Установка подготовки природного газа

Изобретение относится к газовой промышленности, в частности к подготовке природного газа и извлечению нестабильного углеводородного конденсата из пластового газа, и может быть использовано на газоконденсатных месторождениях, расположенных в зоне многолетнемерзлых грунтов. Установка подготовки природного газа содержит абсорбер, первый, второй и третий сепараторы, первый, второй, третий и четвертый теплообменники, первый, второй и третий трехфазные разделители, к каждому из которых подключен трубопровод отвода водометанольной фазы, аппарат воздушного охлаждения газа первичной сепарации, узел подачи метанола, охладитель газа, ректификационную колонну, печь с теплообменной поверхностью и сборную емкость дегазации, имеющую первый выход, подключенный к трубопроводу отвода товарного жидкого углеводородного продукта. В качестве абсорбента в абсорбере используется жидкий углеводородный продукт, полученный из жидкой углеводородной фазы, отводимой из первого сепаратора. Получение абсорбента происходит путем последовательного отделения газа в первом трехфазном разделителе, втором трехфазном разделителе, третьем трехфазном разделителе и ректификации в ректификационной колонне. Газ из абсорбера проходит через четвертый и первый теплообменники и поступает в трубопровод отвода товарного газа. Техническим результатом является повышение качества подготовки природного газа. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к газовой промышленности и может быть использовано на газоконденсатных месторождениях, расположенных в зоне многолетнемерзлых грунтов, для подготовки природного газа и извлечения нестабильного углеводородного конденсата из пластового газа.

Наиболее близким аналогом заявленного ИЗ является установка подготовки природного газа, содержащая абсорбер, первый, второй и третий сепараторы, первый, второй и третий теплообменники, первый, второй и третий трехфазные разделители, к каждому из которых подключен трубопровод отвода водометанольной фазы, холодопроизводящий агрегат и узел подачи метанола (см. RU 2283690, B01D 53/00, B01D 19/00, F25J 3/00, опубл. 20.06.2006).

Недостатком указанного выше технического решения является низкая эффективность установки подготовки природного газа, связанная с высокими потерями метанола при получении товарного газа и с высоким содержанием углеводородов С5+ в товарном газе.

Техническим результатом заявленной установки подготовки природного газа является повышение качества подготовки природного газа за счет снижения содержания углеводородов С5+ в товарном газе и снижения потерь метанола в составе товарного газа.

Технический результат достигается тем, что установка подготовки природного газа содержит абсорбер, первый, второй и третий сепараторы, первый, второй, третий и четвертый теплообменники, первый, второй и третий трехфазные разделители, к каждому из которых подключен трубопровод отвода водометанольной фазы, аппарат воздушного охлаждения газа первичной сепарации, узел подачи метанола, охладитель газа, ректификационную колонну, печь с теплообменной поверхностью и сборную емкость дегазации, имеющую первый выход, подключенный к трубопроводу отвода товарного жидкого углеводородного продукта, второй выход, подключенный к трубопроводу отвода метан-этановой фракции в трубопровод подачи охлаждаемой среды в четвертый теплообменник, первый вход, подключенный к трубопроводу отвода жидких углеводородов из второго сепаратора, второй вход, подключенный к трубопроводу подачи жидких углеводородов из трубопровода отвода жидкой углеводородной фазы первого трехфазного разделителя, третий вход, к которому подключен трубопровод отвода жидких углеводородов из абсорбера, и четвертый вход, к которому подключен сборный газовый трубопровод, собирающий газовую углеводородную фазу из второго трехфазного разделителя, из третьего трехфазного разделителя и газ из третьего сепаратора, при этом к первому сепаратору подключен трубопровод подвода сырого газа, трубопровод отвода жидких углеводородов, соединенный с входом первого трехфазного разделителя, и трубопровод отвода газа, который после установленного на нем узла подачи метанола соединен по ходу газа с газовым каналом аппарата воздушного охлаждения, каналом охлаждаемой среды первого теплообменника и входом второго сепаратора, первый теплообменник имеет вход охлаждающей среды, сообщенный с выходом охлаждающей среды четвертого теплообменника, и выход охлаждающей среды, сообщенный с входом охлаждаемой среды четвертого теплообменника, причем вход охлаждающей среды четвертого теплообменника соединен с трубопроводом отвода газа из абсорбера, а выход охлаждаемой среды четвертого теплообменника соединен с трубопроводом отвода товарного газа потребителю, второй сепаратор имеет выход газа, соединенный с трубопроводом подачи газа в охладитель газа, выход которого соединен с трубопроводом подачи газа в абсорбер, первый трехфазный разделитель снабжен трубопроводом отвода жидкой углеводородной фазы, трубопроводом отвода газовой углеводородной фазы, выходной конец которого подключен к трубопроводу подачи газа в абсорбер, второй трехфазный разделитель снабжен входом, соединенным с трубопроводом отвода жидкой углеводородной фазы из первого трехфазного разделителя и трубопроводом отвода газовой углеводородной фазы, второй теплообменник имеет вход нагреваемой среды, соединенный с трубопроводом отвода жидкой углеводородной фазы из второго трехфазного разделителя, при этом третий трехфазный разделитель имеет вход, сообщенный с выходом нагреваемой среды второго теплообменника, и снабжен трубопроводом отвода газовой углеводородной фазы и трубопроводом отвода жидкой углеводородной фазы, ректификационная колонна имеет расположенные последовательно сверху вниз первый выход, соединенный с трубопроводом отвода газа-дистиллята в третий сепаратор, первый вход, соединенный с трубопроводом отвода жидких углеводородов из третьего сепаратора, второй вход, соединенный с трубопроводом отвода жидкой углеводородной фазы из третьего трехфазного разделителя, второй выход, соединенный с входом теплообменной поверхности печи, третий вход, расположенный в кубовой части и соединенный с выходом теплообменной поверхности печи, и выход кубовой жидкости, сообщенный с входом греющей среды второго теплообменника, причем третий теплообменник имеет вход греющей среды, сообщенный с трубопроводом отвода греющей среды из второго теплообменника, выход греющей среды, соединенный с входом абсорбера, предназначенным для подачи абсорбента, вход нагреваемой среды, соединенный с трубопроводом отвода части отработанного абсорбента из абсорбера, и выход нагреваемой среды, сообщенный с трубопроводом отвода жидкой углеводородной фазы из первого трехфазного разделителя.

Охладитель газа может быть выполнен в виде турбодетандера, а на трубопроводе подачи охлаждаемой среды в четвертый теплообменник последовательно по ходу газа могут быть установлены компрессор, расположенный на одном валу с турбодетандером, и аппарат воздушного охлаждения компримированного газа.

На трубопроводе отвода товарного жидкого углеводородного продукта из сборной емкости дегазации может быть установлен блок подготовки жидкого углеводородного продукта, включающий в себя устройство для нагрева жидкого углеводородного продукта и устройство для дегазации жидкого продукта.

В заявленной установке в качестве абсорбента используется жидкий углеводородный продукт, полученный из жидкой углеводородной фазы, отводимой из первого сепаратора. Получение абсорбента происходит путем последовательного отделения газа в первом трехфазном разделителе, втором трехфазном разделителе, третьем трехфазном разделителе и ректификации в ректификационной колонне. Полученный таким образом поток жидких углеводородов используется в качестве абсорбента и представляет собой углеводородную фракцию с температурой начала кипения 165…175°С и с содержанием в нем компонентов С19 не более 10% от общей массы абсорбента.

Таким образом, в заявленной установке поток жидких углеводородов, используемый в качестве абсорбента, получается из жидких углеводородов, выделенных из сырого газа, поступающего в установку, что позволяет снизить содержание в товарном газе углеводородов С5+ на 60-85%.

Эффективное извлечение углеводородов C5+ из товарного газа упомянутым абсорбентом позволяет получить товарный газ, имеющий низкое значение точки росы по углеводородам (углеводородному конденсату) и по водной (неуглеводородной) фазе.

Кроме того, при применении упомянутого абсорбента снизятся потери метанола в составе товарного газа примерно на 20…30% за счет растворения метанола в абсорбенте.

Сущность предлагаемого изобретения поясняется чертежами.

На фиг. 1 показана схема установки подготовки природного газа.

На фиг. 2 показана схема установки подготовки природного газа с охладителем в виде в виде турбодетандера.

Установка подготовки природного газа содержит следующие элементы: первый сепаратор 1, узел подачи метанола 2, аппарат воздушного охлаждения 3 газа первичной сепарации, первый теплообменник 4, второй сепаратор 5, охладитель газа 6, абсорбер 7, четвертый теплообменник 8, первый трехфазный разделитель 9, редуцирующий вентиль 10, второй трехфазный разделитель 11, редуцирующий вентиль 12, второй теплообменник 13, третий трехфазный разделитель 14, печь 15, ректификационная колонна 16, насос 17, установленный на трубопроводе отвода греющей среды из второго теплообменника 13, третий теплообменник 18, сборная емкость дегазации 19, трубопровод 20 отвода товарного газа, трубопровод 21 отвода товарного жидкого углеводородного продукта, сборный трубопровод 22 отвода водометанольной фазы, трубопровод 23 подвода сырого газа к первому сепаратору 1, трубопровод 24 отвода жидких углеводородов из первого сепаратора 1, трубопровод 25 отвода газа из первого сепаратора 1, трубопровод 26 отвода газа из абсорбера 7, трубопровод 27 подачи газа из второго сепаратора 5 в охладитель газа 6, трубопровод 28 подачи газа из охладителя газа 6 в абсорбер 7, трубопровод 29 отвода жидких углеводородов из второго сепаратора 5, трубопровод 30 отвода жидкой углеводородной фазы из первого трехфазного разделителя 9, трубопровод 31 отвода газовой углеводородной фазы из первого трехфазного разделителя 9, трубопровод 32 отвода водометанольной фазы из первого трехфазного разделителя 9, трубопровод 33 отвода газовой углеводородной фазы из второго трехфазного разделителя 11, трубопровод 34 отвода водометанольной фазы из второго трехфазного разделителя 11, трубопровод 35 отвода жидкой углеводородной фазы из второго трехфазного разделителя 11, трубопровод 36 отвода кубовой жидкости из ректификационной колонны 16, трубопровод 37 отвода греющей среды из второго теплообменника 13, трубопровод 38 отвода части отработанного абсорбента из абсорбера 7, трубопровод 39 отвода нагреваемой среды из третьего теплообменника 18, трубопровод 40 отвода нагреваемой среды из второго теплообменника 13, трубопровод 41 отвода жидкой углеводородной фазы из третьего трехфазного разделителя 14, трубопровод 42 отвода газовой углеводородной фазы из третьего трехфазного разделителя 14, трубопровод 43 отвода водометанольной фазы из третьего трехфазного разделителя 14, трубопровод 44 подачи абсорбента в абсорбер 7, теплообменная поверхность 45 печи 15, третий сепаратор 46, сборный газовый трубопровод 47, трубопровод 48 отвода метан-этановой фракции из сборной емкости дегазации 19, трубопровод 49 подачи жидких углеводородов в емкость дегазации 19 из трубопровода 30, трубопровод 50 отвода жидких углеводородов из абсорбера 7, редуцирующий вентиль 51, трубопровод 52 отвода жидких углеводородов из третьего сепаратора 46, трубопровод 53, соединяющий третий вход ректификационной колонны, расположенный в кубовой части с выходом теплообменной поверхности 45, трубопровод 54 отвода жидкого углеводородного потока из нижней части ректификационной колонны 16 в теплообменную поверхность 45, трубопровод 55 подачи охлаждаемой среды в четвертый теплообменник 8, компрессор 56 (фиг. 2), аппарат воздушного охлаждения 57 компримированного газа (фиг. 2), трубопровод 58 с вентилем 59, сообщающий трубопровод 41 с верхней частью ректификационной колонны 16, насос 60, установленный на трубопроводе 53 и насос 61, установленный на трубопроводе 52.

К первому сепаратору 1 подключены:

- трубопровод 23 подвода сырого газа;

- трубопровод 24 отвода жидких углеводородов, снабженный редуцирующим вентилем 51;

- трубопровод 25 отвода газа.

На трубопроводе 25 отвода газа из первого сепаратора 1 установлен узел подачи метанола 2. После узла подачи метанола 2 трубопровод 25 последовательно сообщен по ходу газа с газовым каналом аппарата воздушного охлаждения 3, каналом охлаждаемой среды' первого теплообменника 4 и входом второго сепаратора 5.

Первый теплообменник 4 имеет:

- вход охлаждающей среды, соединенный трубопроводом с выходом охлаждающей среды из четвертого теплообменника 8;

- выход охлаждающей среды, соединенный трубопроводом 55 с входом охлаждаемой среды четвертого теплообменника 8;

- вход охлаждаемой среды, сообщенный трубопроводом с выходом газового канала аппарата воздушного охлаждения 3;

- выход охлаждаемой среды соединенный трубопроводом с входом второго сепаратора 5.

Аппарат воздушного охлаждения 3 имеет вход охлаждаемой среды, сообщенный с трубопроводом 25 и выход охлаждаемого среды сообщенный трубопроводом с входом охлаждаемой среды первого теплообменника 4.

Второй сепаратор 5 имеет:

- вход, сообщенный с выходом охлаждаемой среды первого теплообменника 4;

- выход газа, соединенный с трубопроводом 27 подачи газа в охладитель газа 6;

- выход жидких углеводородов, сообщенный трубопроводом 29 с первым входом сборной емкости дегазации 19.

Первый трехфазный разделитель 9 снабжен входом, соединенным с трубопроводом 24 и выходами, соединенными с трубопроводом 30 отвода жидкой углеводородной фазы, трубопроводом 31 отвода газовой углеводородной фазы и трубопроводом 32 отвода водометанольной фазы. Трубопровод 32 подключен к сборному трубопроводу 22 отвода водометанольной фазы из установки. Выходной конец трубопровода 31 отвода газовой углеводородной фазы подключен к трубопроводу 28 подачи газа в абсорбер 7.

Ко второму трехфазному разделителю 11 подключены:

- входной патрубок, снабженный редуцирующим вентилем 12 и соединенный с выходным концом трубопровода 30;

- трубопровод 33 отвода газовой углеводородной фазы;

- трубопровод 34 отвода водометанольной фазы, подключенный к сборному трубопроводу 22 отвода водометанольной фазы из установки;

- трубопровод 35 отвода жидкой углеводородной фазы. Второй теплообменник 13 имеет:

- вход нагреваемой среды, соединенный с трубопроводом 35;

- выход нагреваемой среды, соединенный трубопроводом 40 с входом третьего трехфазного разделителя 14;

- вход греющей среды, соединенный с трубопроводом 36;

- выход греющей среды, соединенный трубопроводом 37 с входом греющей среды третьего теплообменника 18.

На трубопроводе 37 установлен насос 17. Третий теплообменник 18 имеет:

- вход греющей среды, соединенный с трубопроводом 37;

- выход греющей среды, соединенный трубопроводом 44 с входом абсорбера 7, предназначенным для подачи абсорбента;

- вход нагреваемой среды, соединенный с трубопроводом 38 отвода части отработанного абсорбента из абсорбера 7;

- выход нагреваемой среды, соединенный с трубопроводом 39, выходной конец которого подсоединен к трубопроводу 30.

К входу третьего трехфазного разделителя 14 подсоединен трубопровод 40 отвода нагреваемой среды из второго теплообменника 13, а к его выходам подсоединены трубопровод 41 отвода жидкой углеводородной фазы, трубопровод 42 отвода газовой углеводородной фазы и трубопровод 43 отвода водометанольной фазы, подключенный к сборному трубопроводу 22 отвода водометанольной фазы из установки.

Ректификационная колонна 16 имеет следующие, расположенные последовательно сверху вниз, входы и выходы:

- первый выход, соединенный с трубопроводом отвода газа-дистиллята в третий сепаратор 46;

- первый вход, соединенный с трубопроводом 52 отвода жидких углеводородов из третьего сепаратора 46;

- второй вход, соединенный с трубопроводом 41;

- второй выход, соединенный трубопроводом 54 с входом теплообменной поверхности 45 печи 15;

- третий вход, расположенный в кубовой части ректификационной колонны и соединенный трубопроводом 53 с выходом теплообменной поверхности 45 печи 15;

- выход кубовой жидкости соединенный трубопроводом 36 с входом греющей среды второго теплообменника 13.

К трубопроводу 41 может быть подключен входной конец трубопровода 58, сообщенного с верней частью ректификационной колонны 16.

В печи 15 расположена теплообменная поверхность 45, которая имеет вход, соединенный с трубопроводом 54 отвода жидкого углеводородного потока из нижней части ректификационной колонны 16 и выход, сообщенный отводящим трубопроводом 53 с третьим входом ректификационной колонны 16, расположенным в ее кубовой части.

К сборному газовому трубопроводу 47 подсоединены: выходной конец трубопровода 33 отвода газовой углеводородной фазы из второго трехфазного разделителя 11, выходной конец трубопровода 42 отвода газовой углеводородной фазы из третьего трехфазного разделителя 14 и выходной конец трубопровода отвода газа из третьего сепаратора 46.

Сборная емкость дегазации 19 имеет:

- первый выход, подключенный к трубопроводу 21 отвода товарного жидкого углеводородного продукта (нестабильного конденсата);

- второй выход, подключенный к трубопроводу 48 отвода метан-этановой фракции в трубопровод 55;

- первый вход, подключенный к трубопроводу 29 отвода жидких углеводородов из второго сепаратора 5;

- второй вход, подключенный к трубопроводу 49 подачи жидких углеводородов, снабженному редуцирующим вентилем 10 и соединенному с трубопроводом 30;

- третий вход, подключенный к трубопроводу 50 отвода жидких углеводородов из нижней части абсорбера 7;

- четвертый вход, соединенный со сборным газовым трубопроводом 47. Абсорбер 7 имеет следующие входы и выходы:

- первый выход, подключенный к трубопроводу 26;

- второй выход, подключенный к трубопроводу 38 отвода части отработанного абсорбента;

- третий выход, подключенный к трубопроводу 50 отвода жидких углеводородов из нижней части абсорбера в сборную емкость дегазации 19;

- первый вход, размещенный в нижней части абсорбера и подключенный к трубопроводу 28 подачи газа, сообщенному с выходом охладителя газа 6;

- второй вход, предназначенный для подачи абсорбента по трубопроводу

44.

Четвертый теплообменник 8 имеет:

- вход охлаждающей среды, соединенный с трубопроводом 26 отвода газа из абсорбера 7;

- выход охлаждающей среды, соединенный трубопроводом с входом, охлаждающей среды первого теплообменника 4;

- вход охлаждаемой среды, соединенный трубопроводом 55 с выходом охлаждающей среды первого теплообменника 4;

- выход охлаждаемой среды, соединенный с трубопроводом 20 отвода товарного газа потребителю.

Охладитель газа 6 может быть выполнен в виде турбодетандера, а на трубопроводе 55 подачи охлаждаемой среды в четвертый теплообменник 8 могут быть последовательно по ходу газа установлены компрессор 56, расположенный на одном валу с турбодетандером и аппарат воздушного охлаждения 57 компримированного газа.

Кроме того, охладитель газа 6 может представлять собой одно из следующих устройств: парокомпрессионная холодильная машина, аппарат воздушного охлаждения газа, теплообменник для охлаждения газа, дроссель или эжектор.

Установка подготовки природного газа работает следующим образом.

Природный газ по трубопроводу 23 подвода сырого газа направляется в первый сепаратор 1, в котором осуществляется первичная сепарация.

Отсепарированный в первом сепараторе 1 газ отводится по трубопроводу 25. Причем в газ первичной сепарации, вводят антигидратный реагент (метанол) через узел подачи метанола 2. После чего, газ с добавкой метанола охлаждают в аппарате воздушного охлаждения 3, из которого охлажденный поток направляют на дополнительное охлаждение в первый теплообменник 4, в котором охлаждающей средой служит охлаждающая среда из четвертого теплообменника 8.

Охлаждаемая среда (газоконденсатный поток) из первого теплообменника 4 подается на вход второго сепаратора 5, из которого отсепарированный газ поступает, по трубопроводу 27 подачи газа, в охладитель газа 6.

Охлажденный газ из охладителя газа 6 поступает в нижнюю часть абсорбера 7 по трубопроводу 28 подачи газа. В абсорбере 7 происходит абсорбция газа абсорбентом при температуре минус 30… минус 20°С. Поток газа отводится из верхней части абсорбера 7 по трубопроводу 26 и подается на вход четвертого теплообменника 8 в качестве охлаждающей среды.Нагретый в четвертом теплообменнике 8 поток газа подается на вход первого теплообменника 4 в качестве охлаждающей среды. Нагретый в первом теплообменнике поток подается на вход четвертого теплообменника 8 в качестве охлаждаемой среды. Поток газа отводится из четвертого теплообменника 8 по трубопроводу 20, в качестве товарного газа потребителю.

Охладитель газа 6 может быть выполнен в виде турбодетандера. В случае выполнения охладителя газа 6 в виде турбодетандера (фиг. 2) энергия, вырабатываемая в ходе расширения газа на рабочем колесе турбодетандера, может быть передана через общий вал на рабочее колесо компрессора 56, который в этом случае может быть установлен на трубопроводе 55 подачи охлаждаемой среды в четвертый теплообменник 8. Охлаждаемую среду из первого теплообменника 4 попускают через компрессор 56, обеспечивающий повышение рабочего давления газа. В компрессоре 56 происходит повышение температуры газа, и поэтому газ, отводимый из компрессора 56, охлаждают в аппарате воздушного охлаждения 57 компримированного газа и только после этого подают в качестве охлаждаемой среды в четвертый теплообменник 8.

Применение турбодетандера позволяет снизить энергетические затраты на подготовку газа, а именно продлить бескомпрессорный период работы заявленной установки и дополнительно извлечь углеводороды С5+.

Жидкие углеводороды из первого сепаратора 1, через трубопровод 24 направляются в первый трехфазный разделитель 9, в котором поток разделяют на газовую углеводородную фазу, жидкую углеводородную фазу и водометанольную фазу.

Газовая углеводородная фаза из первого трехфазного разделителя 9 по трубопроводу 31 подается в трубопровод 28 подачи газа в абсорбер 7. Жидкую углеводородную фазу отводят из первого трехфазного разделителя по трубопроводу 30 и подают во входной патрубок второго трехфазного разделителя 11. Часть жидкой углеводородной фазы из трубопровода 30 отвода жидкой углеводородной фазы подают в сборную емкость дегазации 19. Водометанольную фазу из первого трехфазного разделителя отводят по трубопроводу 32, подключенному к сборному трубопроводу 22 из которого водометанольная фаза отводится из установки.

Поток жидких углеводородов с полуглухой тарелки абсорбера 7 отводится по трубопроводу 38 в третий теплообменник 18, где он нагревается. Из третьего теплообменника нагретый поток подается в трубопровод 30, где он смешивается с жидкой фазой, отводимой из первого трехфазного разделителя 9. Смешанный поток поступает во входной патрубок второго трехфазного разделителя 11, проходит через редуцирующий вентиль 12 и с давлением 3,0…1,5 МПа поступает на вход второго трехфазного разделителя 11, в котором поток разделяется на газовую углеводородную фазу, жидкую углеводородную фазу и водометанольную фазу.

Газовая углеводородная фаза из второго трехфазного разделителя 11 отводится по трубопроводу 33 и поступает сборный газовый трубопровод 47, из которого она поступает в сборную емкость дегазации 19.

Водометанольная фаза из второго трехфазного разделителя 11 отводится по трубопроводу 34 в сборный трубопровод 22, из которого она отводится из установки.

Жидкая углеводородная фаза из второго трехфазного разделителя 11 подается и по трубопроводу 35 в качестве нагреваемой среды на вход второго теплообменника 13, где нагревается потоком кубовой жидкости, отводимым из ректификационной колонны 16 (греющей среды) и, по трубопроводу 40 поступает на вход третьего трехфазного разделителя 14, в котором поток разделяется на газовую углеводородную фазу, жидкую углеводородную фазу и водометанольную фазу.

Газовая углеводородная фаза из третьего трехфазного разделителя 14 отводится по трубопроводу 42 и поступает сборный газовый трубопровод 47. Водометанольная фаза из третьего трехфазного разделителя 14 отводится по трубопроводу 43 в сборный трубопровод 22, из которого она отводится из установки установка подготовки природного газа.

Жидкая углеводородная фаза отводится из третьего трехфазного разделителя по трубопроводу 41 и поступает во второй вход ректификационной колонны 16.

Часть углеводородов из трубопровода 41 может подаваться, при открытом вентиле 59, по трубопроводу 58 в верхнюю часть ректификационной колонны 16.

В ректификационной колонне 16 происходит разделение жидкой углеводородной фазы на фракции, при этом «легкие» фракции (продукты, имеющие более низкую температуру кипения) концентрируются в верхней части колонны, а «тяжелые» (продукты, имеющие более высокую температуру кипения) - в нижней (кубовой части).

Из верхней части ректификационной колонны 16 газ-дистиллят подается на вход третьего сепаратора 46. В третьем сепараторе 46 происходит отделение газов от жидкого углеводородного потока. Газ из третьего сепаратора 46, отводится в сборный газовый трубопровод 47, а конденсат подается на верхние тарелки ректификационной колонны 16 через первый вход ректификационной колонны 16.

Часть жидкого углеводородного потока с нижних тарелок ректификационной колонны 16 подается по отводящему трубопроводу 54 на вход теплообменной поверхности 45 печи 15.

В печи 15 жидкий углеводородный поток нагревается, например, посредством сжигания топлива, после чего подается в нижнюю (кубовую) часть ректификационной колонны 16.

Кубовая жидкость из нижней (кубовой) части ректификационной колонны по трубопроводу 36 подается в качестве греющей среды во второй теплообменник 13.

Из второго теплообменника охлажденный поток жидких углеводородов через трубопровод 37 подается, посредством насоса 17, в третий теплообменник 18 в качестве греющей среды. Пройдя через второй и третий теплообменники жидкий дегазированный углеводородный продукт охлаждается и подается по трубопроводу 44 на вход абсорбера 7, предназначенный для подачи абсорбента.

Таким образом, в качестве абсорбента в абсорбере 7 используется поток жидких углеводородов отсепарированных в первом сепараторе, а затем прошедших несколько ступеней дегазации, отделение водометанольной фазы (первый, второй и третий трехфазный разделители), ректификацию и охлаждение в первом и втором теплообменниках.

Поток жидких углеводородов, используемый в качестве абсорбента, имеет массовое содержание фракции С10+ в количестве не менее 85%. Таким образом, содержание углеводородов С5+ в составе товарного газа снизится на 50-80%. Оптимальным расходом абсорбента при проведении процесса абсорбции считается 10…15 г/м3 относительно сырья абсорбера 7.

В сборную емкость дегазации 19 поступают следующие жидкие углеводородные потоки: жидкий поток из второго сепаратора 5, часть потока жидких углеводородов из первого трехфазного разделителя 9, поток жидких углеводородов из абсорбера 7 и газовый поток из сборного газового трубопровода 47.

В сборный газовый трубопровод 47 подводится газовый поток из второго и третьего трехфазных разделителей и газовый поток из третьего сепаратора.

В сборной емкости дегазации 19 происходит смешение всех подаваемых в нее потоков и отделение метан-этановой фракции. Метан-этановая фракция отводится из сборной емкости дегазации 19 в трубопровод 55, где смешивается с потоком газа подаваемого на охлаждение в четвертый теплообменник 8.

Жидкие углеводороды отводятся из установки по трубопроводу 21 в качестве продукта (нестабильный конденсат).

В случае несоответствия характеристик товарного жидкого углеводородного продукта требованиям производителя на трубопроводе отвода жидкого углеводородного продукта из сборной емкости дегазации устанавливается блок подготовки жидкого углеводородного продукта (на чертеже не показан), включающий в себя устройство для нагрева жидкого углеводородного продукта и устройство для дегазации жидкого продукта.

Для восполнения технологических потерь абсорбента может быть использован подпитывающий поток, в качестве которого может выступать: жидкая углеводородная продукция сборной емкости дегазации или жидкая углеводородная из блока подготовки жидкой продукции (стабильный, деэтанизированный или нестабильный конденсат) или насыщенный абсорбент.

Описанное техническое решение позволяет получить абсорбент с массовым содержанием фракции С10+ в количестве до 98%, что позволяет снизить содержание углеводородов С5+ на 60-85%.

Кроме того, при применении упомянутого абсорбента снизятся потери метанола в составе товарного газа примерно на 30%.

Также заявленная установка позволяет осуществить эффективную осушку товарного газа и получить товарный газ, имеющий низкое значение точки росы по углеводородам (углеводородному конденсату) и по водной (неуглеводородной) фазе.

1. Установка подготовки природного газа, содержащая абсорбер, первый, второй и третий сепараторы, первый, второй, третий и четвертый теплообменники, первый, второй и третий трехфазные разделители, к каждому из которых подключен трубопровод отвода водометанольной фазы, аппарат воздушного охлаждения газа первичной сепарации, узел подачи метанола, охладитель газа, ректификационную колонну, печь с теплообменной поверхностью и сборную емкость дегазации, имеющую первый выход, подключенный к трубопроводу отвода товарного жидкого углеводородного продукта, второй выход, подключенный к трубопроводу отвода метан-этановой фракции в трубопровод подачи охлаждаемой среды в четвертый теплообменник, первый вход, подключенный к трубопроводу отвода жидких углеводородов из второго сепаратора, второй вход, подключенный к трубопроводу подачи жидких углеводородов из трубопровода отвода жидкой углеводородной фазы первого трехфазного разделителя, третий вход, подключенный к трубопроводу отвода жидких углеводородов из абсорбера, и четвертый вход, подключенный к сборному газовому трубопроводу, собирающему газовую углеводородную фазу из второго трехфазного разделителя, из третьего трехфазного разделителя и газ из третьего сепаратора, при этом к первому сепаратору подключен трубопровод подвода сырого газа, трубопровод отвода жидких углеводородов, соединенный с входом первого трехфазного разделителя, и трубопровод отвода газа, который после установленного на нем узла подачи метанола соединен по ходу газа с газовым каналом аппарата воздушного охлаждения, каналом охлаждаемой среды первого теплообменника и входом второго сепаратора, первый теплообменник имеет вход охлаждающей среды, сообщенный с выходом охлаждающей среды четвертого теплообменника, и выход охлаждающей среды, сообщенный с входом охлаждаемой среды четвертого теплообменника, причем вход охлаждающей среды четвертого теплообменника соединен с трубопроводом отвода газа из абсорбера, а выход охлаждаемой среды четвертого теплообменника соединен с трубопроводом отвода товарного газа потребителю, второй сепаратор имеет выход газа, соединенный с трубопроводом подачи газа в охладитель газа, выход которого соединен с трубопроводом подачи газа в абсорбер, первый трехфазный разделитель снабжен трубопроводом отвода жидкой углеводородной фазы, трубопроводом отвода газовой углеводородной фазы, выходной конец которого подключен к трубопроводу подачи газа в абсорбер, второй трехфазный разделитель снабжен входом, соединенным с трубопроводом отвода жидкой углеводородной фазы из первого трехфазного разделителя и трубопроводом отвода газовой углеводородной фазы, второй теплообменник имеет вход нагреваемой среды, соединенный с трубопроводом отвода жидкой углеводородной фазы из второго трехфазного разделителя, при этом третий трехфазный разделитель имеет вход, сообщенный с выходом нагреваемой среды второго теплообменника, и снабжен трубопроводом отвода газовой углеводородной фазы и трубопроводом отвода жидкой углеводородной фазы, ректификационная колонна имеет расположенные последовательно сверху вниз первый выход, соединенный с трубопроводом отвода газа-дистиллята в третий сепаратор, первый вход, соединенный с трубопроводом отвода жидких углеводородов из третьего сепаратора, второй вход, соединенный с трубопроводом отвода жидкой углеводородной фазы из третьего трехфазного разделителя, второй выход, соединенный с входом теплообменной поверхности печи, третий вход, расположенный в кубовой части и соединенный с выходом теплообменной поверхности печи, и выход кубовой жидкости, сообщенный с входом греющей среды второго теплообменника, причем третий теплообменник имеет вход греющей среды, сообщенный с трубопроводом отвода греющей среды из второго теплообменника, выход греющей среды, соединенный с входом абсорбера, предназначенным для подачи абсорбента, вход нагреваемой среды, соединенный с трубопроводом отвода части отработанного абсорбента из абсорбера, и выход нагреваемой среды, сообщенный с трубопроводом отвода жидкой углеводородной фазы из первого трехфазного разделителя.

2. Установка по п. 1, отличающаяся тем, что охладитель газа выполнен в виде турбодетандера, а на трубопроводе подачи охлаждаемой среды в четвертый теплообменник последовательно по ходу газа установлены компрессор, расположенный на одном валу с турбодетандером, и аппарат воздушного охлаждения компримированного газа.

3. Установка по п. 1, отличающаяся тем, что на трубопроводе отвода товарного жидкого углеводородного продукта из сборной емкости дегазации установлен блок подготовки жидкого углеводородного продукта, включающий в себя устройство для нагрева жидкого углеводородного продукта и устройство для дегазации жидкого продукта.



 

Похожие патенты:

Изобретение относится к газовой промышленности, в частности к подготовке природного газа и извлечению нестабильного углеводородного конденсата из пластового газа, и может быть использовано на газоконденсатных месторождениях, расположенных в зоне многолетнемерзлых грунтов.

Группа изобретений относится к газохимической промышленности. Техническим результатом является повышение эффективности предлагаемой технологии за счет упрощения схемы переработки газа и снижения капитальных и энергетических затрат без ухудшения качества получаемой продукции.

Изобретение относится к способу получения продукта метанола, продукта H2 и продукта CO из синтез-газа, содержащего H2 и CO, в частности из отходящего газа производства ацетилена.

Группа изобретений предназначена для отделения примесей от жидкости и могут быть использованы для получения СПГ повышенного качества. Установка содержит подогреватель сырьевого СПГ, компрессор, бак-сепаратор чистого СПГ с трубопроводом отвода отсепарированных паров и ректификационную колонну с патрубком слива кубовой жидкости.

Изобретение раскрывает установку подготовки попутного нефтяного газа, включающую нагреватель и конвертор, оснащенный линией вывода конвертированного газа с рекуперационным устройством, при этом установка оборудована конвертором селективного метанирования попутного нефтяного газа с линией ввода парогазовой смеси и оснащена блоком подготовки воды, соединенным линией подачи подготовленной воды с линией подачи попутного нефтяного газа и оснащенным линиями вывода солевого концентрата, ввода воды и подачи дегазированного водного конденсата из дефлегматора, который установлен на линии ввода парогазовой смеси.

Азот удаляют из криогенной углеводородной композиции. Криогенная углеводородная композиция делится на первую часть и вторую часть, имеющую тот же самый состав и фазу, что и первая часть.

Заявлен способ обратного сжижения богатой метаном фракции, в частности испаренного газа. При этом богатую метаном фракцию сжимают до давления, которое по меньшей мере на 20% превышает критическое давление подлежащей сжатию фракции, сжижают и переохлаждают.

Изобретение относится к способу одновременного получения обработанного природного газа, фракции обогащенной С3+ углеводородами и обогащенного этаном потока. Способ характеризуется тем, что включает следующие стадии: отбор рециркуляционного потока в верхнем потоке, выходящем из колонны выделения; установление определенного теплообменного взаимодействия между рециркуляционным потоком и по меньшей мере одной частью верхнего потока, выходящего из колонны выделения; повторное введение, после расширения, охлажденного и расширенного рециркуляционного потока в колонну выделения; отбор в кубе колонны выделения по меньшей мере одного кубового потока повторного кипячения и обеспечение теплообмена между потоком повторного кипячения и по меньшей мере одной частью исходного природного газа или/и с рециркуляционным потоком, при этом осуществление повторного кипячения кубовой жидкости обеспечивается за счет калорий, поглощаемых из исходного потока природного газа или/и рециркуляционного потока.

Изобретение относится к нефтегазовой промышленности. Способ подготовки попутного нефтяного газа включает компримирование газа путем сжатия и охлаждения компрессата хладагентом в условиях дефлегмации и стабилизации флегмы за счет нагрева компрессатом с получением подготовленного газа и конденсата.

Изобретение относится к нефтяной промышленности. Способ переработки попутного нефтяного газа включает компримирование газа путем сжатия и охлаждения компрессата в условиях дефлегмации и стабилизации флегмы с получением сжатого газа и жидкого продукта.

Группа изобретений относится к газоперерабатывающей промышленности и может использоваться при переработке газа для извлечения сжиженных углеводородных газов из природного газа магистральных газопроводов. Поток природного газа последовательно охлаждают и направляют на первую ступень низкотемпературной сепарации, затем отсепарированный на первой ступени газ расширяют в турбодетандере и направляют на вторую ступень низкотемпературной сепарации. Жидкую углеводородную фракцию, полученную на первой ступени сепарации, после дросселирования также направляют на вторую ступень сепарации. Отсепарированный газовый поток метан-этановой фракции направляют обратным потоком на охлаждение природного газа. Полученный жидкостной поток подают в верхнюю часть колонны-деэтанизатора, откуда отбирают газовый поток метан-этановой фракции и после дросселирования объединяют с обратным газовым потоком метан-этановой фракции, полученной на второй ступени сепарации, затем объединенный поток метан-этанового газа, после рекуперации его холода, дополнительно охлаждают и выводят с установки в качестве товарного газа. Жидкую фракцию С3+, полученную в колонне-деэтанизаторе, после дросселирования направляют в среднюю часть колонны-депропанизатора, откуда газовый поток пропановой фракции направляют на дефлегмацию, после чего полученную жидкую пропановую фракцию делят на два потока, меньший из которых подают в верхнюю часть колонны-депропанизатора в качестве орошения, а больший выводят с установки. Жидкий поток фракции С4+ с низа колонны-депропанизатора после дросселирования направляют в среднюю часть колонны-дебутанизатора, с верха которой газовый поток бутановой фракции направляют на дефлегмацию. После чего полученную жидкую бутановую фракцию делят на два потока, меньший из которых подают в верхнюю часть колонны-дебутанизатора в качестве орошения, больший охлаждают и выводят с установки, а поток жидкой фракции С5+ с низа колонны-дебутанизатора после охлаждения выводят с установки. Установка содержит два рекуперативных теплообменника, два низкотемпературных сепаратора, колонну-деэтанизатор, колонну-депропанизатор, оснащенную дефлегматором, включающим третий рекуперативный теплообменник и сепаратор, колонну-дебутанизатор, оснащенную дефлегматором, включающим водяной холодильник и сепаратор, три насоса, три аппарата воздушного охлаждения, турбодетандер, четыре дросселя и соединительные трубопроводы. Техническим результатом является повышение эффективности переработки газа, а также возможность получения отдельно пропановой и бутановой фракций. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области сжижения газов и их смесей и может быть применено для частичного сжижения в каскадных установках на газораспределительных станциях (ГРС) магистральных газопроводов. Отбирают поток природного газа из магистрального газопровода на ГРС, предварительно осушают, очищают и направляют его в многопоточный теплообменник. Затем в испаритель нижнего каскада двухкаскадной холодильной машины, где природный газ охлаждается до температуры начала его конденсации и, по крайней мере, частично конденсируется. В нижнем и верхнем каскадах холодильной машины циркулируют хладагент нижнего каскада и хладагент верхнего каскада, которые представляют собой чистый химический компонент или азеотропную смесь, кипящую при постоянной температуре в испарителе нижнего каскада и верхнего каскада соответственно. После испарителя нижнего каскада природный газ расширяют в расширительном устройстве, а затем подают в сборник-сепаратор. Его разделяют на поток сжиженного природного газа, отводимого в качестве товарного продукта, и обратный поток несжиженного природного газа. Обратный поток подают в многопоточный теплообменник в качестве среды, охлаждающей природный газ, после чего отводят в распределительный газопровод на ГРС. Часть паров хладагента нижнего каскада, отгоняемых из испарителя нижнего каскада, направляется для предварительного охлаждения природного газа в многопоточный теплообменник. Природный газ на выходе из испарителя нижнего каскада имеет температуру, равную сумме температуры кипения хладагента и температурной недорекуперации в испарителе нижнего каскада. При увеличении расхода газа через ГРС в холодный период года увеличивают величину расхода природного газа, поступающего на сжижение, относительно величины расхода, обеспечивающего максимально достижимый коэффициент сжижения природного газа. 1 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к области сжижения газов и их смесей и может быть применено для частичного сжижения в каскадных установках на газораспределительных станциях (ГРС) магистральных газопроводов. Отбирают поток природного газа из магистрального газопровода на ГРС, предварительно осушают, очищают и направляют его в многопоточный теплообменник. Затем в испаритель нижнего каскада двухкаскадной холодильной машины, где природный газ охлаждается до температуры начала его конденсации и, по крайней мере, частично конденсируется. В нижнем и верхнем каскадах холодильной машины циркулируют хладагент нижнего каскада и хладагент верхнего каскада, которые представляют собой чистый химический компонент или азеотропную смесь, кипящую при постоянной температуре в испарителе нижнего каскада и верхнего каскада соответственно. После испарителя нижнего каскада природный газ расширяют в расширительном устройстве, а затем подают в сборник-сепаратор. Его разделяют на поток сжиженного природного газа, отводимого в качестве товарного продукта, и обратный поток несжиженного природного газа. Обратный поток подают в многопоточный теплообменник в качестве среды, охлаждающей природный газ, после чего отводят в распределительный газопровод на ГРС. Часть паров хладагента нижнего каскада, отгоняемых из испарителя нижнего каскада, направляется для предварительного охлаждения природного газа в многопоточный теплообменник. Природный газ на выходе из испарителя нижнего каскада имеет температуру, равную сумме температуры кипения хладагента и температурной недорекуперации в испарителе нижнего каскада. При увеличении расхода газа через ГРС в холодный период года увеличивают величину расхода природного газа, поступающего на сжижение, относительно величины расхода, обеспечивающего максимально достижимый коэффициент сжижения природного газа. 1 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к газовой промышленности, в частности к подготовке природного газа и извлечению нестабильного углеводородного конденсата из пластового газа, и может быть использовано на газоконденсатных месторождениях, расположенных в зоне многолетнемерзлых грунтов. В способе абсорбционной подготовки природного газа природный газ подвергают первичной сепарации, после чего газ охлаждают и подают на вторичную сепарацию, снова охлаждают и подают на вход абсорбера. В абсорбере газ подвергают абсорбции жидким углеводородным абсорбентом, который получают из отсепарированного после первичного сепаратора жидкого углеводородного потока путем его последовательного трехступенчатого трехфазного разделения с последующей ректификацией и нагревом. После второй ступени трехфазного разделения производят нагрев жидкого углеводородного потока. Газ, отводимый из абсорбера, нагревают и отводят потребителю. Поток жидких углеводородов после вторичной сепарации, поток части жидкой углеводородной фазы после первой ступени трехфазного разделения, поток жидких углеводородов, отводимых из абсорбера, и поток газа, состоящий из смешанных потоков газовой фазы после второй и третьей ступеней трехфазного разделения и потока газов, выделенных после ректификации, подвергают смешению, после чего из полученной смеси отделяют метан-этановую фракцию и отводят упомянутую смесь в виде жидкого углеводородного продукта потребителю. Техническим результатом является повышение качества подготовки природного газа. 5 з.п. ф-лы, 2 ил.

Изобретение относится к газовой промышленности, в частности к подготовке природного газа и извлечению нестабильного углеводородного конденсата из пластового газа, и может быть использовано на газоконденсатных месторождениях, расположенных в зоне многолетнемерзлых грунтов. В способе абсорбционной подготовки природного газа природный газ подвергают первичной сепарации, после чего его охлаждают и подают на вторичную сепарацию. Отсепарированный при вторичной сепарации газ охлаждают и подают на вход абсорбера, в котором газ подвергают абсорбции жидким углеводородным абсорбентом. Его получают из отсепарированного после первичного сепаратора жидкого углеводородного потока путем его последовательного трехступенчатого трехфазного разделения, а затем его сепарации от остаточных газов и охлаждения. После второй и третьей ступени трехфазного разделения производят нагрев жидкого углеводородного потока. Газ, отводимый из абсорбера, нагревают и отводят потребителю. Поток жидких углеводородов после вторичной сепарации, поток части жидкой углеводородной фазы после первой ступени трехфазного разделения, поток жидких углеводородов, отводимых из абсорбера, и поток газа, состоящий из смешанных потоков газовой фазы после второй и третьей ступени трехфазного разделения и потока газов после сепарации от остаточных газов, подвергают смешению, после чего из полученной смеси отделяют метан-этановую фракцию и отводят ее в виде жидкого углеводородного продукта потребителю. Техническим результатом является повышение качества подготовки природного газа. 6 з.п. ф-лы, 2 ил.

Изобретение относится к газохимическому комплексу, обеспечивающему переработку природных углеводородных газов различных месторождений, и может быть использовано в газовой промышленности в условиях ее интенсивного развития. Газохимический комплекс включает газоперерабатывающий завод, газохимический завод, завод по производству удобрений и объединяющую заводы друг с другом газотранспортную сеть. На газоперерабатывающем заводе природный углеводородный газ с содержанием этана более 3-4% об. последовательно очищают от примесей и фракционируют на метан, этан и широкую фракцию легких углеводородов. Метан направляют в виде товарного топливного газа потребителям и/или на завод по сжижению природного газа. Этан направляют на установки пиролиза этана газохимического завода с получением этилена и его полимеризацией в полиэтилен. Широкую фракцию легких углеводородов разделяют на пропан, подаваемый на установки дегидрирования пропана газохимического завода с получением пропилена и его полимеризацией в полипропилен, товарные бутан и углеводороды С5 и выше в виде конденсата. Изобретение позволяет высокоэффективно перерабатывать природные углеводородные газы одного или нескольких месторождений с выработкой максимально разнообразного ассортимента конечной продукции. 8 з.п. ф-лы, 1 ил.
Наверх