Газовое сопло для сварочной горелки

Изобретение относится к машиностроению и может быть применено при дуговой сварке и наплавке металлических деталей в среде защитного газа. Газовое сопло сварочной горелки выполнено в форме конфузора, состоящего из криволинейного и двух прямолинейных участков на входе и выходе сопла с внутренней поверхностью в виде параболической кривой, у которой начало и конец асимптотически стремятся к прямой линии параллельно продольной оси сопла. При этом кромка сопла на выходе выполнена с углом скоса 10-45°. Длина прямолинейного участка на входе находится в интервале 0,1-1,2 входного диаметра сопла. Длина прямолинейного участка на выходе находится в интервале 0,2-1,5 выходного диаметра сопла. Кромка сопла на выходе имеет толщину в пределах 0,2-1 мм. Изобретение позволяет повысить эффективность газовой зашиты зоны сварки при дуговой сварке в среде защитного газа в условиях ветра путем увеличения скорости истечения и жесткости защитной газовой струи. 3 з.п. ф-лы, 1 ил., 1 табл., 1 пр.

 

Предлагаемое изобретение относится к машиностроению и может быть применено при дуговой сварке и наплавке металлических деталей в среде защитного газа.

Известно сопло к сварочной горелке (см. Коляда А.А., Давидчук П.И., Радомыльская Н.Н., Домки И.Р. Конусное сопло к горелке для сварки. Авторское свидетельство СССР №1278149. Опубликовано 23.12.1986 г. Бюл. №47). Указанное сопло выполнено из двух сопряженных конусов и имеет на внутренней поверхности кольцевой выступ. Наличие выступа позволяет уменьшить площадь поперечного сечения сопла, что приводит к увеличению скорости истечения газа на выходе из сопла и уменьшить расход защитного газа. Однако наличие внутри сопла выступа нарушает ламинарный характер движения газа на периферии газовой струи, что может приводить к турбулентности струи на выходе из сопла и нарушению эффективности газовой защиты зоны сварки.

Известно сопло к горелке (см. Римский С.Т., Свеницкий В.Г., Ульянов В.И. Конусное сопло к горелке для сварки. Авторское свидетельство СССР №518299. Опубликовано 25.06.1976 г. Бюл. №23), которое выполнено в виде двух сопряженных конусов, которые позволяют обеспечить равномерное поле скоростей истечения газа из сопла, что уменьшает расход защитного газа и повышает эффективность защиты зоны сварки. Однако сопло по изобретению не имеет плавного перехода в местах сопряжения конусов, что может нарушать ламинарное течение на периферии газовой струи при высоких скоростях истечения газа на входе в сопло. Кроме того, форма сопла не имеет прямого участка на выходе, что снижает стабильность и жесткость защитной газовой струи при сварке в условиях ветра. Это нарушает эффективность газовой защиты и качество сварных соединений в условиях ветра.

Известно сопло к горелке для сварки (см. Акатнов Н.И., Бабаев И.И., Примин Д.И., Кузнецов М.Ю., Федоренко Г.А. и др. Сопло к горелке для сварки в среде защитного газа. Авторское свидетельство СССР №1669658. Опубликовано 15.08.1991 г. Бюл. №30), которое принято за прототип. Сопло по прототипу состоит из проточной части в виде конфузора, по радиусу которого установлены продольные пластины, выступающие за пределы сопла. Указанное сопло позволяет увеличить устойчивость струи защитного газа при сварке с порывами ветра. Однако сопло по прототипу не имеет прямого участка на выходе, что снижает стабильность и жесткость защитной газовой струи при сварке в условиях ветра при высоких скоростях истечения газа. Кроме того, наличие выступающих пластин по контуру сопла ограничивает визуальное наблюдение сварщика за формированием сварного шва. Указанные недостатки ограничивают применение указанного сопла в промышленности.

Техническим результатом предлагаемого изобретения является улучшение эффективности газовой защиты зоны сварки при дуговой сварке в среде защитного газа в условиях ветра путем увеличения скорости истечения и жесткости защитной газовой струи.

Сущность предлагаемого изобретения заключается в том, что при дуговой сварке в среде защитного газа используют газовое сопло, форма которого состоит из криволинейного и прямолинейных участков. В отличие от прототипа сопло имеет вид конфузора с прямолинейными участками на входе и выходе из сопла, а внутренняя поверхность криволинейного участка имеет форму параболической кривой, у которой начало и конец асимптотически стремятся к прямой линии параллельно продольной оси конфузора.

Такое сочетание известных и новых признаков позволяет улучшить эффективность газовой защиты при сварке в условиях ветра. Это становится возможным, поскольку сопло имеет внутреннюю поверхность в виде параболической кривой, у которой начало и конец асимптотически стремятся к прямой линии параллельно продольной оси сопла, которое содержит прямолинейные участки на входе и выходе. При этом общая длина сопла L равна сумме длины конфузора 1, равной 1,5-3 выходных диаметров сопла D0, длины прямолинейного участка на выходе, которая принимается равной 0,2-1,5 выходного диаметра сопла и длины прямолинейного участка на входе, которая принимается равной 0,1-1,2 входного диаметра сопла D1. Такая конструкция сопла имеет улучшенные аэродинамические характеристики, которые обеспечивают повышение скорости истечения защитной газовой струи и необходимую степень сжатия газовой струи на выходе из сопла, что увеличивает стабильность и жесткость газовой струи в условиях воздействия ветра.

Изобретение иллюстрируется чертежом, на котором показана конструкция газового сопла с общей длиной L, длиной 1 конфузора в виде параболической кривой, входным и выходным внутренними диаметрами сопла D1, D0, длиной прямолинейного участка на входе, равной (0,1-1,2 D1), длиной прямолинейного участка на выходе, равной (0,2-1,5 D0), толщиной кромки сопла, равной 0,2-1 мм, углом скоса кромки, равным 10-45°.

Цель изобретения достигается тем, что конструкция сопла имеет вид конфузора с прямолинейными участками на входе и выходе из сопла, а внутренняя поверхность криволинейного участка имеет форму параболической кривой, у которой начало и конец асимптотически стремятся к прямой линии параллельно продольной оси конфузора.

Форма параболической кривой может быть рассчитана согласно функциональным зависимостям (см. Жуковский Н.Е. Насадки и диффузоры аэродинамических труб. / Н.Е.Жуковский. - М.: Наука, 1949. - Т. IV. - 613 с.):

где 1 - длина конфузора, х - текущая осевая координата, q - произвольный коэффициент, который во всех случаях ≥1.

При этом степень сжатия газовой струи на выходе из сопла n=1,5-4 и определяется отношением площадей входного и выходного отверстия сопла [см. Абрамович Г.Н. Теория турбулентных струй. - М.: Наука, 1984. - 716 с.]:

где F1, F0 - площади входного и выходного отверстий сопла, D1, D0 - диаметры тех же отверстий.

Если степень сжатия газовой струи потока на выходе из сопла менее 1,5, то при истечении из сопла происходит увеличение степени турбулентности газовой струи. Если степень сжатия газовой струи на выходе из сопла более 4, то степень турбулентности газовой струи на выходе превышает степень турбулентности газовой струи на входе в сопло.

При этом длина прямолинейного участка на выходе из сопла определяется по опытным данным как 0,2-1,5 выходного диаметра конфузора D0, а длина прямолинейного участка на входе из сопла определяется по опытным данным как 0,1-1,2 входного диаметра конфузора D1 [см. Повх И.Л. Аэродинамический эксперимент в машиностроении. - М.: Машиностроение. - 1974. - 480 с.]. Если длина прямолинейного участка на выходе из сопла менее 0,2 выходного диаметра конфузора, то при прохождении газовой струи по прямому участку не происходит выравнивания поперечного поля скоростей газовой струи. Увеличение длины прямолинейного участка на выходе из сопла более 1,5 выходного диаметра конфузора не оказывает влияния на дальнейшее уменьшение неравномерности поперечного поля скоростей газовой струи. Аналогичным образом влияет изменение длины прямолинейного участка на входе из сопла за пределы рекомендуемого интервала значений.

Для уменьшения турбулентности на периферии газовой струи толщина кромок сопла на выходе прямого участка должна быть 0,2-1 мм, при этом, скос кромки сопла прямого участка должен иметь угол 10-45°. Если толщина кромок на выходе прямого участка сопла менее 0,2 мм или более 1 мм, то происходит нарушение ламинарного истечения газовой струи и эффективность газовой защиты сварочной ванны нарушается. Стабильность истечения газовой струи и эффективность газовой зашиты сварочной ванны также нарушаются, если скос кромки сопла цилиндрического участка имеет угол менее 10° или более 45°.

Характеристики истечения газовых струй определили при помощи компьютерного моделирования газодинамических процессов в среде ANSYS, при этом моделировали предлагаемое конфузорное сопло и стандартное сопло цилиндрической формы диаметром 30 мм. Для оценки достоверности расчетных данных, полученных в среде ANSYS, провели экспериментальные исследования скорости истечения газовых струй на выходе сопла при различных расходах газа с помощью цифрового термоанемометра Dwyer Series 471. Испытания газовых сопел производили при механизированной сварке в среде углекислого газа.

Для испытаний изготовили сопло из нержавеющей стали с входным внутренним диаметром 30 мм и выходным внутренним диаметром 21 мм. При этом толщина кромок на выходе прямого участка составляла 0,5 мм, угол скоса кромок 30°, общая длина сопла составляла 40 мм, длина прямого участка 5 мм. Результаты моделирования и экспериментов показали, что конфузорное сопло предлагаемой конструкции обеспечивает увеличение скорости истечения газовой струи по сравнению с цилиндрическим соплом, см. таблица 1.

Испытания газового сопла при механизированной сварке в среде углекислого газа на лабораторном стенде с аэродинамической трубой с моделированием воздействия ветра со скоростью 1-3 м/с с резкими усилениями показало, что предлагаемое сопло обеспечивает эффективную газовую защиту зоны сварки и отсутствие дефектов.

Таким образом, предлагаемое газовое сопло обеспечивает технический эффект, который выражается в улучшении эффективности газовой защиты и увеличении скорости истечения газовой струи в условиях воздействия ветра, может быть изготовлено и применено с использованием известных в технике средств, следовательно, сопло обладает промышленной применимостью.

1. Газовое сопло сварочной горелки, выполненное в форме конфузора, состоящего из криволинейного и двух прямолинейных участков на входе и выходе сопла с внутренней поверхностью в виде параболической кривой, у которой начало и конец асимптотически стремятся к прямой линии параллельно продольной оси сопла, отличающееся тем, что кромка сопла на выходе выполнена с углом скоса 10-45°.

2. Газовое сопло для сварочной горелки по п. 1, отличающееся тем, что длина прямолинейного участка на входе находится в интервале 0,1-1,2 входного диаметра сопла.

3. Газовое сопло для сварочной горелки по п. 1, отличающееся тем, что длина прямолинейного участка на выходе находится в интервале 0,2-1,5 выходного диаметра сопла.

4. Газовое сопло для сварочной горелки по п. 1, отличающееся тем, что кромка сопла на выходе имеет толщину в пределах 0,2-1 мм.



 

Похожие патенты:

Изобретение относится к способу изготовления сварного конструктивного элемента и может найти применение при производстве строительных конструктивных элементов и деталей корпусов автомобиля.

Предлагаемое изобретение относится к машиностроению и может быть применено при дуговой сварке и наплавке металлических деталей в среде защитного газа. Горелка для дуговой сварки в среде защитных газов состоит из корпуса, головки, ручки, накидной гайки, газотокоподвода, электрододержателя, электрода, крепежных винтов, конфузорного сопла и пакета сеток, причем внутренняя поверхность конфузорного сопла выполнена в виде параболической кривой, у которой начало и конец асимптотически стремятся к прямой линии, расположенной параллельно продольной оси сопла, перед входом в который устанавливается пакет сеток, состоящий из корпуса, втулки, уплотнительных колец и стальных сеток.

Изобретение относится к способу аргонодуговой сварки кольцевых стыков трубчатых деталей, одна из которых выполнена в форме стакана с центральным отверстием в донной части, а другая трубчатой формы.

Изобретение относится к способу получения сварного соединения металлических деталей. Осуществляют дуговую сварку угловыми швами в зоне сопряжения поверхности листа одной металлической детали и одной или обеих поверхностей листа другой металлической детали.

Изобретение может быть использовано для газовой защиты сварочной ванны, сварного шва и околошовной зоны при сварке плавлением в среде защитных газов. Устройство содержит сопло для подачи защитного газа в зону сварки и закрепленную на нем приставку, имеющую ребра, выполненные со стороны, обращенной к поверхности свариваемой детали, и снабженную опорами для перемещения по ней.

Изобретение может быть использовано при изготовлении механизированной сваркой металлоконструкций ответственного назначения. С основной сварочной проволокой применяют дополнительную присадочную проволоку, содержащую оболочку, наполненную наноструктурированными порошками вольфрама, или молибдена, или оксида алюминия.

Изобретение относится к способу сварки корпуса измерительного преобразователя с корпусом измерительного устройства для установки и герметизации измерительных преобразователей в ультразвуковых расходомерах.

Изобретение относится к способу изготовлению сварных корпусов сосудов высокого давления из высокопрочных легированных сталей. Вначале получают тонкостенную оболочку путем резки труб из стали типа 28Х3СНМВФА на заготовки, калибровки, рекристаллизационного отжига, механической обработки, ротационной вытяжки за несколько переходов с промежуточными отжигами деформирующими роликами с треугольным профилем со скругленными по радиусу или (и) плоскими вершинами, установленными с различными зазорами относительно оправки.

Изобретение относится к сварочной головке (1) для сварки вручную сварочной дугой (3) в инертном газе (WIG). Головка содержит теплостойкий электрод (2).

Изобретение относится к способу создания тройникового соединения. Очищают поверхность основной трубы в месте приварки усиленного патрубка углового и осуществляют разметку упомянутого места и вырезку.

Изобретение относится к способу дуговой механизированной двухэлектродной сварки изделия в среде инертного газа. Осуществляют принудительный обрыв сварочной дуги на одном из используемых электродов, который является плавящимся, путем выключения тока в сварочной цепи электрода. В качестве второго электрода используют неплавящийся электрод, при этом периодически изменяют полярность изделия с сохранением полярности каждого из электродов, при подключении изделия к положительному полюсу источника питания неплавящийся электрод подключают к отрицательному полюсу источника питания. А при подключении изделия к отрицательному полюсу источника питания плавящийся электрод подключают к положительному полюсу источника, частоту изменения полярности изделия выбирают из условия устойчивости повторных зажиганий дуги. Отношение длительности подключения неплавящегося электрода к отрицательному полюсу источника питания к периоду цикла выбирают в пределах 0,3-0,5. Изобретение обеспечивает возможность независимого регулирования производительностей расплавления электродного и основного металла. 5 ил., 1 пр.

Изобретение относится к горелке для электросварки в среде защитного газа. Горелка содержит токогазопроводящий шланг, на конце которого закреплен мундштук со сменным токопроводящим наконечником, сопло, на котором установлена подвижная насадка и опорный штифт. Насадка выполнена в виде хомута с червячным винтом и выштампованной полупетлей, в которую введен опорный штифт. Насадка имеет глубину, равную диаметру опорного штифта. Рабочий конец опорного штифта выполнен в виде конуса или клюшки, или шарика. Тыльный конец опорного штифта отогнут на 90° для предотвращения выпадения опорного штифта из хомута. В результате улучшается качество сварного шва. 8 ил., 2 фото.

Группа изобретений относится к способу сварки внутренних швов труб и устройству ля его осуществления. Согласно способу на одной из труб выполняют буртик, который располагают над свариваемым торцом другой трубы. Горелку устанавливают в свариваемые трубы с расположением оси поворота электрода и конца электрода по разные стороны относительно оси вращения горелки и осуществляют поворот электрода на величину эксцентриситета. При этом сварку осуществляют за два прохода электрода, причем при первом проходе выполняют корневой шов, а при втором проходе не него наплавляют металл буртика. Устройство содержит горелку, держатель и эндоскоп, установленный в выполненном в горелке сквозном канале. Горелка установлена с возможностью вращения, а держатель электрода установлен на горелке с возможностью эксцентричного поворота относительно оси вращения горелки. Группа изобретений позволяет осуществлять сварку заглубленных равнопрочных швов изнутри, когда диаметр свариваемого стыка превышает диметр входного канала, через который обеспечивается доступ к месту сварки, 2 н. и 3 з.п. ф-лы, 9 ил.

Изобретение относится к области сварочного производства и может быть использовано при механизированной сварке в среде инертного газа дугами прямого и косвенного действия. Способ включает зажигание дуги прямого действия между неплавящимся электродом и изделием и зажигание дуги косвенного действия между неплавящимся и плавящимся электродами, при этом плавящийся электрод непрерывно подают в дугу прямого действия. При этом питание дуг прямого и косвенного действия осуществляют от разных источников питания с периодической пульсацией величины однонаправленных токов между малым и большим током, причем во время увеличения тока дуги прямого действия ток дуги косвенного действия уменьшают, а во время уменьшения тока дуги прямого действия ток дуги косвенного действия увеличивают. Использование изобретения позволяет повысить стабильность сварочного процесса и тем самым качество сварного соединения. 1 з.п. ф-лы, 5 ил.

Изобретение относится к области сварочного производства. Способ включает зажигание дуги прямого действия между неплавящимся электродом и изделием и зажигание дуги косвенного действия между двумя плавящимися электродами, которые непрерывно подают в зону сварки. При этом дугу косвенного действия располагают позади дуги прямого действия по отношению к направлению ее перемещения в пределах сварочной ванны. Питание упомянутых дуг осуществляют с периодической пульсацией величины токов между малым и большим током таким образом, что во время протекания большого тока дуги прямого действия, в дуге косвенного действия протекает малый ток, а в период протекания малого тока дуги прямого действия в дуге косвенного действия протекает большой ток. Использование изобретения обеспечивает повышение производительности и качества сварки. 5 з.п. ф-лы, 6 ил., 3 табл.
Наверх