Подача рабочего газа для ионного реактивного двигателя

Изобретение относится к технологии питания рабочим газом ионного реактивного двигателя малой тяги. Способ питания ионного реактивного двигателя малой тяги рабочим газом, поступающим из резервуара с избыточным давлением, осуществляется посредством устройства питания, содержащего клапан on/off и, последовательно по ходу от упомянутого клапана on/off, дроссель высокого давления, буферный резервуар и по меньшей мере один дроссель низкого давления. Способ содержит этапы вычисления заданного значения давления (pc) для буферного резервуара как функции заданного значения расхода (Qc), вычисление разности (Δp) между заданным значением давления (pc) для буферного резервуара и давлением (pt), измеренным в буферном резервуаре, вычисление заданного значения (tc) для времени открытия клапана on/off как функции упомянутой разности (Δp) и давления (pr) в упомянутом резервуаре с избыточным давлением, и открытия клапана on/off в соответствии с упомянутым заданным значением (tc) времени открытия. Изобретение позволяет повысить надежность питания рабочим газом ионного реактивного двигателя малой тяги. 2 н. и 8 з.п. ф-лы, 7 ил.

 

Уровень техники

Настоящее изобретение относится к технологии питания ионных реактивных двигателей малой тяги и, более конкретно, к способу и устройству для питания рабочим газом ионного реактивного двигателя малой тяги.

Термин "ионный реактивный двигатель малой тяги" используется для обозначения любого реактивного двигателя малой тяги, в частности, для космических приложений, который основан на ускорении заряженных частиц посредством электростатического поля. Таким образом, он включает в себя реактивные двигатели малой тяги, в которых частицы заряжаются электрическим контактом, а также так называемые плазменные реактивные двигатели малой тяги, в которых создается плазма, содержащая заряженные частицы. В частности, но не исключительно, изобретение применимо к питанию плазменных реактивных двигателей малой тяги и, в частности, к так называемым реактивным двигателям малой тяги с "Эффектом Холла", имеющим кольцевой канал, анод, магнитную цепь, подходящую для создания магнитной цепи, подходящей для создания магнитного поля на заднем по ходу конце кольцевого канала, и катод, расположенный снаружи заднего по ходу конца кольцевого канала, и для которых рабочий газ, такой как ксенон, например, инжектируется в кольцевой канал.

Как правило, когда такой реактивный двигатель малой тяги с эффектом Холла находится в работе, рабочий газ инжектируется вблизи анода в конец кольцевого канала. Электроны, испускаемые катодом и притягиваемые к аноду в конце кольцевого канала, захватываются магнитным полем в спиральные траектории между двумя стенками, формируя, таким образом, сетку виртуального катода. Электроны, выходящие из этой магнитной ловушки к аноду, сталкиваются с атомами рабочего газа, инжектированного в конец кольцевого канала, тем самым, создавая ионизированную плазму.

Положительные ионы плазмы ускоряются электрическим полем, которое имеется между анодом и сеткой виртуального катода, сформированного электронным облаком, захваченным магнитным полем в открытом конце кольцевого канала. Поскольку масса этих положительных ионов намного больше массы электрона, то их траектории мало изменяются магнитным полем. Ионы этого плазменного реактивного двигателя, в конце концов, нейтрализуются электронами сзади по ходу от магнитного поля, испускаемыми катодом, или произведенными ионизацией плазмы.

Ионные реактивные двигатели малой тяги начали использоваться в системах контроля ориентации и системах орбитального контроля (AOCS) для космических летательных аппаратов, и в системах контроля положения в AOCS геостационарных спутников. Ионные реактивные двигатели малой тяги позволяют получить определенный импульс (Isp), который является очень большим, составляя порядка 1500 секунд (с) для плазменных реактивных двигателей малой тяги с эффектом Холла, таким образом, позволяя получить точный контроль ориентации и/или положения летательного аппарата, при значительно меньшей массе и меньшими сложностями, которые потребовались бы в обычной системе, имеющей инерционные устройства, такие как, например, гироскопические маховики, в комбинации с химическими реактивными двигателями малой тяги для разгрузки гироскопических маховиков.

Предпочтительно, для подачи рабочего газа на ионный реактивный двигатель малой тяги, газ хранится в резервуарах с избыточным давлением. При этом недостаток данной технологии заключается в трудности регулирования очень малого расхода рабочего газа, питающего ионный реактивный двигатель малой тяги из такого резервуара с избыточным давлением. Это особенно трудно из-за того, что давление внутри резервуара с избыточным давлением уменьшается постепенно по мере того, как резервуар освобождается, и может оказаться полезным регулировать этот расход не до постоянного уровня, а до множества различных уровней, или до уровня, который будет переменным, чтобы приспособить работу ионного реактивного двигателя малой тяги к множеству различных ситуаций. Использование в случае переменного расхода дроссельных вентилей, или клапанов, может быть неудачным из-за увеличивающейся механической сложности устройства питания, что оказывается особенно проблематичным в условиях космического пространства, поскольку в этой среде особенно нежелательны механические устройства с подвижными частями.

Цель и сущность изобретения

Настоящее раскрытие призвано устранить эти недостатки, предлагая, в частности, способ питания рабочим газом ионного реактивного двигателя малой тяги, поступающим из резервуара с избыточным давлением через схему питания, содержащую двухпозиционный клапан открыт/закрыт (клапан on/off) и, последовательно, сзади по ходу от упомянутого клапана on/off, дроссель высокого давления, буферный резервуар и по меньшей мере один дроссель низкого давления, и это позволяет регулировать расход рабочего газа точно, управляя клапаном on/off.

Термин "клапан on/off" используется в данном случае для обозначения клапана, который управляется, занимая только два положения - открыт или закрыт. Поэтому, в обычной ситуации, оказывается невозможным управлять промежуточным уровнем открытия с целью регулирования расхода непосредственно. Однако клапан on/off обеспечивает важное преимущество в том, что он очень простой, даже в очень агрессивных средах, таких как те, что бывают в космических приложениях.

По меньшей мере, в одном осуществлении, цель регулирования расхода рабочего газа через клапан on/off достигается благодаря тому, что упомянутый способ содержит этапы:

- вычисления заданного значения давления для буферного резервуара как функции заданного значения расхода;

- вычисления разности между заданным значением давления для буферного резервуара и давлением, измеренным в буферном резервуаре;

- вычисления заданного значения для времени открытия клапана on/off как функции упомянутой разности и давления в упомянутом резервуаре с избыточным давлением; и

- открытия клапана on/off в соответствии с упомянутым заданным значением времени открытия.

Таким образом, регулируя времена открытия клапана on/off как функции того, как давление варьируется спереди по ходу и сзади по ходу от клапана on/off, оказывается возможным регулировать расход рабочего газа непрямым, но точным методом.

В частности, заданное значение времени открытия вычисляется на основе обратной модели потока текучей среды для упомянутой схемы питания. Модель потока текучей среды схемы питания может отображать конфигурацию дроссельных вентилей и пропускных возможностей для текучей среды в схеме питания, включая в себя пропускные способности трубопроводов в схеме. Таким образом, модель предоставляет основу для вычисления того, как давление изменяется сзади по ходу от клапана on/off как функция времени открытия клапана и как функция давления спереди по ходу. Инвертируя ее, оказывается возможным, таким образом, вычислить время открытия, необходимое для достижения заданного значения давления сзади по ходу от клапана.

Одновременно, заданное значение давления для буферного резервуара может быть вычислено на основе обратной модели потока текучей среды по меньшей мере для одного дросселя низкого давления сзади по ходу от буферного резервуара. Конкретно, поскольку модель потока текучей среды по меньшей мере для одного дросселя, позволяет вычислить расход как функцию давления спереди по ходу, то инвертирование ее позволяет вычислить заданное значение давления на основе заданного значения расхода.

Упомянутая схема питания рабочим газом может, в частности, включать в себя разветвление сзади по ходу от дросселя низкого давления, с первой ветвью для питания анодной секции ионного реактивного двигателя малой тяги, и со второй ветвью для питания катодной секции ионного реактивного двигателя малой тяги, каждая из упомянутых первой и второй ветвей имеет соответствующий дополнительный дроссель. При таких обстоятельствах, для вычисления заданного значения давления для буферного резервуара как функции заданного значения расхода, и для облегчения вычисления, возможно использование упрощенной модели потока текучей среды, в которой сборка, содержащая дроссель низкого давления, разветвление сзади по ходу от него, и два дополнительных дросселя, представлена единственным дросселем.

Для гарантии того, что этот способ питания является эффективным, инициирование открытия on/off клапана может быть ограничено в соответствии с одним или более критериями. Например, первым критерием может быть то, что открытие клапана on/off в соответствии с заданным значением времени открытия может быть инициировано только если заданное значение давления для буферного резервуара является по существу большим, чем измеренное давление в буферном резервуаре. Выражение "по существу большим" следует понимать так, что заданное значение давления больше, чем измеренное давление на значительную величину, например на 5% или на 10%. Этот критерий позволяет избежать несвоевременного инициирования открытия клапана в результате малых колебаний давления, и также ограничить число открытий и закрытий клапана, чтобы увеличить его срок службы. Второй критерий, который также может быть использован в комбинации с первым критерием, или сам по себе, это то, что открытие клапана on/off в соответствии с заданным значением времени открытия может быть инициировано, только если давление, измеренное в буферном резервуаре, уменьшится или станет нулевым. Это служит для избегания несвоевременного инициирования, в частности, когда определено, что буферный резервуар должен быть заполнен и сегмент высокого давления должен питать этот объем, или, когда определено, что клапан on/off должен быть открыт, в то время как схема блокирована сзади по ходу. Наконец, третий критерий, который может аналогично использоваться в комбинации с первым и/или вторым критерием, или сам по себе, это то, что открытие клапана on/off в соответствии с заданным значением времени открытия не может быть инициировано, если заданное значение времени открытия не больше, чем заданный минимальный порог. Это служит для того, чтобы избежать такого управления клапаном on/off, которое является несовместимым с его временем отклика, и это также служит для ограничения числа открытий и закрытий клапана, чтобы продлить его срок службы.

Для этапа вычисления заданного значения времени открытия для клапана on/off, как функции упомянутой разности и давления в упомянутом резервуаре с избыточным давлением, давление в резервуаре может быть измерено непосредственно. Однако для ограничения числа датчиков и, таким образом, упрощения устройства питания, в качестве альтернативы, можно измерить это давление косвенно, на основании начального давления и полного расхода рабочего газа, который прошел через схему питания. Объединяя полное количество рабочего газа, который был удален из резервуара с избыточным давлением через схему питания, оказывается возможным вычислить, как будет изменяться давление рабочего газа, остающегося в резервуаре с избыточным давлением.

Схема питания рабочим газом может также включать в себя предохранительный клапан спереди по ходу от клапана on/off, чтобы изолировать его и остающуюся часть схемы сзади по ходу от него в случае технической неисправности.

Настоящее раскрытие также относится к устройству для питания рабочим газом ионного реактивного двигателя малой тяги, причем устройство является подходящим для осуществления такого способа питания. С этой целью по меньшей мере в одном варианте реализации устройство питания может содержать резервуар с избыточным давлением для рабочего газа, и схему питания, соединенную с резервуаром с избыточным давлением и содержащую, по меньшей мере, клапан on/off, дроссель высокого давления, буферный резервуар и дроссель низкого давления, соединенный последовательно сзади по ходу от резервуара с избыточным давлением, вместе с блоком управления для управления клапаном on/off и сконфигурированным для вычисления заданного значения давления для буферного резервуара как функции заданного значения расхода, для вычисления разности между заданным значением давления для буферного резервуара и давления, измеренного в буферном резервуаре, для вычисления заданного значения времени открытия клапана on/off как функции упомянутой разности и давления в упомянутом резервуаре с избыточным давлением, и для команды открытия клапана on/off в соответствии с упомянутым заданным значением времени открытия.

Краткое описание чертежей

Изобретение может быть хорошо понято и его преимущества проявятся лучше при чтении нижеследующего подробного описания вариантов реализации и осуществлений, приведенных в качестве не ограничивающих примеров. Описание относится к сопровождающим чертежам, на которых:

- Фиг.1 изображает схематический вид устройства питания в первом варианте реализации;

- Фиг.2 - схема способа питания для использования с тем же самым вариантом реализации;

- Фиг.3A-3D - графики, показывающие вариации во времени, соответственно, заданного значения разности давлений, заданного значения времени открытия для клапана on/off, сигнала для открытия клапана on/off и давления в буферном резервуаре; и

- Фиг.4 - схематический вид устройства питания во втором варианте реализации.

Подробное описание изобретения

На Фиг.1 показано устройство 1 питания для питания плазменного двигателя (не показан) рабочим газом, в первом варианте реализации, и содержащее резервуар 2 с избыточным давлением, соединенный со схемой питания, которая имеет предохранительный клапан 3; клапан on/off для регулирования расхода; дроссель 5 потока высокого давления; буферный резервуар 6; дроссель 7 потока низкого давления; разветвление 8, имеющее первую ветвь 9 для питания анодного сектора плазменного двигателя и имеющую свой собственный дроссель 10, и вторую ветвь 11 для питания катодного сектора плазменного двигателя, аналогично имеющую свой собственный дроссель 12; и блок 13 управления, соединенный с датчиком 14 давления в буферном резервуаре 6.

Резервуар 2 с избыточным давлением приспособлен для содержания рабочего газа, такого как ксенон, например, при высоком давлении, чтобы иметь возможность питания плазменного двигателя в течение всего срока эксплуатации космического летательного аппарата, которое включает в себя плазменный двигатель и его устройство 1 питания. Предохранительный клапан 3 располагается между резервуаром 2 с избыточным давлением и оставшейся частью схемы питания для изоляции резервуара 2 с избыточным давлением, например, в то время когда космическое летательный аппарат начинает движение, или в случае его отказа работы. В то же время, в течение нормальной работы устройства 1 питания, этот предохранительный клапан 3 остается открытым.

Клапан 4 on/off, соединенный непосредственно сзади по ходу от предохранительного клапана 3 в схеме питания, соединяется с блоком 13 управления, чтобы регулировать расход рабочего газа, поступающего из резервуара 2 с избыточным давлением и подаваемого на плазменный двигатель через схему питания, используя способ питания, который описан ниже. Сзади по ходу от этого клапана 4 on/off в схеме питания, дроссель 5 высокого давления ограничивает поток рабочего газа от клапана 4 on/off на буферный резервуар 6. Затем, сзади по ходу от буферного резервуара 6, дроссель 7 низкого давления ограничивает поток рабочего газа к разветвлению 8 и его первой и второй ветвям 9 и 11. Наконец, в каждой из этих ветвей 9 и 11, соответствующий дроссель 10 или 12 ограничивает поток рабочего газа к различным секциям плазменного двигателя.

При работе, блок 13 управления управляет клапаном 4 on/off так, чтобы осуществлять способ питания, показанный на Фиг.2. На первом этапе 101 способа, и как функция заданного значения Qc расхода, возможно являющегося заданным значением массового расхода, поступающим из системы управления ориентацией и/или траекторией космического летательного аппарата, блок управления 13 вычисляет заданное значение pc давления в буферном резервуаре 6 на основе обратной модели участка схемы питания, расположенного сзади по ходу от буферного резервуара 6. Эта модель может быть упрощена так, чтобы учесть все дроссели 7, 10, и 12 и также пропускную способность трубопроводов, соединяющих их между собой, просто как единственный дроссель.

Таким образом, в качестве примера, заданное значение pc может быть вычислено, используя следующую формулу:

где PdCaval отображает эквивалентные потери давления схемы питания сзади по ходу от буферного резервуара 6, измеренную в Ом для жидкости (Lohms), kg - коэффициент рабочего газа и f(T) - поправочный коэффициент, который является функцией температуры T рабочего газа.

Таким образом, это заданное значение давления pc отображает давление, которое должно иметься в буферном резервуаре 6 для гарантии того, что рабочий газ течет со скоростью в соответствии с расходом Qc из буферного резервуара на плазменный двигатель через участок схемы питания, который расположен сзади по ходу от буферного резервуара 6.

На следующем этапе 102, это заданное значение давления pc сравнивается с реальным давлением pt внутри буферного резервуара 6 для вычисления разности Δp между заданным значением давления pc и реальным давлением pt. На Фиг.3A показан пример того, как эта разность Δp может варьироваться во времени. Затем, на этапе 103, заданное значение tc для времени открытия клапана 4 on/off вычисляется как функция разности Δp давления pr в резервуаре 2 с избыточным давлением, на основе обратной модели потока текучей среды для всей схемы питания, включающей в себя пропускные способности текучей среды в трубопроводах, расположенных между двумя клапанами 3, 4, между клапаном 4 on/off и дросселем 5 высокого давления, и в трубопроводах, соединяющих вместе дроссели 7, 10, и 12.

В качестве примера, две различных формулы могут быть использованы для вычисления этого заданного значения tc времени открытия клапана 4 on/off, в зависимости от отношения между заданным значением давления pc и давлением pr в резервуаре 2 с избыточным давлением.

Таким образом, если разность Δp меньше, чем давление pr в резервуаре 2 с избыточным давлением, умноженное на недействующий объем V4-5 между клапаном 4 on/off и дросселем 5 высокого давления и разделенное на объем V6 буферного резервуара 6, заданное значение tc для времени открытия клапана 4 on/off может быть вычислено, используя следующую формулу:

где Cg отображает скорость звука в рабочем газе, kLee - коэффициент, задаваемый для клапана 4 on/off и/или для дросселя 5 высокого давления, Mmol - молярное давление рабочего газа, PdC4 - потери давления через клапан 4 on/off и R - газовая постоянная, задаваемая для рабочего газа (которая может быть в некоторых случаях аппроксимирована универсальной газовой постоянной для идеального газа).

И напротив, если разность Δp равна или больше, чем давление pr в резервуаре 2 с избыточным давлением, умноженное на недействующий объем V4-5 между клапаном 4 on/off и дросселем 5 высокого давления, и разделенное на объем V6 буферного резервуара 6, то заданное значения tc для времени открытия клапана 4 on/off может быть вычислено, используя следующую формулу:

где PdC5 отображает потери давления дросселем 5 высокого давления.

В показанном осуществлении, давление pr в резервуаре 2 с избыточным давлением оценивается косвенно на этапе 104, объединяя заданное значение Qc расхода по прошлому, чтобы оценить количество рабочего газа, который был уже извлечен из резервуара 2 с избыточным давлением, и вычисляя разность между известным начальным давлением pi и текущим давлением pr резервуара 2 с избыточным давлением. На Фиг.3B показан пример того, как заданное значение tc времени открытия варьируется во времени, и это согласуется с тем, как варьируется разность Δp, как показано на Фиг.3A.

Однако чтобы инициировать открытие клапана 4 on/off, должны быть выполнены три условия на этапе 105:

во-первых, разность Δp давлений между заданным значением pc давления и реальным давлением pt должна быть по существу положительной, то есть заданное значение pc давления должно быть больше, чем реальное давление pt на различимую величину, например 5% или 10%.

Кроме того, давление pt в буферном резервуаре 6 должно быть пониженным или нулевым.

Наконец, заданное значение tc для времени открытия клапана 4 on/off должно быть больше, чем некоторый минимальный порог tc,min.

Только если все три эти условия выполнены, блок 13 управления инициирует запускающий сигнал D, в течение этапа 106 для посылки команды OV открытия на клапан 4 on/off в течение отрезка времени, соответствующему заданному значению tc времени открытия, как это контролируется таймером, включенным в блок 13 управления. На Фиг.3C показано, как эта команда образуется в ответ на вариацию заданного значения tc времени открытия как функция времени, и как показано на Фиг.3B. Вследствие временного открытия клапана 4 on/off в результате команды OV, как показано на Фиг.3C, давление pt в буферном резервуаре 6 повышается, как показано на Фиг.3D, тем самым, увеличивая расход рабочего газа, текущего от буферного резервуара 6 на плазменный двигатель.

На Фиг.4 показано устройство 1 питания в альтернативном варианте реализации, и включающее в себя, по меньшей мере, один датчик 17 давления в резервуаре 2 с избыточным давлением, причем датчик соединен с блоком 13 управления. Все другие элементы этого второго варианта реализации эквивалентны соответствующим элементам в первом варианте реализации, и имеют те же самые цифровые обозначения. Работа устройства 1 питания также соответствует способу, показанному на Фиг.2, за исключением того, что на этапе 104, давление pr в резервуаре 2 с избыточным давлением может быть измерено непосредственно, по меньшей мере, одним датчиком 17 давления, вместо косвенной оценки.

Хотя настоящее изобретение описано выше в отношении конкретных вариантов реализации, ясно, что различные модификации и изменения могут быть сделаны к этим вариантам реализации, не выходя за пределы общего объема притязаний изобретения, как это определено в соответствии с пунктами формулы. Следовательно, описание и чертежи следует рассматривать как иллюстративные, а не ограничительные.

1. Способ питания ионного реактивного двигателя малой тяги рабочим газом, поступающим из резервуара (2) с избыточным давлением через схему питания, содержащую клапан on/off (4) и, последовательно сзади по ходу от упомянутого клапана on/off (4), дроссель (5) высокого давления, буферный резервуар (6), и по меньшей мере один дроссель (7) низкого давления, способ, содержащий этапы:

- вычисления заданного значения (pc) давления для буферного резервуара (6) как функции заданного значения (Qc) расхода;

- вычисления разности (Δp) между заданным значением (pc) давления для буферного резервуара (6) и давления (pt), измеренного в буферном резервуаре (6);

- вычисления заданного значения (tc) для времени открытия клапана on/off (4) как функции упомянутой разности (Δp) и давления (pr) в упомянутом резервуаре (2) с избыточным давлением; и

- открытия клапана on/off (4) в соответствии с упомянутым заданным значением времени открытия (tc).

2. Способ питания по п. 1, в котором упомянутое заданное значение (tc) времени открытия вычисляется на основе обратной модели потока текучей среды для упомянутой схемы питания.

3. Способ питания по п. 1, в котором заданное значение (pc) давления для буферного резервуара (6) вычисляется на основе обратной модели потока текучей среды по меньшей мере для одного дросселя (7) низкого давления сзади по ходу от буферного резервуара (6).

4. Способ питания по п. 1, в котором открытие клапана on/off (4) в соответствии с заданным значением (tc) времени открытия инициируется только если заданное значение (pc) давления для буферного резервуара (6) по существу больше, чем давление (pt), измеренное в буферном резервуаре (6).

5. Способ питания по п. 1, в котором открытие клапана on/off (4) в соответствии с заданным значением (tc) времени открытия инициируется только если давление (pt), измеренное в буферном резервуаре (6), снижено или обнулено.

6. Способ питания по п. 1, в котором открытие клапана on/off (4) в соответствии с заданным значением (tc) времени открытия инициируется только если заданное значение (tc) времени открытия больше, чем заданный минимальный порог (tc,min).

7. Способ питания по п. 1, в котором упомянутая схема питания рабочим газом включает в себя разветвление (8) сзади по ходу от дросселя (7) низкого давления, имеющее первую ветвь (9) для питания анодной секции ионного реактивного двигателя малой тяги, и вторую ветвь (11) для питания катодной секции ионного реактивного двигателя малой тяги, причем каждая из упомянутых первой и второй ветвей (9, 11) имеет соответствующий дополнительный дроссель (10, 12).

8. Способ питания по п. 1, в котором давление (pr) в упомянутом резервуаре (2) измеряется косвенно на основе начального давления (pi) и полного расхода рабочего газа, который прошел через схему питания.

9. Способ питания по п. 1, в котором упомянутая схема питания рабочим газом также включает в себя предохранительный клапан (3) спереди по ходу от клапана on/off (4).

10. Устройство (1) для питания ионного реактивного двигателя малой тяги рабочим газом, содержащее:

- резервуар (2) с избыточным давлением для рабочего газа; и

- схему питания, соединенную с резервуаром с избыточным давлением и содержащую, по меньшей мере, клапан on/off (4), дроссель (5) высокого давления, буферный резервуар (6) и дроссель (7) низкого давления, соединенные последовательно сзади по ходу от резервуара (2) с избыточным давлением; и

- блок (13) управления для управления клапаном on/off, и сконфигурированный для:

- вычисления заданного значения (pc) давления для буферного резервуара (6) как функции заданного значения (Qc) расхода;

- вычисления разности (Δp) между заданным значением (pc) давления для буферного резервуара и давлением (pt), измеренным в буферном резервуаре (6);

- вычисления заданного значения (tc) для времени открытия клапана on/off (4) как функции упомянутой разности (Δp) и давления (pr) в упомянутом резервуаре (2) с избыточным давлением; и

- команды открытия клапана on/off (4) в соответствии с упомянутым заданным значением времени (tc) открытия.



 

Похожие патенты:

Изобретение относится к способу создания электрореактивной тяги. Способ состоит в том, что после создания электрореактивной тяги в режиме горения топлива при импульсном давлении в усеченной сферической камере сгорания с образованием огненного ядра в камере сгорания и плазменного ядра в индукторе магнитного поля при воздействии СВЧ-полем в электронно-циклотронном резонансном режиме, а также создания прямого ускоряющего импульсного напряжения со стороны ускорителя катионов, расположенного перед соплом, дополнительно обеспечивают путем создания обратного ускоряющего импульсного напряжения со стороны изолированного электрода, установленного в камере сгорания, детонационный режим горения топлива в импульсно-пульсирующем режиме, при котором происходит формирование устойчивой детонационной волны в огненном ядре за счет импульсного потока ионизационно-термических волн катионов из плазменного ядра.

Предлагаемое изобретение относится к области электроракетных двигательных установок (ЭРДУ) и может быть использовано в системах хранения и подачи рабочего тела ЭРДУ.

Изобретение относится к области двигателей на эффекте Холла, в частности к двигателю (1) на эффекте Холла с регулируемой тягой, в котором конечная ступень магнитного контура содержит взаимно противоположные внутренний полюс (18) и внешний полюс (15), причем внутренний полюс (18) смещен по оси вниз по потоку по отношению к внутреннему полюсу (15) таким образом, что магнитное поле (M) наклонено относительно поперечной плоскости двигателя (1).

Изобретение относится к межорбитальным маневрам космических аппаратов (КА). Способ включает выведение КА на переходную орбиту с высотой апогея больше высоты геостационарной орбиты (ГСО) и высотой перигея ниже ГСО.

Изобретение относится к области двигателей на эффекте Холла и, в частности, к двигателю (1), в кольцевом канале (2) которого нижний по потоку край имеет изменяемое поперечное сечение для обеспечения возможности изменения тяги и удельного импульса.

Изобретение относится к области создания электрических реактивных двигателей. Для обеспечения надежной подачи твердого топлива в источник плазмообразующего вещества при длительной эксплуатации электрического ракетного двигателя в условиях низких отрицательных температур предложено поверхность направляющего приспособления для прямоточного перемещения твердого топлива в источнике плазмообразующего вещества со стороны прямоточного перемещения твердого топлива покрыть стеклоподобной пленкой в виде наноматериала.

Изобретение относится к системам подачи рабочего тела в импульсный плазменный электрический реактивный двигатель. Способ подачи жидкого рабочего тела из бака хранения в импульсном плазменном электрическом реактивном двигателе на подвижную поверхность разрядного промежутка заключается в смачивании поверхности путем контакта капиллярного фитиля, смоченного рабочим телом, с указанной поверхностью.

Изобретение относится к электрореактивным двигателям прямоточного типа (ПЭРД), в которых в качестве рабочего вещества используется газообразная окружающая среда. ПЭРД предназначен для управления движением низкоорбитального космического аппарата.

Изобретение относится к средствам управления движением космических аппаратов, а именно к электрическим (плазменным) ракетным двигателям для коррекции орбиты искусственного, преимущественно низкоорбитального спутника планеты с атмосферой.

Изобретение относится к ракетно-космической технике и может быть использовано при испытаниях и эксплуатации ионных двигателей. Ионный двигатель снабжен устройством для защиты от дугового разряда, вызванного межэлектродным пробоем между эмиссионным и ускоряющим электродами ионно-оптической системы.

Изобретение относится к системам управления обтеканием летательного аппарата при дозвуковых и околозвуковых скоростях полета. Импульсный плазменный тепловой актуатор эжекторного типа содержит подводной канал с обратным клапаном, разрядную камеру со встроенными игольчатыми электродами, сопло эжектора, камеру смешения, полость разрежения со щелью, соединяющей полость разрежения с поверхностью крыла, выходной диффузор. Актуатор позволяет без перегрева рабочей области создавать истекающую из сопла высокоскоростную пульсирующую струю газа в одной области течения и одновременно осуществлять отсос пограничного слоя в другой. Изобретение направлено на расширение возможности управления обтеканием крыла летательного аппарата. 2 ил.

Изобретение относится к области электроракетных двигателей (ЭРД), в частности к стендам для их испытаний на рабочем теле иоде. Стенд для испытания электроракетного двигателя, работающего на рабочем теле иоде, состоящий из вакуумной камеры, системы вакуумирования, электроракетного двигателя, системы торможения струи плазмы иода, истекающей из двигателя, системы хранения и подачи иода, снабженной нагревателями и соединенной через клапаны с электроракетным двигателем, устройства для конденсации иода, снабженного системой подачи криоагента, дополнительно включает паропровод иода. Система торможения, установленная соосно с электроракетным двигателем и снабженная контуром охлаждения, содержит центральное тело в виде усеченного конуса и охватывающий его приемный конус, больший диаметр которого обращен к выходному сечению электроракетного двигателя, а меньший связан с паропроводом иода, конечный участок которого соединен с устройством для конденсации иода, выполненного в виде снабженной герметичной рубашкой, гидравлически связанной с системой подачи криоагента, емкости, во внутренней полости которой размещен эластичный пакет для сбора иода, выполненный из хладостойкого материала и прилегающий к ее внутренней стенке. Способ испытания на стенде электроракетного двигателя, работающего на рабочем теле иоде, состоит в том, что истекающую из двигателя струю плазмы иода затормаживают в системе торможения и осаждают в устройстве для конденсации иода. Изобретение позволяет повысить экономическую эффективности работы стенда. 2 н.п. ф-лы, 1 ил.

Изобретение относится к транспорту, в частности к ионным двигателям. Система управления ионными двигателями содержит два устройства управления питанием, четыре ионных двигателя и два коммутационных узла. Один коммутационный узел соединен с двумя устройствами управления питанием и с двумя из четырех ионных двигателей. Другой коммутационный узел соединен с указанными двумя устройствами управления питанием и с другими двумя ионными двигателями. Каждый коммутационный узел имеет первое и второе коммутационные состояния, которые могут быть выбраны для обеспечения возможности подачи питания любым устройством управления питанием на любой ионный двигатель с первого по четвертый. Каждый коммутационный узел содержит полый вал, выполненный с возможностью поворота и приводимый в действие шаговым двигателем. Ионный двигатель содержит разрядный анод, разрядный катод, электрод устройства поддержания разряда, разрядный нагреватель, катод нейтрализатора, нагреватель нейтрализатора, экранную, ускорительную и замедлительную решетки. Технический результат - повышение надежности средств коммутации. 2 н. и 13 з.п. ф-лы, 17 ил.

Система (300, 400) и способы (500) испытания реактивного двигателя (100) малой тяги в вакуумной среде. Способы включают в себя: помещение реактивного двигателя малой тяги в вакуумную камеру, которая, по меньшей мере частично, заземлена; удаление из вакуумной камеры по меньшей мере одного газа для обеспечивания вакуумной среды; запуск реактивного двигателя малой тяги с целью создания пучка электронов; и/или электроизолирование электронов пучка от, по меньшей мере, одной электропроводящей поверхности вакуумной камеры. Электроизоляция может быть достигнута путем приложения к пучку электрического напряжения смещения с помощью электрода. Электрод может содержать электропроводящий объект, расположенный в вакуумной камере, и/или, по меньшей мере, часть стенки вакуумной камеры. Во всех случаях электрод электрически изолирован от той части вакуумной камеры, которая заземлена. 2 н. и 18 з.п. ф-лы, 7 ил.

Изобретение относится к ракетной технике и предназначено для создания импульсных ракетных двигателей систем ориентации космических аппаратов и старта с поверхности и посадки на планеты с малой гравитацией, например Луну. Импульсный детонационный ракетный двигатель, в котором система подачи и поджига выполнена в виде прозрачной диэлектрической трубки, заполненной инертным газом, на торцах которой установлены анод и катод, а рабочее тело выполнено в виде цилиндрического усеченного конуса из светопоглощающего материала, обращенного широким основанием в сторону к сверхзвуковому соплу. При этом диэлектрическая прозрачная трубка установлена по оси симметрии цилиндрического усеченного конуса. Изобретение позволяет облегчить инициирование разряда, увеличить скорость истечения рабочего тела и увеличить долю сжигаемого рабочего тела, что приводит к получению сверхзвуковых скоростей на выходе из сопла, а также к упрощению системы поджига и подачи рабочего тела. 2 з.п. ф-лы, 1 ил.

Группа изобретений относится к управлению вектором тяги плазменных двигателей. Устройство содержит закреплённые на корпусе плазменного двигателя в зоне за срезом его выходного канала две или четыре прямоугольной формы рамочных магнитных катушки, расположенных открытыми частями рамок напротив друг друга. Катушки установлены симметрично относительно продольной оси двигателя, параллельно друг другу или под небольшим углом друг к другу. Данное исполнение устройства обеспечивает создание за срезом выходного канала двигателя существенно однородного поперечного магнитного поля, в т.ч. - в двух ортогональных направлениях. Техническим результатом является повышение эффективности управления вектором тяги плазменного двигателя. 3 н.п. ф-лы, 10 ил.

Изобретение относится к исследованию и эксплуатации электроракетных стационарных плазменных двигателей. В способе, включающем запуск двигателя, сравнение измеренных значений разрядного тока с верхним допустимым его значением, и в случае превышения предельного значения выключение двигателя с последующим его запуском. Перед запуском двигателя определяют диапазон превышения разрядным током своего допустимого значения определяют для каждого значения диапазона допустимый интервал времени пребывания двигателя под аномальной токовой нагрузкой и интервал времени защиты двигателя от аномальной токовой нагрузки, а в процессе работы двигателя, в случае превышения допустимого интервала времени пребывания двигателя под аномальной нагрузкой, производят его выключение с последующим включением через интервал времени защиты двигателя от аномальной токовой нагрузки. В случае соответствия допустимому интервалу времени пребывания двигателя под аномальной нагрузкой фиксируют частоту аномальных превышений на установленном интервале и при превышении допустимой частоты производят выключение двигателя с последующим его включением через интервал времени защиты двигателя, определенный для максимального измеренного значения разрядного тока на установленном интервале, также контролируют число выключений двигателя, вызванных превышением разрядным током допустимых значений, на всем интервале работы двигателя и в случае превышения допустимого числа выключений, после последнего выключения, превысившего допустимое число, прекращают последующее включение двигателя. Изобретение позволяет повысить отказоустойчивость электроракетных стационарных плазменных двигателей. 2 ил.
Наверх