеллеза (таблица 1).

Результаты исследования в ИФА сывороток крови крупного рогатого скота с отрицательными результатами РА+РСК и РИД с О-ПС антигеном из благополучных по бруцеллезу стад без вакцинации и с вакцинацией против бруцеллеза

При исследовании на бруцеллез сывороток крови от крупного рогатого скота благополучных стад, не подвергавшегося вакцинации, по комплексу серологических реакций (РА+РСК, РИД) все пробы (5 проб) показали отрицательный результат. В ИФА при отрицательном и положительном контролях с учетом результатов классического и конкурентного вариантов во всех пробах (5 пробах) К.эо составил 0≤К≤60.

При исследовании на бруцеллез сывороток крови от крупного рогатого скота благополучных стад, не подвергавшегося вакцинации, по комплексу серологических реакций (РА+РСК, РИД) все пробы (13 проб) показали отрицательный результат. В ИФА при отрицательном и положительном контролях с учетом результатов классического и конкурентного вариантов во всех пробах (13 проб) К.эо составил 0≤К≤60.

Пример 2

Изучали дифференциально-диагностическую эффективность ИФА с антигеном, изготовленным из бруцелл вида abortus, и дополнительным использованием О-ПС антигена в конкурентном анализе, при исследовании сывороток крови крупного рогатого скота с положительными и сомнительными результатами РА+РСК и отрицательной РИД с О-ПС антигеном из благополучных по бруцеллезу хозяйств с вакцинацией против бруцеллеза (таблица 2).

При исследовании на бруцеллез 55 проб сывороток крови от крупного рогатого скота благополучных стад из 5 хозяйств, подвергавшегося вакцинации, по комплексу серологических реакций (РА+РСК) все пробы (55 проб) показали положительный или сомнительный результат(в разном сочетании). РИД с О-ПС антигеном во всех 55 пробах была отрицательной. В ИФА при отрицательном и положительном контролях с учетом результатов классического и конкурентного вариантов во всех пробах (55 проб) К.эо составил 0≤К≤60.

Результаты исследования в ИФА сывороток крови крупного рогатого скота с положительными и сомнительными результатами РА+РСК и отрицательной РИД с О-ПС антигеном из благополучных по бруцеллезу стад с вакцинацией против бруцеллеза

Пример 3

Изучали дифференциально-диагностическую эффективность ИФА с антигеном, изготовленным из бруцелл вида abortus, и дополнительным использованием О-ПС антигена в конкурентном анализе, при исследовании сывороток крови крупного рогатого скота с различными показаниями РА+РСК и РИД с О-ПС антигеном из неблагополучных по бруцеллезу хозяйств без вакцинации и с вакцинацией против бруцеллеза (таблица 3).

При исследовании на бруцеллез 10 проб сывороток крови от крупного рогатого скота неблагополучных по бруцеллезу стад, не подвергавшегося вакцинации, с различными показателями у серологических реакций (РА+РСК) в ИФА при отрицательном и положительном контролях с учетом результатов классического и конкурентного вариантов К.эо составил во всех 5 пробах с отрицательной РИД 0≤К≤60, а, а во всех 5 пробах с положительной РИД - 61≤К≤100 и выше.

При исследовании на бруцеллез 10 проб сывороток крови от крупного рогатого скота неблагополучных по бруцеллезу стад, подвергавшегося вакцинации, с различными показателями у серологических реакций (РА+РСК) в ИФА при отрицательном и положительном контролях с учетом результатов классического и конкурентного вариантов К.эо составил во всех 5 пробах с отрицательной РИД 0≤К≤60, а, а во всех 5 пробах с положительной РИД - 61≤К≤100 и выше.

Результаты исследования в ИФА сывороток крови крупного рогатого скота с различными показаниями РА+РСК и и РИД с О-ПС антигеном из неблагополучных по бруцеллезу стад без вакцинации и с вакцинацией против бруцеллеза

Таким образом, основываясь на результатах, приведенных во всех трех примерах, установлена закономерность: в сыворотках крови крупного рогатого скота с различными эпизоотическими и иммунологическими характеристиками(независимо от результатов РА и РСК), исследованных на бруцеллез в ИФА с параллельным использованием классического и конкурентного(с добавлением О-ПС антигена) вариантов К.эо составлял во всех случаях при отрицательной РИД с О-ПС атигеном 0≤К≤60, а при положительной РИД с О-ПС антигеном - 61≤К≤100 и выше.

Установленная закономерность позволяет предлагать вместо официально принятой в дифференциальной поствакцинальной дигностике бруцеллеза крупного рогатого скота РИД с О-ПС антигеном, на постановку и учет которой уходит до 48 часов, применять иммуноферментный анализ в двух параллельных вариантах постановки - классическом с использованием специфического антигена из типичных бруцелл вида abortus и конкурентном - с дополнительным использовании О-ПС антиген при конъюгате на основе рекомбинантного белка G (учет реакций через 2 часа).

Преимущества данного способа:

- высокая специфичность;

- высокая дифференциально-диагностическая активность;

- высокая воспроизводимость;

- значительная экономия времени, затрачиваемого на проведение исследований, учет и интерпретацию полученных результатов, простота и объективность этих процессов за счет их инструментального обеспечения;

- высокая безопасность (за счет исключения прямого контакта с антигеном, автоматического пипетирования проб и др.).

Способ дифференциальной экспресс-диагностики бруцеллеза крупного рогатого скота, включающий исследование сывороток животных в иммуноферментном анализе с использованием специфического антигена из типичных бруцелл вида abortus, ОПС-антигена и конъюгата на основе рекомбинантного белка G, отличающийся тем, что исследование сывороток проводят параллельно непрямым и конкурентным методами иммуноферментного анализа с использованием ОПС-антигена в качестве конкурирующего агента, а интерпретацию результатов проводят по формуле

, где

D1 - оптическая плотность, измеряемая в лунке, содержащей ОП-С антиген (конкурентный иммуноферментный анализ);

D2 - оптическая плотность, измеряемая в лунке, не содержащей ОП-С антиген (непрямой иммуноферментный анализ);

Кэо - коэффициент, определяющий степень эпизоотической опасности по бруцеллезу животного, от которого получен исследованный образец сыворотки крови, и имеющий две градации:

0≤К≤60 - отсутствие у животного эпизоотической опасности по бруцеллезу;

61≤К≤100 и выше - наличие у животного высокой эпизоотической опасности по бруцеллезу.



 

Похожие патенты:

Группа изобретений относится к медицине и касается способа измерения активности натуральных клеток-киллеров (NK-клеток), включающего стимулирование NK-клеток в образце цельной крови посредством инкубирования образца цельной крови со средством, включающим по меньшей мере один стимулирующий цитокин, выбранный из группы, состоящей из интерлейкина 2, интерлейкина 15 и интерлейкина 18, и измерение количества секретируемых NK-клетками цитокинов, секретированных в образце цельной крови.

Группа изобретений относится к медицине и касается способа идентификации В-клеточного клона, который специфически связывается с мишеневым антигеном, предусматривающего наличие множества В-клеток; взаимодействие В-клеток с мишеневым антигеном, где мишеневый антиген содержит первую сортируемую метку, и окрашивание множества В-клеток анти-IgG антителами, содержащими вторую сортируемую метку, и анти-IgM антителами, содержащими третью сортируемую метку; отделение от множества В-клеток одной или нескольких В-клеток, которые могут специфически связываться с мишеневым антигеном, используя клеточный сортер.

Изобретение относится к медицине, а именно к гинекологии, и может быть использовано для прогнозирования развития распространенных форм инфильтративного эндометриоза.
Изобретение относится к медицине, а именно, к способу определения угрозы прерывания беременности на 7-9 неделях гестации вследствие подавления активности мембранных рецепторов к прогестерону при обострении цитомегаловирусной инфекции.

Изобретение относится к медицине, а именно к кардиологии, может быть использовано для прогнозирования развития жизнеопасных предсердных аритмий у больных с гипертонической болезнью.

Изобретение относится к области медицины, лабораторной диагностики и представляет собой способ диагностики бруксизма путем проведения клинического обследования и исследования крови, отличающийся тем, что в сыворотке крови больного определяют содержание серотонина и при его концентрации ниже 180 нг/мл диагностируют бруксизм.

Изобретение относится к медицине, а именно к аллергологии и иммунологии, и может быть использовано для диагностики аллергии. Для этого осуществляют подготовку пробы биологического материала (копрофильтрат) с последующей спектрофотометрией при 405 нм.

Изобретение относится к области биотехнологии и касается рекомбинантного штамма E. coli, являющегося продуцентом антигена возбудителя сибирской язвы Bacillus anthracis.

Изобретение относится к области биотехнологии и касается рекомбинантного штамма E. coli, являющегося продуцентом антигена возбудителя сибирской язвы Bacillus anthracis.
Группа изобретений относится к медицине и касается диагностических реагентов для клинической лабораторной диагностики сифилитической инфекции. Заявлены стабилизированный кардиолипиновый антиген и способ его получения.

Группа изобретений относится к медицине, а именно к гастроэнтерологии, и может быть использована для диагностики ассоциированного с кишечником заболевания и/или ассоциированной с кишечником патологии у животного. Способ включает получение образца от указанного животного. Проводят измерение первого сигнала, полученного за счет связывания первой части образца с антигеном цельной пшеницы, содержащим растворимые в спирте и растворимые в воде антигены пшеницы. Измеряют второй сигнал, полученный за счет связывания второй части образца с антигеном глиадина, включающим дезамидированный α-глиадин. Также проводят измерение третьего сигнала, полученного за счет связывания третьей части образца с антигеном, выбранным из группы, состоящей из: (1) агглютинина зародыша пшеницы; (2) глютеоморфина; (3) глютенина; (4) дезамидированного глютенина; и (5) продинорфина, и анализ результатов указанного теста. При этом полученные результаты свидетельствуют о наличии целиакии в случае, если указанный первый сигнал свидетельствует о присутствии IgA или IgG против указанных антигенов пшеницы, указанный второй сигнал свидетельствует о присутствии IgA или IgG против антигена глиадина, и указанный третий сигнал свидетельствует о присутствии IgA или IgG против по меньшей мере одного антигена, выбранного из группы, состоящей из глютеоморфина, глютенина, дезамидированного глютенина и продинорфина. Полученные результаты свидетельствуют о наличии глютеновой иммунореактивности и чувствительности в случае, если указанный первый сигнал свидетельствует о присутствии IgA или IgG против указанных антигенов пшеницы, указанный второй сигнал свидетельствует о присутствии IgA или IgG против антигена глиадина, за исключением дезамидированного α-глиадина, и указанный третий сигнал свидетельствует о присутствии IgA или IgG против по меньшей мере одного антигена, выбранного из группы, состоящей из глютеоморфина, глютенина, или свидетельствует об отсутствии IgA или IgG против дезамидированного глютенина. Группа изобретений относится также к варианту способа диагностики, к планшету для осуществления теста для применения в способе дианостики. Использование данной группы изобретений позволяет дифференцировать глютеновую иммунореактивность и чувствительность, латентную целиакию, болезнь Крона и другие кишечные патологии от классической целиакии. 4 н. и 20 з.п. ф-лы, 7 ил., 8 табл., 4 пр.

Группа изобретений относится к медицине, а именно к иммунологии, и может быть использована для ранней диагностики и мониторинга заболевания у субъекта с использованием циркулирующих тканевых макрофагов. Способ включает этапы: a) обеспечения биологического образца для тестирования от указанного субъекта, причем указанный образец содержит циркулирующие тканевые макрофаги (СТМ); b) окрашивания указанных СТМ с использованием панели дифференциально меченых различных антител против опорных маркеров CD14, CD16, CD300e, CD36 и HLADR с целью идентификации и подсчета различных субпопуляций СТМ; c) фиксации, пермеабилизации и окрашивания СТМ с использованием одного или нескольких антител для обнаружения против одного или более эпитопов по меньшей мере одного протеазо-индуцированного фрагмента белка, полученного в результате внутриклеточной деградации не принадлежащего СТМ белка, отдельными СТМ в тканях, из которых они происходят, тем самым идентифицируя по меньшей мере одну субпопуляцию циркулирующих тканеспецифических макрофагов (CTSM). Далее проводят анализ с применением многопараметрической проточной цитометрии указанных окрашенных СТМ и CTSM путем селективного пропускания по опорным маркерам CD14, CD16, CD300e, CD36 и HLADR с целью определения количества сигналов каждого определенного меченого антитела, связанного с отдельными клетками. Определяют относительное и абсолютное количество отдельных клеток в каждой субпопуляции СТМ и каждой специфической субпопуляции CTSM, экспрессирующих каждый из измеренных внутриклеточных эпитопов. Расчет относительного и абсолютного количества клеток проводят в каждой субпопуляции СТМ и каждой специфической субпопуляции CTSM, каждое из которых происходит из различных нормальных и измененных тканей, что определяют с помощью оцениваемого набора отдельных протеазо-индуцированных фрагментов белка. Проводят определение количества связанного с антителами сигнала, ассоциированного с каждым отдельным оцениваемым внутриклеточным пептидом, с целью получения профиля окрашивания CTSM. А также сравнивают тестируемый профиль окрашивания CTSM с нормальным профилем окрашивания CTSM для каждой оцениваемой ткани, причем повышенное количество CTSM свидетельствует о наличии заболевания. Группа изобретений относится также к набору для ранней диагностики и мониторинга заболевания у субъекта с использованием циркулирующих тканевых макрофагов. Использование данной группы изобретений позволяет проводить раннюю диагностику и мониторинг заболевания у субъекта с использованием циркулирующих тканевых макрофагов по опорным маркерам CD14, CD16, CD300e, CD36 и HLADR. 2 н. и 21 з.п. ф-лы, 2 табл., 2 пр., 7 ил.

Изобретение относится к области биотехнологии, конкретно к применению выделенного антитела к CXCR4 в диагностике рака, что может быть использовано в медицине. В частности, раскрыты способы диагностики и/или прогнозирования онкогенного расстройства, связанного с экспрессией CXCR4, определения, является ли указанное расстройство или пациент, страдающий им восприимчивым к лечению анти-CXCR4 антителом, способы определения эффективной схемы лечения и наборы для лечения указанных заболеваний. Изобретение позволяет проводить эффективную диагностику и терапию онкогенных расстройств, характеризующихся экспрессией CXCR4. 5 н. и 13 з.п. ф-лы, 7 ил., 3 табл., 7 пр.

Группа изобретений относится к медицине, а именно к трасплантологии, и может быть использована для обнаружения циркулирующих в крови клеток, полученных из ткани пуповины человека, после их введения. Способ включает анализ клеток, полученных из ткани пуповины человека, и мононуклеарных клеток периферической крови пациента для определения одного или более маркеров, характерных для циркулирующих клеток, полученных из ткани пуповины человека, в крови пациента, которому были введены клетки; сравнение одного или более маркеров, характерных для циркулирующих клеток, полученных из ткани пуповины человека (hUTC), в крови пациента, которому были введены клетки, и одного или более маркеров, характерных для мононуклеарных клеток периферической крови человека; анализ образца проводят при помощи аналитической методики обнаружения одного или более уникальных маркеров, характерных для циркулирующих клеток hUTC, в крови пациента, которому были введены клетки; разделение мононуклеарных клеток периферической крови пациента и циркулирующих клеток hUTC, в крови пациента, которому были введены клетки, полученные из ткани пуповины человека, на основании обнаружения одного или более уникальных маркеров. Маркеры, характерные для hUTC, содержат CD10 и/или CD13. Группа изобретений относится также к вариантам способа определения hUTC и набору для применения в способе обнаружения в крови hUTC. Использование данной группы изобретений однозначно позволяет обнаружить клетки человека, полученные из ткани пуповины, в образце пациента, даже при небольшом их количестве. В частности, изобретение обеспечивает обнаружение подобных клеток для терапевтических целей без ограничения по кариотипу клеток для терапевтических целей (XY против XX) и полу реципиента (пациента). 4 н. и 22 з.п. ф-лы, 11 пр., 5 ил., 11 табл.

Изобретение относится к области медицины, а именно к офтальмологии и неврологии, и предназначено для прогнозирования развития рассеянного склероза (PC) у больных с оптическим невритом (ОН) подострого течения. В сыворотке крови определяют уровень оптической плотности для антител класса IgM к S-антигену сетчатки. Регистрируют величины пиковой латентности и амплитуды Р100 зрительных вызванных потенциалов (ЗВП), амплитуду N95 паттерн-электроретинограммы (ПЭРГ), фотопический негативный ответ в колбочковой ЭРГ (ФНО). При уровне оптической плотности для антител класса IgM к S-антигену сетчатки равном и более 0.15, удлинении пиковой латентности Р100 ЗВП на 20% и более, снижении амплитуды N95 ПЭРГ и/или амплитуды ФНО на 20% и более прогнозируют развитие рассеянного склероза. Использование изобретения обеспечивает возможность своевременного оказания специализированной помощи для предотвращения усугубления течения рассеянного склероза. 3 пр.

Изобретение относится к медицине и может быть использовано для обнаружения антитела в тестируемом образце, содержащем жидкость организма субъекта-млекопитающего. При этом указанное антитело направлено на чужеродный антиген, введенный в указанного субъекта-млекопитающего. Способ включает стадии: (а)приведение тестируемого образца в контакт со множеством различных количеств антигена, специфичного в отношении антитела, (b) выявление величины специфического связывания указанного антитела и указанного антигена стадии (а), и (c) построение графика или вычисление кривой зависимости величины указанного специфического связывания от количества антигена для каждого количества антигена, используемого на стадии (а). На присутствие в тестируемом образце антитела указывает в основном S-образная или сигмовидная кривая. Изобретение обеспечивает выявление антител, в качестве биологических маркеров болезненного состояния или предрасположенности к заболеванию. 9 з.п. ф-лы, 15 ил., 6 табл., 7 пр.

Изобретение относится к медицине и может быть использовано для прогнозирования степени вероятности выполнения циторедуктивной операции в оптимальном объеме у больных диссеминированным раком яичников. Для этого определяют клинические параметры: стадию заболевания, объем асцитической жидкости, уровень сывороточных маркеров СА 125 и НЕ4, уровень инсулиноподобного фактора II типа (IGF-II) и металлопротеиназы РАРР-А в асцитической жидкости до лечения. Рассчитывают дискриминантные функции Y1, Y2. При значениях Y1>Y2 прогнозируют высокую, а при Y1<Y2 - низкую степень вероятности выполнения циторедуктивной операции в оптимальном объеме. Изобретение позволяет определить этапность хирургического и химиотерапевтического лечения у больных с диссеминированным раком яичников. 1 табл., 2 пр.

Изобретение относится к области медицинской диагностики и касается способа прогнозирования риска развития преэклампсии тяжелого течения у женщин русской национальности, являющихся уроженками Центрально-Черноземного региона России. Способ включает выделение ДНК из периферической венозной крови, анализ полиморфизма гена MMР-8 (rs1320632) в сочетании с другими предикторами развития данной патологии беременности. Прогнозируют риск развития преэклампсии тяжелого течения по уравнениям линейной дискриминантной функции: y1=-14,767+2,914х1+1,439х2+0,222х3+14,345х4, y2=-2,228+2,305х1-0,718х2+1,888х3-0,254х4, где х1 – генетический вариант по локусу MMР-8 (rs1320632) (АА - 1; АG или GG - 0), х2 - наличие преэклампсии у родственников (1 - да; 0 - нет), х3 – наличие заболеваний, передающихся половым путем (1 - да; 0 - нет), х4 - наличие гинекологических патологий в анамнезе (1 - да; 0 - нет), в случае, если значение y1 больше y2. Использование способа позволяет сформировать группы риска развития преэклампсии тяжелого течения при планировании беременности, что будет способствовать более эффективному осуществлению лечебно-профилактических мероприятий по предупреждению данной патологии беременности. 3 пр., 2 ил.

Изобретение относится к медицине и может быть использовано для получения аналитической тест-системы на основе суспензионных микрочипов для детекции маркеров заболеваний. Для этого создают суспензионные микрочипы путем оптического кодирования микросфер различного диаметра флуоресцентными красителями с их последующим конъюгированием с биологическими распознающими молекулами. Создают детектирующие компоненты путем конъюгирования биологических детектирующих молекул с флуоресцентными красителями. Для оптического кодирования микросфер различного диаметра используют полупроводниковые флуоресцентные нанокристаллы, которые наносят послойно на поверхность микросфер. При этом слой полупроводниковых флуоресцентных нанокристаллов одного цвета пространственно отделяют от соседнего слоя полупроводниковых флуоресцентных нанокристаллов другого цвета тремя и более слоями полиэлектролитов. Для формирования внешнего слоя полиэлектролита используют полимер, включающий функциональные группы для специфического и/или ориентированного конъюгирования биологических распознающих молекул. Для маркирования биологических детектирующих молекул используют флуоресцентные красители, возбуждаемые на одной длине волны с используемыми полупроводниковыми флуоресцентными нанокристаллами. Изобретение позволяет создать тест-системы, позволяющие детектировать и количественно определять множество различных белковых маркеров, например онкологических заболеваний женской репродуктивной системы, методами проточной цитометрии на стандартных проточных цитометрах. 21 з.п. ф-лы, 3 ил.
Изобретение относится к области медицины, а именно к педиатрии, детским инфекционным болезням, и предназначено для диагностики формы тяжести вызванного вирусом Эпштейна-Барр (ВЭБ) и бактериями инфекционного мононуклеоза у детей. Выполняют обследование детей, больных инфекционным мононуклеозом, вызванным ВЭБ и бактериями, при котором определяют наличие или отсутствие сплошного налета на небных миндалинах ребенка. Исследуют его слюну, в которой определяют концентрацию IFN-γ, пг/мл. При наличии сплошного налета и IFN-γ<7,5 пг/мл или при отсутствии сплошного налета и значении IFN-γ<3,0 пг/мл диагностируют тяжелую форму инфекционного мононуклеоза, вызванного ВЭБ и бактериями. При наличии сплошного налета и IFN-γ≥7,5 пг/мл или при отсутствии сплошного налета и IFN-γ≥3,0 пг/мл диагностируют среднетяжелую форму инфекционного мононуклеоза, вызванного ВЭБ и бактериями. Использование изобретения позволяет исключить инвазивность и сократить время диагностики, а также обеспечивает возможность диагностировать формы тяжести инфекционного мононуклеоза, вызванного ВЭБ и бактериями. 6 пр.
Наверх