Способ неконтактной импульсной ультразвуковой дефектоскопии



Способ неконтактной импульсной ультразвуковой дефектоскопии
Способ неконтактной импульсной ультразвуковой дефектоскопии

 


Владельцы патента RU 2635851:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский государственный университет путей сообщения" (ФГБОУ ВО ИрГУПС) (RU)

Использование: для неразрушающего дистанционного контроля различных силовых конструкций и ответственных деталей. Сущность изобретения заключается в том, что неконтактное возбуждение ультразвуковой волны в объекте осуществляется мощным наносекундным объемным электрическим разрядом с заданным фронтом и длительностью и синхронно производится ее регистрация до и после прохождения объекта оптическим устройством, сигнал с которого передается на фотоприемник, подключенный к цифровому осциллографу. При этом эффективное неконтактное возбуждение ультразвуковой волны в объекте достигается мощным наносекундным объемным электрическим разрядом в газовом потоке водорода или гелия, который также заполняет газовый промежуток между генератором объемного электрического разряда и объектом. Технический результат: обеспечение возможности создания неконтактного способа ультразвуковой диагностики, увеличивающего глубину контроля. 1 табл., 1 ил.

 

Изобретение относится к области ультразвуковой диагностики, а именно к неконтактному возбуждению и регистрации ультразвуковой (акустической) волны, и может быть использовано в неразрушающем дистанционном контроле различных силовых конструкций и ответственных деталей.

Известен способ [1] бесконтактной ультразвуковой дефектоскопии, использующий метод зондирования объекта диагностики последовательностью генерируемых ультразвуковых импульсов заданной интенсивности и формы с последующей регистрацией отраженных или прошедших сигналов, в котором в качестве зондирующих и приемных устройств используют источники когерентного электромагнитного излучения (например, лазеры), а для подвода и съема энергии в выбранных точках поверхности объекта диагностики применяют средства волоконной оптики. В данном способе оптико-акустическое преобразование осуществляется непосредственно в объекте исследования. Это дает возможность значительно увеличить мощность ультразвуковой волны в исследуемом объекте и позволяет оптическим методом увеличить чувствительность регистрации отраженной ультразвуковой волны. Вместе с тем, для достижения разрешающей способности групп нитевидных и объемных дефектов с поперечным сечением 10-100 мкм в стальных объектах необходимо ультразвуковое облучение с длиной волны 5-50 мкм. Это соответствует частоте ультразвуковой волны 100-1000 МГц. Акустические волны в этом частотном диапазоне эффективно поглощаются объектом. Поэтому для диагностики таких микродефектов, к примеру, в стальных объектах даже на глубине 2 см мощность ультразвуковой волны на поверхности объекта должна достигать не менее 1-10 МВт. Учитывая, что коэффициент поглощения света обычной поверхностью металлических образцов составляет 20-80%, а кпд преобразования лазерного импульса в акустический не более 0,1%, получим необходимую мощность лазерного импульса порядка 1-10 ГВт. При такой мощности лазерного воздействия исследуемый объект будет термически разрушаться. Это основной недостаток указанного метода.

Известен способ [2] неконтактной ультразвуковой диагностики, использующий для возбуждения ультразвуковой волны в исследуемом объекте мощный объемный импульсный электрический разряд на воздухе, синхронизованный по времени с импульсным источником света системы регистрации ультразвуковых волн в объекте. Это дает возможность значительно увеличить мощность ультразвуковой волны в исследуемом объекте и, как следствие, позволяет при оптической регистрации падающей и отраженных ультразвуковых волн увеличить глубину контроля и разрешение дефектов в объекте. Вместе с тем, при разрешающей способности групп нитевидных и объемных дефектов с поперечным сечением 30-40 мкм в стальных объектах необходимо ультразвуковое облучение с длинной волны 15-20 мкм. При длительности объемного разряда t=4 не это соответствует частоте ультразвуковой волны f=1/t=250 МГц. Акустические волны в этом частотном диапазоне эффективно поглощаются объектом. Поэтому для диагностики таких микродефектов, к примеру, в стальных объектах на глубине 4 см импульсная мощность ультразвуковой волны на поверхности объекта должна достигать не менее 10 МВт. Увеличение глубины регистрации дефектов в объекте с 4 см до 5 см (на 20%) потребует повышения мощности до 170 МВт - в семнадцать раз! При длительности объемного разряда t=0,8 нс (частота ультразвуковой волны f=1/t=1250 МГц) достигается разрешение нитевидных и объемных дефектов поперечным размером до 5 микрон. Но в этом случае достигнутая глубина регистрации не превышает уже 1 см. Таким образом, данный способ неконтактной ультразвуковой диагностики, основанный на возбуждении ультразвуковой волны в исследуемом объекте мощным объемным импульсным электрическим разрядом на воздухе, имеет ограничение регистрации микродефектов по глубине, которое обусловлено сильным поглощением в объекте высокочастотных ультразвуковых волн. Это является недостатком данного метода.

Наиболее близким техническим решением к предложенному, принятым за прототип, является способ неконтактной импульсной ультразвуковой диагностики [3], включающий неконтактное возбуждение в объекте ультразвуковой волны мощным объемным импульсным электрическим разрядом на воздухе, синхронизованным по времени с импульсным источником света системы регистрации ультразвуковых волн в объекте. Причем для возбуждения ультразвуковой волны в объекте используется мощный объемный импульсный электрический разряд, у которого фронт ультразвукового импульса соответствует частоте с длиной волны меньше размеров дефектов и длительность ультразвукового импульса соответствует частоте ультразвуковой волны, проникающей на всю глубину объекта. Это дает возможность значительно увеличить глубину контроля дефектов при неконтактной ультразвуковой диагностике объектов. Так, с использованием наведенной мощной (10 МВт/см2) ультразвуковой волны объемного газового разряда с фронтом 0,8 нс и длительностью 40 нс в стальном сварном объекте зарегистрированы нитевидные и объемные дефекты поперечным сечением 5 микрон на глубине объекта до 1 см. Данное разрешение обусловлено действием ультразвуковой волны с частотой f=1250 МГц, которая соответствует фронту импульса объемного газового разряда tф=1/f=0,8 нс. С глубины от 1 см и далее на предельную глубину проникновения ультразвуковой волны на всю толщину объекта - 20 см зарегистрированы дефекты диаметром 400-500 микрон. Данное разрешение обусловлено действием ультразвуковой волны с частотой f=25 МГц, которая соответствует длительности импульса объемного газового разряда t=1/f=40 нс. Вместе с тем в данном способе неконтактной ультразвуковой диагностики объектов для увеличения глубины контроля дефектов поверхность контролируемого объекта облучают на расстоянии 1 см ультразвуковым регулируемым по длительности импульсом, который формируется мощным генератором объемного электрического разряда на воздухе. Воздушная среда в промежутке между генератором объемного электрического разряда и объектом эффективно поглощает ультразвук и поэтому передает акустический импульс с генератора на объект со значительными потерями. Таким образом, данный способ неконтактной ультразвуковой диагностики, основанный на возбуждении ультразвуковой волны в исследуемом объекте мощным объемным импульсным электрическим разрядом, имеет ограничение регистрации микродефектов по глубине, которое обусловлено сильным поглощением в объеме воздушного промежутка ультразвуковых волн. Это является недостатком данного метода.

Целью данного изобретения является создание способа, позволяющего увеличить глубину контроля дефектов при неконтактной ультразвуковой диагностике объектов.

Сопоставительный анализ с прототипом позволяет сделать вывод о соответствии технического решения критерию «новизна».

Заявителю неизвестно из уровня техники о наличии следующих признаков:

1. Ультразвуковой импульс объемного разряда формируется в газовой среде на основе легких атомов - водорода (Н2) или гелия (Не2).

2. Промежуток между генератором объемного электрического разряда и объектом заполняется газообразным водородом или гелием.

Таким образом, заявляемое техническое решение соответствует критерию «изобретательский уровень». Кроме того, при взаимодействии признаков получается новый технический результат - существенно увеличивается глубина контроля объектов.

На фиг. 1 представлена структурная схема устройства для реализации данного способа. В табл. 1 показана величина коэффициента ослабления ультразвукового импульса на газовом промежутке между генератором объемного электрического разряда и объектом на частоте 25 МГц.

Способ осуществляется следующим образом.

Поверхность контролируемого объекта (0) облучают наносекундным ультразвуковым импульсом, формируемым мощным генератором (1) объемного электрического разряда на газовой среде. Генератор имеет устройство (2) регулировки длительности фронта и импульса объемного разряда, редукторный натекатель газа (3) в разрядную камеру и газовый промежуток между генератором объемного электрического разряда и объектом. Падающие и отраженные от дефектов ультразвуковые импульсы регистрируются информационной оптической системой, которая состоит из импульсного источника света (4), объектива (5), фотоприемника (6). Оптический импульс посредством зеркал (7) подается под углом (фиг. 1) на зашлифованную поверхность исследуемого объекта, отражается и регистрируется быстродействующим фотоприемником (6). Сигнал с фотоприемника (6) поступает на цифровой осциллограф (8). Работа мощного импульсного генератора объемного электрического разряда (плазменного генератора) (1) и импульсного источника света (4) синхронизованы во времени так, что генератор объемной плазмы (1) запускается после выхода импульсного источника света (4) на рабочий режим. При этом оптический импульс имеет длительность не менее времени двойного прохода ультразвуковой волны по глубине сварного шва объекта. Цифровой осциллограф (8) запускается по переднему фронту оптического импульса.

Пример 1. Контролируемый стальной объект толщиной 20 см облучают неконтактно в газовом потоке азота (N2) на расстоянии 1 см в области сварного шва посредством объемного газового разряда с фронтом 0,8 нс и длительностью 40 нс. Регистрацию наведенной в газовом азотном разряде мощной (10 МВт/см2) ультразвуковой волны до и после прохождения сварного соединения в объекте производят фотоприемником с временным разрешением 0,5 нс, на который подается отраженный оптический импульс длительностью 80 мкс от зашлифованной поверхности в области синхронно действующего объемного плазменного удара. В результате, не разрушая объект, зарегистрированы нитевидные и объемные дефекты поперечным сечением 5 микрон на глубине объекта до 1,0 см. С глубины от 1,0 см и далее на глубину проникновения ультразвуковой волны на всю толщину объекта зарегистрированы дефекты диаметром 400-500 микрон. Таким образом, как и в прототипе, при одинаковой мощности газового разряда глубина регистрации микродефектов практически не изменилась - 20 см.

Пример 2. В вентилируемом помещении контролируемый стальной объект толщиной 26 см облучают неконтактно в газовом потоке водорода (H2) на расстоянии 1 см в области сварного шва посредством объемного газового разряда с фронтом 0,8 нс и длительностью 40 нс. Регистрацию наведенной в газовом водородном разряде мощной (10 МВт/см2) ультразвуковой волны до и после прохождения сварного шва в объекте производят фотоприемником с временным разрешением 0,5 нс, на который подается отраженный оптический импульс длительностью 80 мкс от зашлифованной поверхности сварного шва в области синхронно действующего объемного плазменного удара. По сравнению с прототипом и примером 1 потери ультразвукового импульса в газовом водородном промежутке существенно ниже (табл. 1). В результате, не разрушая объект, зарегистрированы нитевидные и объемные дефекты поперечным сечением 5 микрон на глубине объекта до 1,5 см. С глубины от 1,5 см и на глубину проникновения ультразвуковой волны на всю толщину объекта зарегистрированы дефекты диаметром 400-500 микрон. Таким образом, по сравнению с прототипом и примером 1 при одинаковой мощности газового разряда глубина регистрации микродефектов значительно увеличена - с 20 см до 26 см. Вместе с тем, водород в смеси с воздухом горюч и взрывоопасен. Поэтому, в данном случае, необходимо применять вытяжную вентиляцию.

Пример 3. Контролируемый стальной объект толщиной 25 см облучают неконтактно в газовом потоке гелия (He2) на расстоянии 1 см в области сварного шва посредством объемного разряда длительностью 40 нс с фронтом 0,8 нс. Регистрацию наведенной в газовом гелиевом разряде мощной (10 МВт/см2) ультразвуковой волны до и после прохождения сварного соединения в объекте производят фотоприемником с временным разрешением 0,5 нс, на который подается отраженный оптический импульс длительностью 80 мкс от зашлифованной поверхности сварного шва в области синхронно действующего объемного плазменного удара. По сравнению с прототипом и примером 1 потери ультразвукового импульса в промежутке, заполненном гелием, существенно ниже (табл. 1). В результате, не разрушая объект, зарегистрированы нитевидные и объемные дефекты поперечным сечением 5 микрон на глубине объекта до 1,4 см. С глубины от 1,4 см и на глубину проникновения ультразвуковой волны на всю толщину объекта зарегистрированы дефекты диаметром 400-500 микрон. Таким образом, по сравнению с прототипом и примером 1 при одинаковой мощности газового разряда глубина регистрации микродефектов значительно - с 20 см до 25 см. Газообразный гелий безопасен и относится к группе инертных газов.

Таким образом, достижение цели изобретения подтверждено экспериментально. Использование предлагаемого изобретения по сравнению с известным изобретением дает следующее преимущество:

- увеличение глубины контроля объектов.

Источники информации

1. Авторское свидетельство №95109005. Способ бесконтактной ультразвуковой дефектоскопии и акустическое устройство дистанционной диагностики. От 10.01.1997 г. Кл. G01N 29/04. Братухин А.Б., Градов О.М. и др.

2. Патент РФ на изобретение №2337353. Способ неконтактной ультразвуковой диагностики сварных соединений. От 2008 г. Кл. G01N 29/04. В.И. Барышников. Т.А. Колесникова, А.П. Хоменко.

3. Патент РФ на изобретение №2387986. Способ неконтактной импульсной ультразвуковой диагностики. От 27.04.2010 г. Кл. G01N 29/04. В.И. Барышников, Е.В. Воропаев, Т.А. Колесникова, А.П. Хоменко.

Способ неконтактной импульсной ультразвуковой дефектоскопии, включающий неконтактное возбуждение в объекте ультразвукового импульса мощным объемным импульсным электрическим разрядом, у которого фронт ультразвукового импульса соответствует частоте с длиной волны меньше размеров дефектов и длительность ультразвукового импульса соответствует частоте ультразвуковой волны, проникающей на всю глубину объекта, и регистрацию синхронизованного по времени в режиме отражения или прохождения света импульсного источника системы регистрации ультразвуковых волн, отличающийся тем, что для возбуждения ультразвуковой волны в объекте используется мощный объемный импульсный электрический разряд в потоке газообразного водорода или гелия, который также заполняет промежуток между генератором объемного электрического разряда и объектом.



 

Похожие патенты:

Использование: для оценки ресурса трубы из полиэтилена. Сущность изобретения заключается в том, что пьезоэлектрический преобразователь устанавливают последовательно, равномерно по периметру внешней поверхности полиэтиленовой трубы, и осуществляют последовательно ввод импульсов ультразвуковых колебаний в материал трубы через ее внешнюю поверхность по нормали к внешней ее поверхности продольных колебаний и последовательно прием отраженных ультразвуковых колебаний от внутренней поверхности стенки трубы и последовательно при этом измеряют время прохождения ультразвуковых колебаний в каждой установленной точке пьезоэлектрического преобразователя и запоминают измеренные значения, затем определяют стандартное отклонение измеренных значений, и по величине стандартного отклонения, которое сравнивают со стандартным отклонением трубы из полиэтилена с предельным состоянием материала, полученное аналогично описанному выше при определении стандартного отклонения контролируемой трубы из полиэтилена, определяют возможность дальнейшей эксплуатации трубы из полиэтилена.

Использование: для ультразвукового (УЗ) неразрушающего контроля протяженных металлических изделий. Сущность изобретения заключается в том, что при перемещении вдоль трубопровода периодически возбуждают УЗ колебания в заданной области внешней или внутренней его поверхности, связанной с диагностическим устройством, принимают из этой же области реализации УЗ колебаний от акустических нормальных волн, отраженных от различных нарушений сплошности материала стенок, и в результате обработки принятых реализаций определяют распределение дефектов в стенках трубопровода, при этом возбуждают УЗ колебания касательными к поверхности трубопровода колебательными силами акустических контактов приемно-излучающих элементов диагностического устройства поочередно в каждой точке, а прием колебаний осуществляют одновременно во всех точках в пределах указанной области в выбранном интервале времени, и из реализаций УЗ колебаний, принятых во всех точках поверхности трубопровода при перемещении вдоль него, по предварительно рассчитанным временам задержки для всех типов акустических нормальных волн выбирают эхосигналы от каждой точки поверхности стенок, когерентно суммируют их для каждой точки поверхности отдельно для каждого типа волн, вычисляют амплитуды суммарных сигналов и строят нормированные распределения этих амплитуд в соответствии с координатами точек поверхности стенок трубопровода отдельно для каждого типа акустических волн, после чего составляют одно распределение величины, значения которой равны максимальным значениям амплитуд суммарных сигналов от разных типов акустических волн для совпадающих по координатам точек поверхности стенок трубопровода, и по этому распределению судят о наличии и величине дефектов в стенках трубопровода.

Использование: для внутритрубного обследования трубопроводов. Сущность изобретения заключается в том, что внутритрубный ультразвуковой дефектоскоп оснащен устройством измерения скорости звука в перекачиваемой жидкости V и блоком автоматической регулировки длительности временного окна ΔT во время контроля по формуле: ΔT=ΔT°V°/V, где ΔТ° - длительность окна при контроле в жидкости с минимальной скоростью звука V°.

Использование: для обнаружения изменений параметров заглубленного трубопровода и окружающей его среды. Сущность изобретения заключается в том, что в оболочке трубы возбуждают последовательность виброакустических импульсов через интервалы, превышающие интервал корреляции существующих в ней шумов, последовательность отсчетов регистрируемых реакций на каждое воздействие на другом конце контролируемого участка трубопровода суммируют с ранее полученными аналогичными отсчетами, модуль результирующего сигнала нормируют и принимают за плотность распределения временных интервалов отсчетов от начала до конца сформированного в сумматоре сигнала, по этому распределению вычисляют его оценки математического ожидания, среднеквадратичного отклонения, асимметрии и эксцесса, по совокупности каждого из этих моментов определяют линии регрессии их средних и отклонений от них, сравнивают эти линии с вычисленными на предыдущем шаге и при достижении результатами сравнения установленных значений прогнозируют их поведение с ростом количества суммирования для обеспечения допустимых доверительных границ вычисляемых моментов, по достижению которых судят как о наличии, так и виде изменений в трубопроводной системе в текущий момент времени.

Способ может быть использован в машиностроении, гидроэнергетике и других отраслях промышленности, требующих применения в производстве ультразвукового контроля. Для определения температурного коэффициента скорости ультразвука используются данные об изменении акустических характеристик материала.

Использование: для ультразвукового контроля профиля внутренней поверхности изделия в зоне сварного соединения. Сущность изобретения заключается в том, что две антенные решетки размещают на поверхности контролируемого изделия на оптимальном расстоянии между собой с двух сторон от сварного соединения, регистрируют отраженные от донной поверхности ультразвуковые эхо-импульсы, восстанавливают множество парциальных изображений, получают изображение профиля донной поверхности, по которому находят таблицу значений толщины контролируемого изделия в каждой точке области восстановления.

Использование: для определения характеристик небольших объектов, имеющих поверхность, которая искривлена в плоскости сечения. Сущность изобретения заключается в том, что выполняют по меньшей мере одно наблюдение ультразвука, проходящего через объект, причем каждое наблюдение выполняют на оси, перпендикулярной плоскости симметрии, причем каждое наблюдение получают в результате излучения ультразвука, формируемого вдоль соответствующей одной из упомянутых осей и падающего на объект вдоль упомянутой оси под углом падения, отличным от нормального, причем ультразвук падает на объект таким образом, чтобы следовать по пути, который является симметричным относительно плоскости симметрии, причем время пролета ультразвуковой волны и/или положение оси, на которой выполняются излучение и наблюдение, анализируют для описания характеристик объекта.

Использование: для локального ультразвукового неразрушающего контроля качества труб. Сущность изобретения заключается в том, что акустический блок содержит сканирующий узел с основанием с опорными роликами, которое связано штоками с корпусом, в котором размещены демпфер, ультразвуковой эхо-пьезопреобразователь, локальная ванна для иммерсионной жидкости (воды).

Использование: для автоматизированного неразрушающего контроля резервуаров для хранения нефти и нефтепродуктов. Сущность изобретения заключается в том, что предложено устройство для автоматизированного неразрушающего контроля металлической конструкции, содержащее ультразвуковой блок неразрушающего контроля, блок неразрушающего контроля на основе метода утечки магнитного поля, вихретоковый блок неразрушающего контроля, управляющий блок, соединенный с указанными ультразвуковым блоком неразрушающего контроля, блоком неразрушающего контроля на основе метода утечки магнитного поля и вихретоковым блоком неразрушающего контроля для отправки управляющих сигналов для осуществления контроля металлической конструкции, и блок навигации, соединенный с управляющим блоком управления и выполненный с возможностью определения положения указанного устройства для автоматизированного неразрушающего контроля относительно металлической конструкции и состояния поверхности контролируемой металлической конструкции и направления сигналов с информацией о положении указанного устройства для автоматизированного неразрушающего контроля и состоянии поверхности контролируемой металлической конструкции в управляющий блок, причем все указанные блоки установлены во взрывозащищенном корпусе, имеющем средства перемещения по поверхности контролируемой металлической конструкции, управляющий блок выполнен с возможностью направления управляющих сигналов одновременно на по меньшей мере один блок из числа указанных ультразвукового блока неразрушающего контроля, блока неразрушающего контроля на основе метода утечки магнитного поля и вихретокового блока неразрушающего контроля на основе сигналов, полученных от блока навигации, а блок неразрушающего контроля на основе метода утечки магнитного поля выполнен с возможностью изменения индукции магнитного поля, создаваемого этим блоком, от минимального значения, близкого к нулю, до заданного максимального значения.

Использование: для дефектоскопии листов, плит и других изделий двухсторонним доступом в металлургической, машиностроительной областях промышленности. Сущность изобретения заключается в том, что излучают с одной стороны контролируемого изделия импульсы ультразвуковых колебаний, принимают с противоположной стороны изделия первый сквозной и двукратно отраженный сквозной импульсы, а также эхо-импульсы ультразвуковых колебаний, отраженных от дефекта, сканируют изделие по всей площади, обеспечивая соосность излучающего и приемного электроакустических преобразователей, анализируют огибающие амплитуд ультразвуковых колебаний первого прошедшего (сквозного) импульса и эхо-сигналы от дефекта во временном интервале между первым и вторым сквозными импульсами, дополнительно считывают координаты уменьшения прошедших через изделие сквозных импульсов, повышают чувствительность приема сигналов во временном интервале между первым и вторым сквозными импульсами, измеряют временной интервал между первым сквозным импульсом и первым эхо-сигналом от дефекта, по измеренным значениям определяют местоположение и глубину залегания дефекта.
Наверх