Способ изготовления мембранного фильтра, а также способ покрытия с последующим уплотнением поверхностного слоя детали и устройство для их осуществления



Способ изготовления мембранного фильтра, а также способ покрытия с последующим уплотнением поверхностного слоя детали и устройство для их осуществления
Способ изготовления мембранного фильтра, а также способ покрытия с последующим уплотнением поверхностного слоя детали и устройство для их осуществления

 


Владельцы патента RU 2636719:

Багич Геннадий Леонидович (RU)

Изобретение относится к микроструктурным технологиям. В способе изготовления мембранного фильтра согласно изобретению электролит, перемещаясь по замкнутому контуру – траектории, последовательно проходит электролизную камеру, где происходит разделение ионов от электролита, причем положительные ионы металла или ионы смеси нескольких металлов при перемещении их от анода до заготовки для увеличения их кинетической энергии разгоняются суммарным магнитным полем, при этом покрытие и уплотнение осуществляются посредством регулируемого значения суммарного вектора напряженности магнитного поля, для установления требуемой кинетической энергии внедрения запасенной ими кинетической энергии производить слоевое на заданную глубину покрытие токопроводящей или изоляционной заготовки с последующим уплотнением его за счет увеличения плотности ускоряющий ионы магнитной энергии, а также с помощью электрического статического поля, вектор напряженности которого направлен параллельно оси движения ионов, производится пробой плоскостной заготовки для изготовления мембранного фильтра. Заявлено также устройство для изготовления мембранного фильтра. Технический результат - обеспечение возможности мембранного фильтра. 2 н. 5 з.п. ф-лы, 2 ил.

 

Изобретение относится к микроструктурным технологиям и может быть применено в медицине, химии, молекулярной биологии и оптике, а также к области поверхностного упрочнения изделий, которые работают в условиях изнашивания при высоких нагрузках, и может быть использовано в машиностроении, где необходимы улучшенные качества изделий путем создания однородного упрочненного слоя с равномерным распределением шероховатости поверхности и прочностных характеристик, а также к покрытию их другими металлами для предохранения изделий от воздействия окружающей среды, например кислорода.

Одним из средств выделения и разделения частиц (например, белков, нуклеиновых кислот, клеток и субклеточных структур) являются мембранные фильтры. Мембранные фильтры представляют собой пористые перегородки с микронными и субмикронными порами, через которые проходит фильтруемая среда под действием перепада давления или концентрации (диффузия), а частицы, размер которых больше размера пор, остаются на перегородке.

Наиболее распространенные мембранные фильтры получают из эфиров целлюлозы (нитратов и ацетатов) по сложной технологии. Определенным образом приготовленные коллоидные растворы эфиров целлюлозы наносят тонким слоем на гладкую подложку, в определенном режиме испаряют растворители, и при этом получается мелкосетчатая структура. Характеристики этой структуры зависят от состава исходных растворов и режима испарения. Таким образом, получают мембраны с размерами пор 10-100 нм (для ультрафильтрации), 1-10 нм (для нанофильтрации), 0,1 нм (для обратного осмоса). Мембраны, изготовленные этим способом, с порами размером менее 0,1 мкм, используемые для удаления мельчайших частиц из воды, от крупных органических молекул до ионов растворенных веществ, имеют незначительное проходное сечение, относительно высокое гидравлическое сопротивление (например, рабочее давление обратного осмоса 1-10 МПа (10-100 атм)), и поэтому для обеспечения заданной производительности требуются большие площади фильтрации. Поры имеют неправильную форму и большой разброс размеров пор, из-за чего такие мембраны более подходят для очистки сред от нано- и микрочастиц, нежели как сита (сито - это фильтр, с которого можно и легко отделить осадок, извлеченный из фильтруемой среды - жидкости, газа), т.к. частицы в значительной степени застревают в более крупных ячейках сетки.

Известен способ создания упрочненного поверхностного слоя на деталях из металлических сплавов и композиционных материалов (см. патент RU №2218425), включающий создание высокоскоростного потока плазмы или газа, подачу в него порошкообразного материала, при этом высокоскоростной поток плазмы или газа и порошкообразного материала направляют на поверхность под острым углом, исключающим адгезию порошкообразного материала с упрочняемой поверхностью и обеспечивающим отражение частиц порошка от упрочняемой поверхности, а в состав порошка вводят частицы из одного или нескольких материалов, образующих антиадгезионную композицию с материалом упрочняемой детали. Недостатком указанного способа является то, что высокоскоростной поток плазмы, несущий значительную тепловую энергию, способен изменять поверхность обрабатываемой детали.

Целью изобретения является возможность изготовления одним устройством мембранного фильтра, покрытие деталей с последующим уплотнением их поверхностного слоя.

Указанная цель достигается тем, что электролит, перемещаясь по замкнутому контуру (траектории) последовательно проходит электролизную, где происходит отделение ионов металла от анода в электролит, и разделительную, где происходит разделение ионов от электролита камеры, причем положительные ионы металла или ионы смеси нескольких металлов при перемещении их от анода до заготовки для увеличения их кинетической энергии разгоняются суммарным магнитным полем, при этом регулируя значение вектора напряженности суммарного магнитного поля, устанавливаем требуемую кинетическую энергию ионов металла, способных согласно запасенной ими кинетической энергии производить слоевое покрытие токопроводящей или изоляционной заготовки с последующим уплотнением слоевого покрытия, а также с помощью электрического статического поля, вектор напряженности которого направлен параллельно оси, производить пробой плоскостной заготовки для изготовления мембранного фильтра. Для нейтрализации ионов при обработке токонепроводящих заготовок на обрабатываемых поверхностях устанавливается металлическая сетка, электрически связанная с катодом, толщина которой не превышает толщины покрываемого слоя. При изготовлении мембран сетка устанавливается с тыльной стороны с некоторым минимальным зазором от заготовки. Для равномерного поверхностного покрытия объемных заготовок или трубчатых мембран они имеют возможность осевого вращения. При плоскостной обработке заготовок они имеют возможность плоскостного перемещения. При плоскостной обработке заготовок обрабатываемая поверхность может находится под заданным углом по отношению к траектории перемещения ионов.

На фиг. 2 представлена электрическая схема работы электрохимической камеры. Подача выпрямленного импульсного напряжения на анод 1 и катод 2 происходит с помощью диода D1. При этом выделение положительных ионов с анода в электролит происходит за счет энергии электрического поля в период времени t1-t2, в течение которого действует электрическое поле. Ускорение ионов в электролизной камере происходит в период времени t2-t1 с помощью магнитного поля, которое образуется с помощью тока, проходящего через диод D2. При этом плотность энергии магнитного поля должна исключать их катодную нейтрализацию. Для этого используется излучатель электромагнитной энергии согласно патенту RU №2605053.

На фиг. 1 изображено устройство, реализующее поставленные цели. Оно содержит электролизную камеру 9, которая одновременно служит в качестве разгонной, где располагаются излучатели электромагнитной энергии 3. Электролизная камера образована анодом 1 и катодом 2, имеющими цилиндрические коаксиально расположенные поверхности. Причем катод расположен в электролизной камере, а анод заканчивается в области 12 обрабатываемой заготовки 13, в качестве которой может служить тонкая гибкая токопроводящая или изоляционная перекручиваемая лента, плоскость которой может располагаться как под прямым углом относительно оси устройства, так и под другим заданным углом. В области 12 с целью увеличения мощности электромагнитной разгонной энергии располагаются дополнительные магнитные излучатели 3. Для увеличения пробивной способности ионов за обрабатываемой заготовкой 13 может размещаться электрод 14, имеющий, например, форму металлической сетки, электрически связанный с катодом 2. За электролизной камерой располагаются камера разделения 11 и разгонная камера 2. Внутри цилиндрического катода расположен ступенчатый вал 5, имеющий возможность с помощью подшипников 7 кругового вращения. К утолщенному концу вала, расположенному в камере разделения 11, закреплены лопасти 4. Вдоль оси ступенчатого вала имеется канал 6 подачи сжатого воздуха. Камера разделения 11 через отверстия 8 связана с токонепроводящей полостью 10 приема электролита. Таким образом при вращении вала 5 связанные с ним лопасти 4 за счет центробежной силы через отверстия 8 перемещают электролит в полость 10, откуда он снова попадает в электролизную камеру 9, замыкая процесс подачи электролита в электролизную камеру 9. Давление воздуха, подаваемого через канал 6 в разгонную камеру, способствует увеличению прохождения электролита в полостью.

Работа устройства заключается в том, что для изготовления мембранного фильтра устанавливаем за счет регулирования напряженностей электрического и магнитного полей, скорости передвижения заготовки требуемое качество фильтра, после чего приступаем к серийному изготовлению мембранных фильтров.

1. Способ изготовления мембранного фильтра, отличающийся тем, что электролит, перемещаясь по замкнутому контуру – траектории, последовательно проходит электролизную камеру, где происходит разделение ионов от электролита, причем положительные ионы металла или ионы смеси нескольких металлов при перемещении их от анода до заготовки для увеличения их кинетической энергии разгоняются суммарным магнитным полем, при этом покрытие и уплотнение осуществляются посредством регулируемого значения суммарного вектора напряженности магнитного поля, для установления требуемой кинетической энергии внедрения запасенной ими кинетической энергии производить слоевое на заданную глубину покрытие токопроводящей или изоляционной заготовки с последующим уплотнением его за счет увеличения плотности ускоряющий ионы магнитной энергии, а также с помощью электрического статического поля, вектор напряженности которого направлен параллельно оси движения ионов, производится пробой плоскостной заготовки для изготовления мембранного фильтра.

2. Способ по п. 1, отличающийся тем, что токопроводящая заготовка электрически связана с анодом электролизной камеры.

3. Способ по п. 1, отличающийся тем, что для нейтрализации ионов при обработке токонепроводящих заготовок на обрабатываемых поверхностях устанавливается металлическая сетка, электрически связанная с катодом, толщина которой не должна превышать толщины покрываемого слоя.

4. Способ по п. 1, отличающийся тем, что при изготовлении мембран сетка устанавливается с тыльной стороны с заданным минимальным зазором от заготовки.

5. Способ по п. 1, отличающийся тем, что для равномерного поверхностного покрытия объемных заготовок или заготовок, имеющих трубчатую форму, они имеют возможность осевого вращения, а при плоскостном покрытии они имеют возможность плоскостного перемещения, при этом обрабатываемая поверхность может располагаться под заданным углом по отношению к траектории перемещения ионов.

6. Устройство для изготовления мембранного фильтра способом по п. 1, содержащее электролизную камеру, которая содержит магнитные излучатели, камеру разделения и разгоночную камеру, содержащую также магнитные излучатели, при этом электролизная камера состоит из двух коаксиально расположенных трубчатых электродов, причем в трубчатом электроде меньшего диаметра расположен ступенчатый вал, имеющий возможность вращения, переходящий вместе с лопастями в разделительную камеру, а трубчатый электрод большего диаметра проходит через все обозначенные камеры, при этом объем разделительной камеры связан через отверстия с емкостью приема электролита, которая в свою очередь через насос связана с объемом электрохимической камеры.

7. Устройство по п. 6, отличающееся тем, что ступенчатый вал имеет осевое отверстие для подачи воздуха.



 

Похожие патенты:

Изобретение может быть использовано для изготовления прессовок поликристаллического алмаза и режущего инструмента. Наноразмерный одно- или многослойный материал, содержащий графен, спекают примерно 5 мин в отсутствие катализатора - переходного металла при давлении и температуре по меньшей мере 45 кбар и 700°С, соответственно.

Изобретение относится к области изготовления высокопрочных материалов, а именно керамики на основе оксида циркония, частично стабилизированной оксидом иттрия, и может быть использовано для производства размольных шаров, футеровочных пластин, подложек для спекания радиотехнического назначения, а также имплантатов для протезирования суставов человека.

Изобретение относится к области нефтепереработки, а именно к переработке тяжелого нефтяного сырья, и может быть использовано для получения бензиновой и дизельной фракций.

Изобретение относится к медицине и касается биоприпоя для лазерной сварки биологических тканей. Биоприпой содержит водную дисперсионную основу белка альбумина.

Изобретение может быть использовано в лакокрасочной промышленности, полиграфии, в производстве стекла и керамики, пластмасс и декоративной косметики. Контрастный многослойный пигмент содержит субстрат в виде плоских частиц, имеющих средний диаметр от 5 до 300 мкм, и покрыт, по меньшей мере, одним прозрачным диэлектрическим слоем.

Изобретение относится к области изготовления нанокомпозитных материалов на основе ароматического полиимида и смесей наночастиц различных типов, которые могут найти применение для изготовления композиционных материалов, а именно стеклопластиков, углепластиков, органопластиков.

Изобретение относится к области нанотехнологий и может быть использовано в обогащении полезных ископаемых для извлечения ценных минералов, а также их очистки от магнитных примесей, регенерации магнитных суспензий при гравитационном обогащении.
Изобретение относится к получению биологически разрушаемой высоконаполненной термопластичной композиции на основе полиэтилена, применяемой в производстве пленок, потребительской тары, посуды, изделий хозяйственного назначения, эксплуатируемых как в контакте с продуктами питания, так и в технических целях.

Изобретение предназначено для органической электроники, электрореологии, медицины и может быть использовано при изготовлении микроэлектромеханических систем, тонкопленочных транзисторов, нанодиодов, наноэлектропроводов, модулей памяти, электрохимических источников тока, перезаряжаемых батарей, суперконденсаторов, сенсоров и биосенсоров, солнечных батарей, дисплеев, а также лекарств для лечения онкологических заболеваний.

Изобретение относится к измерительной технике и может быть использовано в зондовой сканирующей микроскопии и атомно-силовой микроскопии для диагностирования и исследования наноразмерных структур.

Изобретение относится к созданию селективных мембран, функционирующих за счет «сродства» гидридообразующего наполнителя к водороду. Описан способ получения композиционных мембранных материалов для выделения водорода из газовых смесей на основе гидридообразующих интерметаллических соединений и полимерных связующих, включающий механоактивационную обработку порошка гидридообразующего интерметаллического соединения в шаровой мельнице, последующую кратковременную совместную механоактивационную обработку порошка гидридообразующего интерметаллического соединения с добавлением барьерного полимерного материала продолжительностью 1-5 мин, прессование металлополимерных композиционных порошков и последующую прокатку полученного металлополимерного компакта.

Изобретение относится к области некриогенного разделения газовых смесей. Способ включает формование полимерной половолоконной мембраны с последующей термовакуумной обработкой.

Изобретение относится к способу изготовления гибридной протон-проводящей мембраны, включающему синтез полианилина в протонообменной мембране во внешнем электрическом поле, при плотности тока 40-100 А/м2 проводят насыщение мембраны ионами анилиниума из 0,01-0,001 М раствора анилина на фоне 0,005 М раствора серной кислоты в течение 15-180 минут.

Изобретение относится к получению каталитических мембран способом «золь-гель» и может быть использовано в каталитических мембранных реакторах конверсии метана. Способ получения комплекса "золь-гель" по меньшей мере из четырех солей металлов M1, M2, M3, и M4, приемлемых и предназначенных для получения материала типа перовскита, соответствующего общей формуле (I): A(1-x)A'xB(1-y-u)B'yB"uΟ3-δ (I), включает в себя стадии получения водного раствора водорастворимых солей элементов A, A', B, B' и при необходимости В" в стехиометрических соотношениях, необходимых для получения материала, определенного ранее; получения водно-спиртового раствора по меньшей мере одного неионогенного поверхностно-активного вещества (ПАВ) в спирте, выбранном из метанола, этанола, пропанола, изопропанола или бутанола, смешанном с водным раствором аммиака в пропорции, достаточной для обеспечения полной солюбилизации неионогенного ПАВ в водно-спиртовом растворе, причем концентрация неионогенного ПАВ в водно-спиртовом растворе меньше критической мицеллярной концентрации; получения золя из указанных компонентов; сушки золя выпариванием растворителя.

Изобретение относится к технологиям получения селективно проницаемых фильтрационных мембран на основе ацетатов целлюлозы. Такие мембраны могут быть использованы для выделения и концентрирования из многокомпонентных жидких смесей отдельных веществ с широким диапазоном молекулярных масс (ММ=0,1÷103 кДа) баромембранными методами (ультра-, нано- и обратноосмотические фильтрационные технологии) в пищевой, химической, фармацевтической и других отраслях промышленности, а также при водоподготовке и водоочистке.

Изобретение касается мембран для микрофильтрования. Мембрана для микрофильтрования содержит микропористый материал, где указанный микропористый материал содержит: (a) полиолефиновую матрицу, присутствующую в количестве по меньшей мере 2 мас.%; (b) тонкоизмельченный, твердый, по существу нерастворимый в воде силикагелевый наполнитель, распределенный по всему объему указанной матрицы, где указанный наполнитель составляет от около 10 до около 90 процентов веса субстрата указанного микропористого материала, и массовое отношение между наполнителем и полиолефином больше 4:1, и (c) по меньшей мере 35 об.% сети соединяющихся пор, проходящих через весь объем микропористого материала.

Изобретение касается микропористых материалов, которые могут применяться в мембранах для фильтрования и адсорбции, и к их применению в способах очистки текучих потоков.

Изобретение относится к мембранной технике и технологии, в частности к способам получения анизотропных композитных катионообменных мембран на основе ионообменных материалов и полианилина с асимметричными транспортными свойствами.

Изобретение относится к каталитическим материалам, обладающим высокой активностью в различных химических реакциях, а также длительным сроком службы. Каталитические материалы состоят из особых гибридных сочетаний неорганических/полимерных соединений, содержащих наночастицы металлов, и могут легко использоваться повторно с пренебрежимо малым выщелачиванием катализаторов.

Изобретение относится к полиимидным мембранам, которые могут быть либо плоскими мембранами, либо мембранами из полых волокон. Полиимидные мембраны могут являться пористыми мембранами в виде микро-, ультра- или нанофильтрационных мембран или непористыми мембранами, применяемыми для разделения газов.
Наверх