Линейный асинхронный электропривод



Линейный асинхронный электропривод
Линейный асинхронный электропривод
Линейный асинхронный электропривод
H02P25/062 - Управление или регулирование электрических двигателей, генераторов, электромашинных преобразователей; управление трансформаторами, реакторами или дроссельными катушками (конструкции пусковых аппаратов, тормозов или других управляющих устройств см. в соответствующих подклассах, например механические тормоза F16D, механические регуляторы скорости G05D; переменные резисторы H01C; пусковые переключатели H01H; системы для регулирования электрических или магнитных переменных величин с использованием трансформаторов, реакторов или дроссельных катушек G05F; устройства, конструктивно связанные с электрическими двигателями, генераторами, электромашинными преобразователями, трансформаторами, реакторами или дроссельными катушками, см. в соответствующих подклассах, например H01F,H02K; соединение или управление

Владельцы патента RU 2637114:

Российская Федерация в лице Министерства промышленности и торговли Российской Федерации (Минпромторг России) (RU)

Изобретение относится к электротехнике, к быстродействующим электроприводам. Технический результат состоит в обеспечении возможности уменьшения массы электропривода для разгона до заданной скорости на ограниченной длине за счет безынерционного увеличения тягового усилия от нуля до максимальной величины. Линейный асинхронный электропривод содержит два автономных преобразователя частоты и линейный асинхронный двигатель, состоящий из двух противолежащих индукторов с электрически независимыми рабочими обмотками и немагнитного вторичного элемента, помещенного в зазоре между индукторами. С целью повышения эффективности пуска рабочая обмотка одного индуктора подключена к одному преобразователю частоты, а рабочая обмотка противолежащего индуктора - к второму преобразователю частоты. Преобразователи частоты имеют управляемый фазовый сдвиг токов нагрузки одноименных фаз противолежащих индукторов. 1 ил.

 

Предлагаемое изобретение относится к быстродействующим электроприводам.

Необходимость применения быстродействующих электроприводов возникает, в частности, в задачах разгона полезной массы до заданной скорости на ограниченной длине. Например, предложен проект использования линейного электропривода в качестве средства создания тягового и тормозного усилий в установке для моделирования аэродинамики и динамики транспортных средств (Патент на полезную модель RU 147841). Ввиду быстротечности процесса разгона требуется обеспечить максимальное усилие двигателя на промежутке времени в несколько секунд.

Известен линейный асинхронный электропривод («Высокоскоростной наземный транспорт с линейным приводом и магнитным подвесом» / под ред. В.И. Бочарова, И.Д. Нагорского - М.: Транспорт, 1985, стр. 159, рис. 4.37.1), содержащий автономный инвертор напряжения (преобразователь частоты) и линейный асинхронный двигатель, состоящий из двух противолежащих индукторов с рабочими обмотками и немагнитного вторичного элемента. Регулирование тягового усилия в таком электроприводе осуществляется за счет изменения силы и частоты тока двигателя. Недостатком данного решения являются повышенные требования к мощности преобразователя частоты, которые ограничивают выбор элементной базы и увеличивают стоимость привода.

Наиболее близким к заявленному является линейный асинхронный электропривод («Высокоскоростной наземный транспорт с линейным приводом и магнитным подвесом» / под ред. В.И. Бочарова, И.Д. Нагорского. - М.: Транспорт, 1985, стр. 159, рис. 4.37.3), содержащий два автономных инвертора напряжения (преобразователя частоты) и линейный асинхронный электродвигатель. Линейный асинхронный двигатель состоит из двух противолежащих индукторов с рабочими обмотками и немагнитного вторичного элемента. В данном электроприводе два инвертора напряжения подключены к трансформатору, а их результирующее напряжение питает обмотки линейного асинхронного двигателя. Недостаток решения применительно к быстродействующим электроприводам - невысокая эффективность, обусловленная тем, что пуск осуществляется не при максимальном токе и максимальном тяговом усилии, а в момент, когда тяговое усилие превысит усилие трогания подвижной части. При ограниченной длине подвижной части это означает, что часть ее длины не будет использоваться сразу с включением на полный ток и на максимальную силу. Также масса электропривода увеличивается из-за необходимости использования трансформатора для гальванически развязанного подключения двух инверторов напряжения на один двигатель.

Техническим результатом изобретения является повышение эффективности пуска путем обеспечения увеличения тягового усилия от нуля до максимальной величины безынерционно. Это уменьшает требуемую массу электропривода для разгона полезной массы до заданной скорости на ограниченной длине.

Технический результат достигается тем, что в линейный асинхронный электропривод, содержащий два автономных преобразователя частоты и линейный асинхронный двигатель, состоящий из двух противолежащих индукторов с независимыми рабочими обмотками и немагнитного вторичного элемента, помещенного в зазоре между индукторами, введены две микропроцессорные системы управления и единый центральный процессор, причем рабочая обмотка одного индуктора подключена к одному преобразователю частоты, а рабочая обмотка противолежащего индуктора - ко второму преобразователю частоты, вход каждой микропроцессорной системы управления подключен к своему преобразователю частоты, а выход каждой из них подключен к единому центральному процессору, при этом преобразователи частоты имеют управляемый фазовый сдвиг токов нагрузки, одноименных противолежащих индукторов. На фигуре 1 представлена схема линейного асинхронного электропривода.

Линейный асинхронный электропривод содержит линейный асинхронный двигатель, состоящий из двух противолежащих индукторов 1, 2 с одинаковым чередованием фаз в обмотках 3 - AZBXCY. В зазоре между индукторами помещен немагнитный вторичный элемент 4. Питание независимых обмоток противолежащих индукторов осуществляется от двух преобразователей частоты (ПЧ) 5, 6, каждый из которых управляется своей микропроцессорной системой управления (МПСУ) 7, 8, задающие сигналы на которые поступают от единого центрального процессора 9 (ЦП). ЦП 9 осуществляет расчет необходимой частоты и фазового сдвига токов индукторов.

В предложенном техническом решении гальваническая развязка двух преобразователей частоты 5 и 6 обеспечивается подключением их к электрически независимым обмоткам противолежащих индукторов 1, 2, а управление тягой осуществляется при максимальном токе в обмотках двигателя за счет сдвига фаз питающих двигатель токов двух преобразователей 5 и 6.

Один из двух индукторов при питании от своего преобразователя частоты системой трехфазных токов , формирует в рабочем зазоре двигателя бегущее магнитное поле, выражение для которого имеет вид

где: B1 - индукция в рабочем зазоре двигателя, созданная первым индуктором, Bm - амплитуда индукции, ωt - круговая частота, - волновое число, τ - полюсное деление.

Второй индуктор, запитанный своим преобразователем частоты системой трехфазных токов , со сдвигом токов одноименных фаз на угол ϕ по отношению к токам первого индуктора, формирует в рабочем зазоре индуктора волну бегущего поля

Наложившись друг на друга, поля противолежащих индукторов сформируют результирующее поле

Результирующее магнитное поле, индуцируя во вторичном элементе токи, создает тяговое усилие от нуля до максимальной величины безынерционно, поскольку амплитуда тока нагрузки при этом не изменяется.

При ϕ=0 имеет место согласованное включение двух индукторов,

При

При ϕ=π

Bp=0.

Таким образом, управляемый фазовый сдвиг позволяет изменять результирующее поле в зазоре двигателя от 0 до 2 Bm, а следовательно, и тяговое усилие без изменения действующего значения токовой нагрузки в обмотках двигателя.

Линейный асинхронный электропривод, содержащий два автономных преобразователя частоты и линейный асинхронный двигатель, состоящий из двух противолежащих индукторов с независимыми рабочими обмотками и немагнитного вторичного элемента, помещенного в зазоре между индукторами, отличающийся тем, что в него введены две микропроцессорные системы управления и единый центральный процессор, причем рабочая обмотка одного индуктора подключена к одному преобразователю частоты, рабочая обмотка противолежащего индуктора - к второму преобразователю частоты, вход каждой микропроцессорной системы управления подключен к своему преобразователю частоты, а выход каждой из них подключен к единому центральному процессору, при этом преобразователи частоты имеют управляемый фазовый сдвиг токов нагрузки одноименных фаз противолежащих индукторов.



 

Похожие патенты:

Изобретение относится к области электротехники и может быть использовано в электроприводах с гистерезисными двигателями. Техническим результатом является уменьшение установленной мощности, уровня электромагнитных помех и упрощение.

Изобретение относится к области электротехники, а именно к электроприводам переменного тока периодического движения, и может быть использовано при создании вибрационных электроприводов сканирования, техники измерения, контроля и управления, для перемешивания сыпучих, пастообразных и жидких веществ, а также в автоматизированных электроприводах механизмов с колебательным движением рабочего органа.

Изобретение относится к области электротехники и может быть использовано в частотно регулируемых электроприводах (ЧРЭП) в промышленности, бытовой технике и электротранспорте для регулирования числа оборотов асинхронных (однофазных, трехфазных) электродвигателей.

Изобретение относится к области электротехники и может быть использовано для управления электромагнитным моментом трехфазной синхронной машины с постоянными магнитами.

Привод клапана включает в себя приводной вал для регулирования при эксплуатации клапана между открытым положением и закрытым положением, индукционный двигатель переменного тока для приведения в действие приводного вала, бесконтактный датчик положения, выполненный с возможностью выдачи при эксплуатации сигнала, представляющего угловое положение приводного вала или клапана, и контроллер, выполненный с возможностью управления двигателем переменного тока в соответствии с сигналом, выдаваемым датчиком положения.

Предложен многофазный электрический двигатель, который содержит ротор и статор. Ротор содержит ряд магнитов, ориентированных в направлении статора, содержащего, в свою очередь, множество фазных обмоток, ориентированных в направлении магнитов.

Изобретение относится к области электротехники и может быть использовано для управления двигательной системой, включающей в себя: преобразователь (13) энергии, сглаживающий конденсатор (12), трехфазный AC двигатель (14) и датчик (14v, 14w) тока.

Изобретение относится к устройству управления транспортным средством. Технический результат – улучшение пусковых свойств.

Изобретение относится к области электротехники и может быть использовано при создании вибрационных электроприводов для перемешивания сыпучих, пастообразных и жидких веществ, в автоматизированных электроприводах механизмов с колебательным движением рабочего органа, вибрационных установках в горной промышленности, строительстве, машиностроении или сельском хозяйстве.

Изобретение относится к области электротехники и может быть использовано при создании электропривода с трехфазным двигателем, питаемыми от многоуровневого инвертора на управляемых полупроводниковых приборах (УПП) (транзисторах или запираемых тиристорах), шунтированных «обратными» диодами.

Изобретение относится к области электротехники и может быть использовано в роторных и линейных вентильных реактивных электродвигателях, содержащих различное число фаз и различную геометрию, для восстановления фронта импульса после его потери. В способе отказоустойчивого управления датчиком положения вентильного реактивного электродвигателя в случае, если датчик положения вентильного реактивного электродвигателя работает без сбоев, в режиме реального времени регистрируют четыре равноотстоящих или обладающих одинаковым наклоном непрерывных фронта импульса, четвертый фронт импульса является текущим фронтом импульса; осуществляют последовательную регистрацию временных интервалов (Т1, Т2, Т3) между двумя соседними фронтами импульсов, таким образом вычисляя интервал времени (Т4) между текущим фронтом импульса и следующим фронтом импульса после текущего фронта импульса; если происходит сбой датчика положения вентильного реактивного электродвигателя и теряется следующий фронт импульса после текущего фронта импульса, восстанавливают следующий фронт импульса после временного интервала (Т4) текущего фронта импульса выходного сигнала датчика положения. 6 ил.

Изобретение относится к области электротехники и может быть использовано для управления вентильными реактивными электродвигателями. Техническим результатом является расширение диапазона обеспечения плавного крутящего момента. В способе трехуровневого подавления пульсаций вращающего момента четырехфазного вентильного реактивного электродвигателя первый набор пороговых значений вращающего момента устанавливают в интервале [0°, θr/4] положений ротора. Второй набор пороговых значений вращающего момента устанавливают в интервале [θr/4, θr/2] положений ротора. Питание подают на смежные фазу А и фазу В для возбуждения. Сигнал питания, подаваемый для возбуждения на фазу А, опережает сигнал питания, подаваемый для возбуждения на фазу В, на θr/4. Весь процесс коммутации из фазы А в фазу В разделен на два интервала. В интервале [0°, θ1] положений ротора фаза А использует второй набор пороговых значений вращающего момента, в то время как фаза В использует первый набор пороговых значений вращающего момента. Критическое положение θ1 автоматически возникает в процессе коммутации, тем самым устраняя необходимость для дополнительных вычислений. Общим вращающим моментом управляют в интервале [Тe+th2low, Тe+th2up]. В интервале [θ1, θr/4] положений ротора фаза А продолжает использовать второй набор пороговых значений вращающего момента, а фаза В продолжает использовать первый набор пороговых значений вращающего момента, а общим вращающим моментом управляют в интервале [Тe+th1low, Тe+th1up]. Это подавляет пульсации вращающего момента четырехфазного вентильного реактивного электродвигателя и обеспечивает высокую ценность для технических приложений. 2 н.п. ф-лы, 4 ил.

Изобретение относится к области электротехники и может быть использованао в системах для сжигания газа. Техническим результатом является демпфирование собственных колебаний системы. В системе с первым и вторым электродвигателями (12, 14) механически связанны между собой ее общим звеном (17). Звено (17) имеет крутильное собственное колебание с собственной частотой, причем за счет первого электродвигателя (12) на звено (17) воздействует первый пульсирующий момент, а за счет второго электродвигателя (14) - второй пульсирующий момент. Согласно изобретению второй электродвигатель (14) расположен по отношению к первому электродвигателю (12) таким образом, что воздействие второго пульсирующего момента на звено (17) приводит к демпфированию возбуждения собственного колебания за счет первого пульсирующего момента. 18 з.п. ф-лы, 7 ил.

Изобретение относится к области электротехники и может быть использовано в системе привода трехфазного вентильного реактивного электродвигателя. Техническим результатом является обеспечение плавного управления выходным крутящим моментом в максимальном диапазоне без учета влияния угла выключения фазы основного переключателя мощности на эффективность управления крутящим моментом. В способе двухуровневого подавления пульсаций крутящего момента трехфазного вентильного реактивного электродвигателя первый набор пороговых значений крутящего момента устанавливают в интервале [0°, θr/3] положений ротора; второй набор пороговых значений крутящего момента устанавливают в интервале [θr/3, θr/2] положений ротора; питание подается на смежные фазу А и фазу В для возбуждения. Сигнал питания, подаваемый для возбуждения на фазу А, опережает сигнал питания, подаваемый для возбуждения на фазу В на θr/3. Фаза А выключена, в то время как фаза В включена. Весь процесс коммутации от фазы А к фазе В разделен на два интервала. В интервале [0°, θ1] положений ротора фаза А использует второй набор пороговых значений крутящего момента, в то время как фаза В использует первый набор пороговых значений крутящего момента. Критичное положение θ1 автоматически возникает в процессе коммутации, тем самым устраняя необходимость для дополнительных вычислений. Общий крутящий момент управляется в интервале [Te+th2low, Te+th2up]. В интервале [θ1, θr/3] положений ротора фаза А продолжает использовать второй набор пороговых значений крутящего момента, фаза В продолжает использовать первый набор пороговых значений крутящего момента, а общий крутящий момент управляется в интервале [Te+th1low, Te+th1up]. Это подавляет пульсации крутящего момента трехфазного вентильного реактивного электродвигателя. 1 з.п. ф-лы, 4 ил.

Изобретение относится к области ветеринарии, медицинской техники и сельского хозяйства и может быть использовано для вакцинации животных. Техническим результатом является обеспечение регулирования размера получаемых частиц. Автоматизированный дисковый генератор монодисперсного аэрозоля, предназначенный для создания монодисперсного аэрозоля заданной дисперсности, содержит блок питания, блок генератора с диском, блок аналого-цифрового преобразователя, соединительный кабель и персональный компьютер. 6 ил.

Изобретение относится к области электротехники и может быть использовано в системах вентильного реактивного электродвигателя с множеством фаз и множеством топологических структур. Техническим результатом является обеспечение автоматического переключения и плавной связи между двумя режимами управления с устранением дребезга при переключении. Способ перекрестного управления в широком диапазоне скоростью вентильного реактивного электродвигателя, система управления в широком диапазоне скоростью вентильного реактивного электродвигателя содержит регулятор скорости вращения, контроллер токового прерывателя, контроллер углового положения, счетчик прерывателя, селектор сравнения и два переустанавливаемых регистра констант; счетчик прерывателя подсчитывает количество прерываний тока для каждого электрического периода, и в соответствии с результатом сравнения между значением счетчика прерывателя и постоянным значением, установленным двумя регистрами констант, селектор сравнения выбирает контроллер токового прерывателя или контроллер углового положения, таким образом, что контроллер токового прерывателя и контроллер углового положения могут осуществлять автоматическое переключение и плавное соединение вне зависимости от изменения нагрузки в трех фазах, а именно фазах низкой скорости вращения, средней скорости вращения и высокой скорости вращения, а также во время ускорения, замедления или равномерной скорости, при этом переключение от угла включения к углу выключения не будет вызывать колебания крутящего момента или скорости вращения вентильного реактивного электродвигателя, так что система вентильного реактивного электродвигателя работает стабильно и имеет высокую практическую ценность в инженерных областях. 2 ил.

Изобретение относится к электротехнике, в частности к электроприводам переменного тока периодического движения, и может быть использовано при создании вибрационных электроприводов сканирования, техники измерения, контроля и управления, а также в автоматизированных электроприводах механизмов с пульсирующим движением рабочего органа. Устройство для управления двухфазным асинхронным двигателем в режиме пульсирующего движения содержит двухфазный асинхронный двигатель, задающий генератор, инвертирующий усилитель, выпрямитель и два инвертора напряжения. Выход первого инвертора напряжения соединен с обмоткой управления двухфазного асинхронного двигателя. Инвертирующий усилитель, выпрямитель и первый инвертор напряжения соединены последовательно. Вход инвертирующего усилителя подключен к выходу задающего генератора. Выход второго инвертора напряжения соединен с обмоткой возбуждения двухфазного асинхронного двигателя. Второй выпрямитель подключен своим входом к выходу задающего генератора, а выходом - к входу второго инвертора напряжения. Технический результат: расширение функциональных возможностей электропривода колебательного движения за счет улучшения формы формируемых прямоугольных пульсаций и повышения его энергетических показателей. 2 ил.

Изобретение относится к управлению тяговой системой транспортных средств. Система регулирования тягового усилия для нескольких электросекций содержит модуль подачи питания, инверторные/четырехквадратные модули, модуль ввода/вывода, сетевой модуль и модуль устранения ошибок. Инверторные/четырехквадратные модули состоят из высокоскоростной платы, платы дискретизации сигналов и платы импульсного интерфейса. Двусторонний обмен данными между платами, модулем ввода/вывода, хост-процессором, между сетевым модулем и между модулем устранения ошибок реализован посредством высокоскоростной дифференциальной шины LinkPort, посредством высокоскоростной шины, посредством шины CPCI и посредством шины CAN. Сетевой модуль содержит сетевую плату и принимает цифровые сигналы и аналоговые сигналы и отправляет данные. Модуль устранения ошибок содержит плату устранения ошибок и принимает команды на устранение ошибок и сигналы на устранение ошибок. Модуль подачи питания подает питание на инверторные/четырехквадрантные модули, модуль ввода/вывода, сетевой модуль и модуль устранения ошибок. Технический результат изобретения заключается в обеспечении стабильности и надежности в передаче информации системы регулирования тягового усилия для нескольких электросекций. 6 з.п. ф-лы, 18 ил.

Изобретение относится к области электротехники и может быть использовано в системах привода трехфазного вентильного реактивного электродвигателя. Техническим результатом является расширение диапазона подавления пульсаций крутящего момента вентильного реактивного электродвигателя. Предложен способ трехуровневого подавления пульсаций крутящего момента трехфазного вентильного реактивного электродвигателя. Первый набор пороговых значений (th1low, th1zero, и th1up) крутящего момента устанавливается в интервале [0°, θr/3] положений ротора. Второй набор пороговых значений (th2low, th2zero, и th2up) крутящего момента устанавливается в интервале [θr/3, θr/2] положений ротора. Питание подается на смежные фазу А и фазу В для возбуждения. Сигнал питания, подаваемый для возбуждения на фазу А, опережает сигнал питания, подаваемый для возбуждения на фазу В, на θr/3. Весь процесс коммутации от фазы А к фазе В разделен на два интервала. В интервале [0°, θ1] положений ротора фаза А использует второй набор пороговых значений (th2low,, th2zero, и th2up) крутящего момента, в то время как фаза В использует первый набор пороговых значений (th1low, th1zero, th1up) крутящего момента. Критическое положение θ1 автоматически возникает в процессе коммутации, тем самым устраняя необходимость для дополнительных вычислений. Общий крутящий момент управляется в интервале [Te+th2low, Te+th2up]. В интервале [θ1, θr/3] положений ротора фаза А продолжает использовать второй набор пороговых значений (th2low, th2zero, и th2up) крутящего момента фаза В продолжает использовать первый набор пороговых значений (th1low, th1zero, и th1up) крутящего момента, и общий крутящий момент управляется в интервале [Te+th1low, Te+th1up]. Это подавляет пульсации крутящего момента трехфазного вентильного реактивного электродвигателя и обеспечивает высокую ценность для технического применения. 1 з.п. ф-лы, 4 ил.

Изобретение относится к области электротехники и может быть использовано в системах управления, реализующих прямое управление током в мостовых преобразователях частоты. Техническим результатом является повышение качества формирования фазных токов за счет увеличения степени согласованности работы устройства и упрощение. Система управления преобразователем частоты с прямым управлением током, представляющим собой m-фазный мост, содержит m плечей, составленных из полупроводниковых ключей и обратных диодов, и m выходов для подключения m-фазной нагрузки, соединенной в звезду; датчики фазных токов нагрузки, формирователь заданных токов, сумматоры, каждый из которых имеет первый и второй входы и выход и реализует формулу , где , и Uвых - напряжения, соответствующие сигналам на первом и втором входах и выходе соответственно. На первый вход каждого сумматора подается сигнал мгновенного значения тока соответствующей фазы, ко второму входу каждого сумматора подключен выход формирователя заданного тока соответствующей фазы. Система управления содержит m гистерезисных переключателей, каждый из которых имеет один вход и два выхода; вход каждого из m-1 гистерезисного переключателя подключен к выходу соответствующего сумматора, а выходы связаны через согласующие устройства с соответствующими входами управления полупроводниковых ключей. Величина гистерезиса каждого из гистерезисных переключателей определяет ширину «токового коридора» соответствующего фазного тока, при этом число сумматоров и каналов формирователя заданных токов равно m-1. Система управления содержит дополнительный сумматор, имеющий m-1 входов и выход. Каждый из m-1 входов дополнительного сумматора подключен к выходу одного из m-1 сумматоров, а выход - ко входу га-го гистерезисного переключателя. Дополнительный сумматор реализует формулу .Каждый из гистерезисных переключателей может иметь дополнительный вход регулировки ширины петли гистерезиса, на которые подается сигнал с регулируемым уровнем, что обеспечивает регулируемую ширину «токового коридора». 1 з.п. ф-лы, 1 ил.
Наверх