Способ испытания обтекателей ракет из неметаллических материалов

Изобретение относится к способам воспроизведения аэродинамического теплового и силового воздействия на головную часть (обтекатель) ракеты в наземных условиях. Сущность: осуществляют силовое воздействие к наружной поверхности обтекателя через многослойную структуру, состоящую из жесткой оболочки, упругой среды, гибкой и дискретной теплоизоляции и контактного нагревателя, а составляющие внешней силовой нагрузки прикладываются к наружной поверхности жесткой оболочки. Поперечная сила прикладывается в плоскости перпендикулярной плоскости приложения продольных сил, а теплоизоляция состоит из дискретных секторов эквидистантных наружной поверхности обтекателя. В плоскости приложения продольных сил на наружной поверхности обтекателя через нагреватель монтируют гибкую теплоизоляцию. Технический результат - повышение точности воспроизведения силовой нагрузки на обтекатель ракеты и увеличение технических возможностей оборудования для наземной отработки новых конструкций ракетной техники. 1 ил.

 

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к способам воспроизведения аэродинамического теплового воздействия на головную часть (обтекатель) ракеты в наземных условиях.

В настоящее время воспроизведение аэродинамического нагрева осуществляется в различных установках: аэродинамических трубах, баллистических установках, плазменных установках, стендах на основе сжигания топлива (прямоточных реактивных двигателях) [Статические испытания на прочность сверхзвуковых самолетов / А.Н. Баранов [и др.]. - М.: Машиностроение - 1974. - 344 с.; Материалы и покрытия в экстремальных условиях. Взгляд в будущее: В 3 т. - Т.3. Экспериментальные исследования / Ю.В. Полежаев, С.В. Резник, А.Н. Баранов и др., под ред. Ю.В. Полежаева и С.В. Резника. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2002. - 264 с.: ил.].

Испытание натурных конструкций в таких установках требует огромных материальных затрат, поэтому широкого распространения в практике наземных испытаний эти установки не получили.

Наиболее широкое распространение в практике наземных испытаний получили стенды радиационного нагрева (на базе ламп инфракрасного излучения), так как они просты в эксплуатации, позволяют достаточно легко изменять конфигурацию нагревателя в зависимости от геометрии конструкции обтекателя. Однако радиационный нагрев имеет ряд ограничений.

Для элементов летательных аппаратов сложной формы, когда геометрические размеры конструкции сравнимы с размерами нагревателей, наблюдается большая погрешность задания температурного поля. Кроме того, при задании высоких температур (выше температуры смягчения кварца) инфракрасные нагреватели выходят из строя.

В последнее время для испытания керамических обтекателей применяются контактные и контактно-радиационные нагреватели.

Для примера можно привести технические решения по патентам Российской Федерации: №2571442, №2456568, №2599460.

Контактные нагреватели позволяют воспроизвести полное аэродинамическое воздействие за счет применения известных средств силового нагружения (лямки, хомуты, нагружающие мешки и др.), прикладывая силовую нагрузку на обтекатель через слой теплоизоляции и поверхности контактного нагревателя. Это дает возможность исключить искажения температурного поля на наружной поверхности испытуемой конструкции. При этом погрешность задания температурного поля по сравнению с радиационным нагревом уменьшается в разы, что очень важно при испытаниях элементов летательных аппаратов из хрупких материалов. Однако силовая нагрузка остается сосредоточенной в точках взаимодействия нагружающих устройств с испытуемой конструкцией. Это ограничивает применение этих способов при наземной отработки тонкостенных оболочечных конструкции элементов летательных аппаратов.

Наиболее близким по технической сущности является способ теплового нагружения обтекателей ракет из неметаллических материалов (патент РФ №2583353, МПК G01M 9/00, G01N 25/72, опубл. 10.05.2016), в котором тепловое нагружение осуществляется контактно-радиационным нагревателем, а силовое воздействие от нагружающих элементов до поверхности наружной поверхности обтекателя передается n-м количеством стержней (равномерно распределенных по поверхности конструкции), проходящих через стенки токопроводящей и теплоизолирующей оболочек, причем сумма площадей поперечного сечения стержней много меньше нагреваемой поверхности, а плотность распределения стержней по поверхности конструкции выбирается таким образом, чтобы исключить концентраторы механических напряжений при взаимодействии стержней с наружной поверхностью конструкции. Это позволяет повысить температуру наружной поверхности конструкции при полном воспроизведении аэродинамического воздействия.

Недостатком этого способа является сложность его исполнения. Воспроизведение силового поля конструкции через n-е количество стержней требует сложной системы управления и не полностью исключает искажения теплового поля.

Техническим результатом заявляемого изобретения является повышение точности воспроизведения силовой нагрузки на обтекатель ракеты и увеличение технических возможностей оборудования для наземной отработки новых конструкций ракетной техники.

Технический результат обеспечивается тем, что предложенный способ включает испытания обтекателей ракет из неметаллических материалов, включающий нагрев наружной поверхности обтекателя и приложение к нему силовой нагрузки, отличающийся тем, что силовую нагрузку к наружной поверхности обтекателя осуществляют через многослойную структуру, состоящую из жесткой оболочки, упругой среды, гибкой и дискретной теплоизоляции и контактного нагревателя, а составляющие внешней силовой нагрузки прикладываются к наружной поверхности жесткой оболочки, причем поперечная сила прикладывается в плоскости, перпендикулярной плоскости приложения продольных сил, а теплоизоляция состоит из дискретных секторов, эквидистантных наружной поверхности обтекателя, причем в плоскости приложения продольных сил на наружной поверхности обтекателя через нагреватель монтируют гибкую теплоизоляцию.

На чертеже представлена схема реализации предложенного способа. Силовое нагружение (F - поперечное и Q - продольное) на жесткий нагружающий конус 5 передается на испытуемый обтекатель 1 через упругий слой 4, дискретный теплоизолирующий слой 3 и контактный нагреватель 2, причем продольная сила Q прикладывается к жесткому нагружающему конусу устройствами нагружения 8 через динамометры 9. Цифрой 10 обозначен силовой пол, цифрами 6 и 7 электрические шины контактного нагревателя, цифрой 11 - гибкая теплоизоляция, разделяющая дискретный теплоизолирующий слой 3 на две части.

При таком задании силовой нагрузки упругое взаимодействие обтекателя с воздушным потоком воспроизводится за счет его помещения в упругой среде (упругий слой 4). В этом случае величина давления на наружной поверхности обтекателя в элементарном секторе может быть определена формулой:

где Pi - давление в i-м секторе; Ki - коэффициент упругости среды 8 в i-м секторе; δi - изменение толщины упругой среды 8 в i-м секторе при силовом воздействии на жесткий конус 5 (см. фигуру).

Так как величина δj в j-м сечении по отношению к плоскости приложения поперечной силы F к жесткому конусу 5 описывается формулой:

где Kj - коэффициент упругости среды 8 в j-м сечении; δjmax - изменение толщины упругой среды 8 в плоскости приложения поперечной силы F;

α - угол между плоскостью приложения поперечной силы F и плоскостью измерения δj в j-м сечении, то характер силового взаимодействия между обтекателем 1 и упругим слоем 4 подобен силовому взаимодействию с воздушным потоком в реальных условиях работы обтекателя 1. Из формулы (2) следует, что за счет подбора материалов с разными упругими свойствами можно добиться максимального приближения к реальному силовому взаимодействию обтекателя 1 с воздушным потоком в наземных условиях.

Предложенный способ (в части силового нагружения) отработан и применяется при наземных испытаниях натурных обтекателей ракет.

Способ испытания обтекателей ракет из неметаллических материалов, включающий нагрев наружной поверхности обтекателя и приложение к нему силовой нагрузки, отличающийся тем, что силовую нагрузку к наружной поверхности обтекателя осуществляют через многослойную структуру, состоящую из жесткой оболочки, упругой среды, гибкой и дискретной теплоизоляции и контактного нагревателя, а составляющие внешней силовой нагрузки прикладываются к наружной поверхности жесткой оболочки, причем поперечная сила прикладывается в плоскости, перпендикулярной плоскости приложения продольных сил, а теплоизоляция состоит из дискретных секторов, эквидистантных наружной поверхности обтекателя, причем в плоскости приложения продольных сил на наружной поверхности обтекателя через нагреватель монтируют гибкую теплоизоляцию.



 

Похожие патенты:
Изобретение относится к методам испытаний конструкционных материалов, преимущественно для прогнозирования ресурсоспособности сталей, работающих в зонах нейтронного облучения объектов атомной техники.

Изобретение относится к области исследования прочностных свойств твердых материалов и может быть использовано на тепловых электростанциях для мониторинга прочности и оценки остаточного ресурса ответственного оборудования, например паропроводов и корпусных элементов оборудования высокого давления, в процессе его эксплуатации в условиях высоких температур и агрессивной рабочей среды.

Изобретение относится к испытательной технике, к установкам для испытания образцов материалов на прочность. Установка содержит основание, установленные на нем соосные захваты для образца, механический нагружатель, связанный с захватами, термический нагружатель, включающий вал, установленный параллельно захватам, привод вращения вала, шкив, установленный на валу, бесконечный элемент, охватывающий шкив без возможности скольжения, теплопроводное кольцо для закрепления на поверхности образца, охватываемое бесконечным элементом с возможностью фрикционного взаимодействия, и приспособление для регулируемого усилия натяжения бесконечного элемента.

Изобретение относится к области испытаний материалов, а конкретно к испытаниям металлических цилиндрических образцов методом деформирования (растяжения-сжатия или сжатия-растяжения), и может быть использовано для физического моделирования в лабораторных условиях процессов многократной пластической деформации металлов, происходящих в условиях промышленного производства и эксплуатации.

Изобретение относится к области исследования прочностных свойств материалов при высоких температурах в условиях индукционного нагрева в вакууме. Высокотемпературная установка содержит ВЧ индуктор, охватывающий испытуемый образец и жесткие верхний и нижний захваты, удерживающие его, а также контролирующую и регистрирующую аппаратуру.

Изобретение относится к неразрушающему контролю материалов, обладающих эффектом памяти формы, и может быть использовано для контроля термомеханических характеристик в условиях пассивного деформирования материалов с эффектом памяти формы для определения и контроля температурных точек фазовых превращений, коэффициента термического и упругого восстановления, а также для контроля получаемых сплавов с памятью формы на соответствие заданным термомеханическим характеристикам, необходимым для обеспечения работоспособности термомеханических соединений при сборке с помощью термомеханических муфт из сплава с эффектом памяти формы.

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях для мониторинга прочности ответственного оборудования в процессе его эксплуатации, например паропроводов и корпусных элементов оборудования высокого давления.

Изобретение относится к технике испытания материалов, в частности к испытаниям полимерных материалов на растяжение-сжатие. Устройство содержит термокриокамеру, размещенные в ней подвижный и неподвижный захваты для образца, механизм деформации образца, выполненный в виде магнитогидродинамического насоса и сообщенных с ним двух гидродвигателей в виде сильфонов, один из которых сообщен с узлом крепления подвижного захвата, измерительное средство для замера усилий и деформаций.

Изобретение относится к средствам испытаний образцов материалов при сложном нагружении и может быть использовано совместно со стендами для исследования энергообмена при деформировании и разрушении твердых тел.

Изобретение относится к средствам испытаний образцов материалов при сложном нагружении и может быть использовано совместно со стендами для физического моделирования геомеханических процессов на образцах горных пород и эквивалентных материалах.

Изобретение относится к способам испытания металлов на растяжение с высокой температурой нагрева и может быть использовано при определении зависимости интенсивности напряжения от степени и скорости деформации, которые необходимо учитывать в технологических расчетах формоизменяющих операций изотермической штамповки листовых металлов. Сущность: перед испытанием производят измерение начальных размеров поперечных сечений образца, закрепление образца в захватах испытательной машины и нагревательном устройстве, установку термопар для измерения температуры на образце, нагрев образца до заданной температуры и времени выдержки. Затем испытание на растяжение осуществляют с записью диаграммы «нагрузка-перемещение». В процессе растяжения со скоростью перемещения захватного органа V1 на величину удлинения 5÷10% изменяют скорость перемещения захватного органа до скоростей перемещения V2 без остановки процесса растяжения, растягивают образец на величину удлинения 5÷10% и снова изменяют скорость перемещения захватного устройства до скорости V3 и т.д. с последующим повторением цикла переключения скоростей перемещения захватного устройства в процессе растяжения и получением пилообразной диаграммы «нагрузка-перемещение», на которой записывают не менее трех циклов переключения скоростей перемещения захватного устройства. Технический результат: повышение точности и снижение трудоемкости испытания путем определения зависимости интенсивности напряжения от степени и скорости деформации при растяжении с повышенной температурой образца из металла. 5 ил., 1 табл.

Изобретение относится к области усталостных испытаний материалов на изгиб и предназначено для охлаждения образцов в процессе подготовки и проведения усталостных испытаний на изгиб. Предложено автоматизированное устройство для охлаждения образцов при усталостных испытаниях на изгиб при пониженных температурах, согласно которому процесс охлаждения осуществляется комбинированно, как за счет передачи холода по хладопроводу, так и за счет подачи охлажденного воздуха в криокамеру. При этом процессы, описанные выше, полностью автоматизированы за счет регулирования температуры посредством открытия/закрытия заслонки камеры и нагревания до необходимой (устойчивой) температуры зажима хладопровода. Кроме этого, дополнительно непосредственно на образце устанавливается датчик акустической эмиссии, а на приводное устройство - счетчик количества циклов с выходом на ЭВМ для оценки степени разрушения образца в ходе испытаний и выявления зависимостей количества циклов испытания от напряжения, возникающего в опасном сечении образца. Технический результат - ускорение и автоматизация процесса охлаждения образцов в процессе проведения испытаний на усталость и процесса построения диаграмм изменения параметров акустической эмиссии в зависимости от количества циклов нагружения. 1 ил.

Изобретение относится к способам воспроизведения аэродинамического теплового и силового воздействия на головную часть ракеты в наземных условиях. Сущность: осуществляют силовое воздействие к наружной поверхности обтекателя через многослойную структуру, состоящую из жесткой оболочки, упругой среды, гибкой и дискретной теплоизоляции и контактного нагревателя, а составляющие внешней силовой нагрузки прикладываются к наружной поверхности жесткой оболочки. Поперечная сила прикладывается в плоскости перпендикулярной плоскости приложения продольных сил, а теплоизоляция состоит из дискретных секторов эквидистантных наружной поверхности обтекателя. В плоскости приложения продольных сил на наружной поверхности обтекателя через нагреватель монтируют гибкую теплоизоляцию. Технический результат - повышение точности воспроизведения силовой нагрузки на обтекатель ракеты и увеличение технических возможностей оборудования для наземной отработки новых конструкций ракетной техники. 1 ил.

Наверх