Пульсирующий газотурбинный двигатель



Пульсирующий газотурбинный двигатель
Пульсирующий газотурбинный двигатель
Пульсирующий газотурбинный двигатель

 


Владельцы патента RU 2635953:

Общество с ограниченной ответственностью Научно-производственная фирма "Пакер" (RU)

Изобретение относится к области двигателестроения. Пульсирующий газотурбинный двигатель содержит корпус, ротор, снабженный реактивными двигателями с компрессором на валу, и газовую турбину, посаженную коаксиально на вал ротора. Ротор, с тангенциально установленными пульсирующими реактивными двигателями, встроен в раздвоенную в виде вилки газовую турбину с лопатками, установленную коаксиально на валу ротора, охватывая его симметрично с обеих сторон. Лопатки турбины выполнены с фасонными вырезами с небольшим зазором по контуру сопел пульсирующих реактивных двигателей, выполненных в виде параболических камер. В фокусах параболических камер установлены свечи зажигания топливовоздушной смеси, поступающей из проходных каналов через обратные клапаны, расположенные в вершинах параболических камер, в которые по топливным каналам с помощью конических воздухозаборников, установленных на тыльных сторонах параболических камер, выполняющих функцию компрессоров и образующих струйные насосы, подается топливо в виде топливовоздушной смеси (аэрозоля). Из выходных сопел параболических камер сфокусированные потоки продуктов горения топливовоздушной смеси направлены на лопатки газовой турбины. Противоположно направленные крутящие моменты на валу ротора и на коаксиальном валу турбины суммируются с помощью дифференциала. Изобретение направлено на повышение КПД пульсирующего газотурбинного двигателя. 3 ил.

 

Предлагаемое изобретение относится к области двигателестроения и может быть использовано в автомобилях, мотоциклах, катерах, дельтапланах, бензопилах, газонокосилках и т.п.

Известен газотурбинный струйный двигатель [Патент РФ №2441998, МПК F02C 3/16 и F01D 1/32, опубликован 10.02.2012], включающий вращающуюся камеру сгорания, компрессор подачи воздуха, систему подвода топлива, систему охлаждения и воспламенения, камера оснащена тангенциально расположенными реактивными соплами, системой охлаждения жидкометаллическим теплоносителем, системой дополнительных полых роторов, вращающихся посредством шестеренчатых редукторов и передающих крутящий момент валу отбора мощности.

Безусловно, многоступенчатая передача газоструйной энергии реактивными соплами на выходной вал со сложными системами обеспечения позволяет достичь высокой экономичности газотурбинного двигателя. Однако данное техническое решение весьма сложное по своей конструкции и реализации.

Известно газотурбинное устройство (прототип) [Международная заявка WO 93/19290 А1 (Гулевский А.Н.), опубликовано 30.09.1993], имеющее ротор, снабженный струйными реактивными двигателями, установленными на нем тангенциально, в котором для увеличения степени сжатия воздуха, подаваемого в камеры сгорания, на валу ротора установлен поршневой компрессор. А для более полного использования энергии реактивных струй на валу ротора установлена на дополнительном коаксиальном валу газовая турбина, взаимодействующая с реактивными струями и приводящая ее в противоположное вращение.

Это более простое по конструкции устройство, но в нем для подачи воздуха в камеры сгорания используется поршневой компрессор, а в аналоге центробежный. Так что никакого повышения КПД за счет использования равноценного компрессора в этом устройстве по сравнению с аналогом не ожидается. Эффект газотурбинного устройства заключается в повышении КПД за счет использования энергии реактивных струй турбиной, которая создает дополнительный вращающий момент. Однако применение типовой газовой турбины и камер сгорания в предлагаемом устройстве не позволяет максимально ее использовать для получения дополнительного вращающего момента. К тому же, аналог и прототип используют энергию струйных, т.е. непрерывно действующих реактивных двигателей.

Целью предлагаемого изобретения является устранение указанных недостатков.

Эта цель достигается тем, что в предлагаемом изобретении предлагается пульсирующий газотурбинный двигатель, в котором ротор с тангенциально установленными пульсирующими реактивными двигателями, встроен в раздвоенную в виде вилки газовую турбину, установленную коаксиально на валу ротора, охватывая его симметрично с обеих сторон, лопатки турбины выполнены с фасонными вырезами с небольшим зазором по контуру сопел пульсирующих реактивных двигателей, выполненных в виде параболических камер, в фокусах которых установлены свечи зажигания топливовоздушной смеси, поступающей из проходных каналов через обратные клапаны, расположенные в вершинах параболических камер, в которые по топливным каналам с помощью конических воздухозаборников, установленных на тыльных сторонах параболических камер, выполняющих функцию компрессоров и образующих струйные насосы, подается топливо в виде топливовоздушной смеси (аэрозоля), из выходных сопел параболических камер сфокусированные в пульсирующие фронты горения топливовоздушной смеси изнутри направлены на лопатки газовой турбины, при этом противоположно направленные крутящие моменты вала ротора и коаксиального вала турбины складываются с помощью суммирующего дифференциала.

На фиг. 1 представлен в разрезе общий вид предлагаемого пульсирующего газотурбинного двигателя: 1 - корпус двигателя; 2 - стяжные болты; 3 - ротор; 4 - пульсирующие реактивные двигатели; 5 - параболические камеры сгорания; 6 - газовая турбина с лопатками; 7 - вал ротора; 8 - фасонные вырезы в лопатках; 10 - свечи зажигания; 11 - обратные клапаны; 12 - топливные каналы; 13 - конусные воздухозаборники; 14 - проходные каналы; 15 - канал для электропитания свечей; 16 - магистральный топливный канал; 18 - воздуховсасывающий трубопровод; 19 - газоотводящий трубопровод.

На фиг. 2 представлен вид сбоку предлагаемого газотурбинного двигателя: 1 - корпус двигателя; 2 - стяжные болты; 3 - ротор; 4 - пульсирующие реактивные двигатели; 5 - параболические камеры сгорания; 6 - лопатки газовой турбины; 7 - вал ротора; 8 - фасонные вырезы в лопатках; 9 - вал коаксиально расположенной турбины; 10 - свеча зажигания; 11 - обратный клапан; 12 - топливные каналы; 15 - канал для электропитания свечей зажигания; 16 - магистральный топливный канал; 17 - шарикоподшипники.

На фиг. 3 показана параболическая камера сгорания: 3 - ротор; 5 - параболическая камера сгорания; 10 - свеча зажигания; 11 - обратный клапан; 12 - топливный канал; 13 - воздухозаборник; 14 - проходной канал; 15 - канал для провода электропитания свечи; 20 - держатель пульсирующего реактивного двигателя; 21 - провод электропитания свечи; 22 - фокус; 23 - сфокусированный газовый фронт.

Предлагаемый пульсирующий газотурбинный двигатель в разрезе (фиг. 1) состоит из корпуса 1 из двух половин, стянутых болтами 2, в котором размещен ротор 3, с тангенциально установленными пульсирующими реактивными двигателями 4 и встроен в раздвоенную в виде вилки газовую турбину 6, установленную коаксиально валу 7 ротора 3. Жестко посаженный на вал 7 ротор 3 с симметрично расположенными параболическими камерами сгорания 5 и воздухозаборниками 13 вращаются в фасонных вырезах 8, выполненных по контуру сопел пульсирующих реактивных двигателей 4. В фокусах параболических камер сгорания 5 установлены свечи зажигания 10 топливовоздушной смеси. Смесь поступает по топливным каналам 12 через проходные каналы 14 и обратные клапаны 11, расположенные в вершинах параболических камер 5, с помощью конических воздухозаборников 13, установленных на тыльных сторонах параболических камер 5. Воздухозаборники 13 с проходным каналом 14 при высокой скорости встречного вращения выполняют функцию компрессоров и образуют с топливными каналами 12 струйные насосы, с помощью которых топливо подается в виде топливовоздушной смеси (аэрозоля). Сфокусированные фронты горения топливовоздушной смеси в параболических камерах 5 при выходе из сопел формируются в газовые фронты, направленные на лопатки 6 газовой турбины и создающие последний крутящий момент, обратный моменту пульсирующих реактивных двигателей 4. Топливные каналы 12 соединяются внутри вала 3 в магистральный канал 16 и на выходе - с топливным баком (не показан на фиг. 1). Второй канал 15 предназначен для проводов электропитания свеч зажигания 10. Всасывание свежего воздуха в двигатель осуществляется по трубопроводу 18 самой турбиной. Выброс отработанных газов - также самой турбиной, но через трубопровод 19. Таким образом, двигатель работает как воздушный турбокомпрессор.

На виде сбоку пульсирующего газотурбинного двигателя в разрезе (фиг. 2) показан корпус 1 из двух половин, стянутый болтами 2, внутри которого размещена газовая турбина с лопатками 6, закрепленными на коаксиальном валу 9 в шарикоподшипниках 17 между корпусом 1 и валом ротора 7, на котором жестко закреплен ротор 3 с установленными на нем параболическими камерами сгорания 5, вращающимися в фасонных вырезах 8 лопаток турбины 6. Газовая турбина 6 выполнена раздвоенной в виде вилки, симметрично охватывающей с обеих сторон с небольшим зазором ротор 3 с камерами 5. В разрезе верхней части чертежа в проеме сопла видны следующие лопатки газовой турбины 6, в которые попадает реактивная газовая струя. В разрезе нижней части показаны обратный клапан 11 и свеча зажигания 10. Противоположно направленные крутящие моменты вала ротора 7 и вала 9 коаксиальной турбины 6 суммируются с помощью дифференциала (не показан на фиг. 1).

Камера сгорания топливовоздушной смеси (фиг. 3) выполнена в виде параболоида вращения, обладающего свойством фокусирования 22 фронта горения и направленного пульсирующего действия сформированного газового фронта 23 из сопла параболической камеры 5 изнутри на лопатки газовой турбины 6. Удлиненная свеча зажигания 10 питается от электропровода 21, пропущенного в канале 15, и размещается над или сбоку от проходного канала 14 для топливовоздушной смеси напротив обратного клапана 11 так, чтобы электроды ее находились в фокусе параболической камеры 5 и искра воспламеняла смесь в этом фокусе. Конический воздухозаборник 13 при встречном вращении ротора 3 концентрирует захваченный поток воздуха проходным каналом 14 и образует высокоскоростную струю воздуха в нем с большим давлением, которая с топливным каналом 12 образует струйный эффект (струйный насос). Впрыснутая в параболическую камеру 5 топливовоздушная смесь (аэрозоль) поджигается искрой свечи 10 и высокое давление горения смеси автоматически закрывает обратный клапан 11, накапливая давление в проходном канале 14 для очередного впрыскивания. Параболическая камера 5 и воздухозаборник 13 закреплены на роторе 3 с помощью держателя 20. Сгоревшая топливовоздушная смесь на выходе из сопла параболической камеры 5 переходит в газовый фронт и распространяется со скоростью 20-40 м/с. При этом давление газов в фокусе 22 камеры падает, а давление в проходном канале 14 достигает максимума. В результате обратный клапан 11 открывается. Синхронно с очередным впрыскиванием топливовоздушной смеси в параболическую камеру 5 подается искра (ни опережая, ни опаздывая) для поджига этой смеси, и так называемый PV-цикл Хамфри завершается («Р-V» - давление-объем).

Пульсирующий газотурбинный двигатель работает следующим образом.

Открывается топливная магистраль 16, включается электронная система зажигания по каналу 15 на 2,4 или более пульсирующих реактивных двигателя 4 и с помощью стартера (не показан на фиг. 1) раскручивается ротор 3 с реактивными двигателями 4 до полного запуска газовой турбины с лопатками 6. При этом на рабочий режим выходят все пульсирующие реактивные двигатели 4, совершая во всех одновременно пульсирующих реактивных двигателях от 45 до 250 PV-циклов в секунду. Вал ротора 3 и коаксиальный вал 9 газовой турбины с противоположными крутящими моментами нагружены на суммирующий дифференциал (не показан на фиг. 1), с вала которого снимается полезная мощность.

Технический эффект: Взаимодействие пульсирующих реактивных параболических камер изнутри лопаток газовой турбины с автономными воздухозаборниками (вместо компрессора на валу) повышает КПД газотурбинного двигателя.

Пульсирующий газотурбинный двигатель, содержащий корпус, ротор, снабженный реактивными двигателями с компрессором на валу, и газовую турбину, посаженную коаксиально на вал ротора, отличающийся тем, что ротор с тангенциально установленными пульсирующими реактивными двигателями встроен в раздвоенную в виде вилки газовую турбину с лопатками, установленную коаксиально на валу ротора, охватывая его симметрично с обеих сторон, лопатки турбины выполнены с фасонными вырезами с небольшим зазором по контуру сопел пульсирующих реактивных двигателей, выполненных в виде параболических камер, в фокусах которых установлены свечи зажигания топливовоздушной смеси, поступающей из проходных каналов через обратные клапаны, расположенные в вершинах параболических камер, в которые по топливным каналам с помощью конических воздухозаборников, установленных на тыльных сторонах параболических камер, выполняющих функцию компрессоров и образующих струйные насосы, подается топливо в виде топливовоздушной смеси в виде аэрозоля, из выходных сопел параболических камер сфокусированные потоки продуктов горения топливовоздушной смеси направлены на лопатки газовой турбины, при этом противоположно направленные крутящие моменты на валу ротора и на коаксиальном валу турбины суммируются с помощью дифференциала.



 

Похожие патенты:

Комбинированный авиационный двигатель содержит компрессор, газотурбинный двигатель, за которым расположены компрессорная и вокруг нее прямоточная камеры сгорания с реактивными соплами, и турбину.

Турбопрямоточный воздушно-реактивный двигатель включает турбореактивный двигатель с форсажной камерой и реактивным соплом (ТРДФ), систему измерения температуры газа за основной камерой сгорания турбореактивного двигателя, а также расположенный соосно последнему прямоточный контур.

Воздушно-реактивный двигатель содержит корпус с воздухозаборником, компрессор со спрямляющим аппаратом, газотурбинный двигатель, реактивное сопло. За газотурбинным двигателем расположена камера сгорания с установленными по окружности корпуса двигателя перед ее входом управляемыми внешними и внутренними запорными заслонками.

Комбинированный турбопрямоточный реактивный двигатель содержит наружный корпус, центральное тело, воздуховод, по меньшей мере, первую ступень воздушного компрессора, турбонасос и дозвуковую турбину.

Изобретение относится к области авиации и может быть использовано в двигателестроении летательных аппаратов. Прямоточный воздушно-реактивный двигатель содержит основной воздухозаборник, основную камеру сгорания, камеру переменного сечения, смесительную камеру, основное сопло, основной инжектор топлива, устройство инициирования пульсирующего режима горения.

Самолёт с газотурбинной силовой установкой содержит маршевую газотурбинную силовую установку, включающую не менее двух двигателей. Каждый из двигателей выполнен в виде выделенного корневого газотурбинного двигателя, содержащего внешний обтекатель, компрессор, камеру сгорания и турбину, приводящую компрессор, и расположенные отдельно от выделенного корневого газотурбинного двигателя движительные устройства.

Воздушно-реактивный двигатель содержит кожух с передним воздухозаборником и задним выпускным отверстием, формирующий внутреннее пространство для воздушного потока внутренней стенкой, расположенной внутри кожуха, центральный рассекатель воздушного потока и камеру сгорания.

Изобретение относится к двигателестроению, в том числе к авиационным двигателям, и может найти применение в гиперзвуковых самолетах или для ракетно-космических систем, способных совершать пилотируемый полет в атмосфере, например, возвращаемой ступени ракеты-носителя.

Двухтопливный воздушно-реактивный двигатель содержит воздухозаборник, корпус, по меньшей мере, один компрессор, камеру сгорания с топливным коллектором и группой форсунок, по меньшей мере, одну турбину и, по меньшей мере, один вал, соединяющий компрессор и турбину, реактивное сопло и систему подачи углеводородного топлива в камеру сгорания.

Изобретение относится к газотурбинным двигателям и может быть применимо для сверхзвуковой военной авиации и гиперзвуковых самолетов. Воздушно-реактивный двигатель содержит воздухозаборник, корпус, компрессор с ротором компрессора и камеру сгорания, газовую турбину, вал, соединяющий компрессор и газовую турбину, и реактивное сопло.

Способ организации рабочего процесса в непрерывно-детонационной камере сгорания турбореактивного двигателя включает двухступенчатое преобразование химической энергии топлива в полезную механическую работу и в кинетическую энергию реактивной струи.

Газотурбинный двигатель с пульсирующей работой содержит симметрично расположенные камеры сгорания с окнами входа и выхода над ними, прилегающие к торцу диска ротора.

Детонационный двигатель содержит первый и второй впуски, первое и второе сопла и сепаратор. Первый впуск имеет первый конец, соединенный по текучей среде с первой емкостью, и второй конец, соединенный по текучей среде с детонационным двигателем.

Изобретение относится к аэрокосмическим двигателям. Детонационно-дефлаграционный пульсирующий прямоточный воздушно-реактивный двигатель содержит сверхзвуковой воздухозаборник, систему непрерывной подачи топлива, решеточный пластинчатый гаситель детонационных волн, расположенный так, что в него поступает хорошо перемешанная горючая смесь, камеру сгорания и выхлопное сопло.

Изобретение относится к бесклапанному многотрубному двигателю с импульсной детонацией. Двигатель содержит несколько детонационных труб, причем каждая детонационная труба имеет независимое разгрузочное выпускное отверстие, несколько детонационных труб соединены друг с другом в общем отверстии впуска воздушно-топливной смеси, при этом воздушно-топливная смесь детонирует в детонационных трубах одновременно, и общее отверстие впуска воздушно-топливной смеси минимизирует обратное давление, вызванное детонацией воздушно-топливной смеси, направляя несколько обратных ударных волн друг на друга, эффективно используя обратные давления как реактивные фронты друг для друга и эффективно снижая воздействие ударных волн, распространяющихся назад, в направлении вверх по потоку.

Способ сжигания топливовоздушной смеси для создания реактивной тяги в прямоточном воздушно-реактивном двигателе со спиновой детонационной волной заключается в том, что набегающий высокоскоростной поток тормозят до чисел Маха в диапазоне от 3 до 4 в сверхзвуковом двухступенчатом воздухозаборнике с затупленным центральным телом.

Способ организации детонационно-дефлаграционного горения в воздушно-реактивном двигателе для высоких скоростей полета заключается в том, что набегающий высокоскоростной сверхзвуковой поток воздуха тормозят в криволинейном пространстве воздухозаборника, по мере продвижения, в зоне образования скорости, меньшей, чем скорость детонационной волны, возникающей при горении, но большей, чем скорость ударной волны, возникающей при гашении детонационной волны.

Изобретение относится к области двигателей и движителей и может быть использовано для перемещений различных объектов, например летательных аппаратов, а также наземных или водных транспортных средств, в строительстве, при погрузоразгрузочных работах, в военной технике.

Изобретение относится к камерам сгорания прерывистого действия, таким как камеры пульсирующего горения для сжигания газообразных и жидких топлив, а также к камерам сгорания пульсирующих воздушно-реактивных двигателей.

Изобретение относится к авиационной технике, воздушно-реактивным двигателям для беспилотных летательных аппаратов, летающих мишеней, малых летательных аппаратов и может быть применено в качестве двигателя привода ротора реактивных вертолетов.
Наверх