Способ взвешивания ротора гироскопа в электростатическом подвесе

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве гироскопов с электростатическим подвесом ротора. На ротор подают переменное напряжение, а к силовым электродам подвеса прикладывают постоянное напряжение. Измеряют переменные составляющие токов между ротором и измерительными электродами, на их основе формируют сигнал управления постоянным напряжением на силовых электродах. При этом переменное напряжение подают на ротор через силовые электроды, а к измерительным электродам прикладывают постоянное напряжение, сформированное сигналом управления на основе переменных составляющих токов. Технический результат заключается в увеличении центрирующей силы электростатического подвеса ротора гироскопа, и соответственно, перезагрузочной способности гироскопа. 1 ил.

 

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве гироскопов с электростатическим подвесом ротора.

Известен способ взвешивания ротора электростатического гироскопа [П.И. Малеев. Новые типы гироскопов // Л.: Судостроение, 1971, стр. 13-17], согласно которому на пары электродов, размещенных по осям подвеса с противоположных сторон ротора, подают постоянное (силовое) и переменное (измерительное) напряжения. Постоянное напряжение используют для создания центрирующей силы. Переменное напряжение используют для определения положения ротора в зазоре между электродами. Положение ротора определяется по сигналу разбалансировки мостовой схемы, плечами которой являются емкости между электродами и ротором. Далее сигнал разбалансировки преобразуют в сигнал управления постоянным напряжением на электродах.

Недостатком способа является малая точность электростатического подвеса при размещении электроники, формирующей сигнал управления за пределами гироскопа. Такое размещение требуется, например, при реализации криогенного гироскопа с электростатическим подвесом ротора [Патент РФ №2011166]. Указанный недостаток обусловлен тем, что сигнал управления формируется по изменению значений емкостей между ротором и электродами. В электростатическом подвесе современных гироскопов изменения значений емкостей находятся на уровне десятков пФ и при выносе электроники за пределы гироскопа на расстояние более 1 метра теряются на фоне паразитных емкостей соединительных цепей, составляющих сотни пФ.

Известен также способ взвешивания ротора электростатического гироскопа, у которого приведенный выше недостаток отсутствует [Я.А. Некрасов, B.C. Фрезинский. Активные электростатические подвесы // Центральный научно-исследовательский институт «Румб», 1987, стр. 38, 72], который и принят за прототип. При его реализации на пары силовых электродов, размещенных с противоположных сторон взвешиваемого ротора, подают постоянное напряжение, через дополнительный электрод на ротор подают переменное напряжение. Постоянное напряжение используют для создания центрирующей силы. Переменное напряжение используют для определения положения ротора в зазоре между электродами. Для этого измеряют переменные составляющие токов, протекающих в зазорах между ротором и измерительными электродами, установленными парами на одной оси с силовыми электродами с противоположных сторон ротора. На их основе формируют сигнал управления постоянным напряжением на электродах. При измерении переменных токов измерительных электродов обеспечивают нулевое входное сопротивление измерительных цепей, что создает на измерительном электроде переменное напряжение, близкое к нулю. При выносе электроники за пределы гироскопа влияние паразитных емкостей соединительных цепей исключается.

Недостатком способа является малое значение центрирующей силы создаваемой подвесом. Величина центрирующей силы пропорциональна площади силообразующих электродов, которая в конструкции прототипа ограничена, во-первых, необходимостью размещения дополнительного электрода, во-вторых, в данном подвесе площади измерительных электродов не используются для силообразования.

Задачей настоящего изобретения является совершенствование процесса управления электростатическим подвесом ротора гироскопа.

Достигаемый технический результат - увеличение центрирующей силы электростатического подвеса ротора гироскопа, и соответственно, перезагрузочной способности гироскопа.

Поставленная задача решается тем, что в известном способе взвешивания ротора гироскопа в электростатическом подвесе, согласно которому на ротор подают переменное напряжение, к силовым электродам подвеса прикладывают постоянное напряжение, измеряют переменные составляющие токов между ротором и измерительными электродами, на их основе формируют сигнал управления постоянным напряжением на силовых электродах. Введены операции, согласно которым переменное напряжение подают на ротор через силовые электроды, а к измерительным электродам прикладывают постоянное напряжение, сформированное сигналом управления на основе переменных составляющих токов, измеренных между ротором и измерительными электродами.

Предлагаемое изобретение поясняется фиг. 1. На фиг. 1 приведена функциональная схема одноосного электростатического подвеса ротора гироскопа.

На фиг. 1 приняты следующие обозначения:

1 - взвешиваемый ротор (далее - ротор);

2, 3 - силовые электроды;

4, 5 - измерительные электроды; 6 - генератор;

7, 8 - высоковольтные усилители;

9, 10 - измерительные усилители переменного тока (далее - измерительные усилители); 11, 12 - выпрямители;

13 - суммирующее устройство (далее - сумматор);

14 - корректирующее звено;

C1, С2 - разделительные емкости (далее - конденсаторы);

Ск - паразитная емкость соединительного кабеля (далее - емкость соединительного кабеля);

R1, R2 - резисторы.

Работа устройства, в котором реализован предлагаемый способ, осуществляется следующим образом. На силовые электроды 2, 3 (фиг. 1), расположенные попарно с противоположных сторон ротора 1, через разделительные емкости С1 с генератора 6 подают переменное напряжение. На силовые электроды 2, 3 и измерительные электроды 4, 5, попарно установленные на одной оси (на фиг. 1 вид А), с выхода высоковольтных усилителей 7 и 8 через резисторы R1 подают постоянное напряжение. Резисторы R1 обеспечивают развязку цепей постоянного и переменного тока. При этом переменное напряжение с генератора 6 поступает через конденсаторы С1 только на силовые электроды 2 и 3, а переменный ток измерительных электродов 4 и 5 через конденсаторы С2 поступает только на входы измерительных усилителей 9 и 10. Постоянное напряжение используют для создания центрирующей силы. Ее величина пропорциональна площади силообразующих электродов (2, 3 и 4, 5). В предлагаемом способе величина центрирующей силы увеличена за счет увеличения площади собственно силовых электродов 2, 3. Площадь силовых электродов 2, 3 увеличена за счет исключенной площади дополнительного электрода. Также для образования силы используются площади измерительных электродов 4, 5. Переменное напряжение используется для определения положения ротора 1 в зазоре между измерительными электродами 4, 5 и формирования в дальнейшем сигнала управления высоковольтными усилителями 7 и 8 (величиной постоянного напряжения на их выходе). Под действием переменой составляющей в зазоре между ротором 1 и измерительным электродом 4 протекает переменный ток, амплитуда которого пропорциональна величине зазора. В зазоре между ротором 1 и измерительным электродом 5, установленным с противоположной стороны ротора 1, протекает переменный ток, амплитуда которого пропорциональна величине зазора. С помощью токов формируется сигнал управления высоковольтными усилителями 7, 8. Для этого токи через конденсаторы С2 поступают на входы измерительных усилителей 9 и 10. Далее выходные напряжения измерительных усилителей 9 и 10 преобразуются на выпрямителях 11 и 12. Постоянные составляющие поступают на сумматор 13, на выходе которого напряжение пропорционально смещению ротора 1 из центра подвеса (пропорционально разности измеренных в зазорах токов). Через корректирующее звено 14, которое обеспечивает устойчивость подвеса, напряжение с выхода сумматора 13 поступает на вход высоковольтного усилителя 7 и в противофазе на вход высоковольтного усилителя 8. Высоковольтные усилители 7, 8 меняют постоянное напряжение таким образом, чтобы ротор 1 под их действием переместился в положение, при котором зазоры с противоположных сторон ротора 1 стали бы равными. Измерительные усилители 9 и 10 работают таким образом, что разница переменного напряжения между их инвертным и прямым (на рисунке заземлен) входами равна нулю. При этом ток измерительного электрода 4 (5) проходит через резистор R2, образуя на выходе измерительного усилителя 9 (10) напряжение, пропорциональное входному току. В результате чего входы измерительных усилителей 9 (10) заземлены. При этом отсутствует напряжение на емкости соединительного кабеля Ск, их величина не влияет на передаваемый сигнал и можно электронику подвеса выносить за пределы гироскопа на расстояние более одного метра.

При реализации предлагаемого способа центрирующая сила подвеса увеличивается по сравнению со способом прототипа. Увеличение происходит за счет увеличения площади силообразующих электродов. Площадь силообразующих электродов увеличивается за счет:

- увеличения площади собственно силовых электродов при перераспределении в их пользу площади исключенного дополнительного электрода,

- использования для образования сил площади измерительных электродов.

Таким образом, поставленная цель достигнута.

На предприятии АО «Концерн «ЦНИИ «Электроприбор» предлагаемый способ экспериментально проверен. Получены положительные результаты. В настоящее время разрабатывается техническая документация для использования предлагаемого технического решения при производстве гироскопов с электростатическим подвесом ротора.

Способ взвешивания ротора гироскопа в электростатическом подвесе, согласно которому на ротор подают переменное напряжение, к силовым электродам подвеса прикладывают постоянное напряжение, измеряют переменные составляющие токов между ротором и измерительными электродами, на их основе формируют сигнал управления постоянным напряжением на силовых электродах, отличающийся тем, что переменное напряжение подают на ротор через силовые электроды, а к измерительным электродам прикладывают постоянное напряжение, сформированное сигналом управления на основе переменных составляющих токов, измеренных между ротором и измерительными электродами.



 

Похожие патенты:

Изобретение относится к области метрологии и касается способа контроля и поверки метеорологического лидарного устройства. Способ включает в себя ввод оптического зондирующего импульса через приемную оптическую систему в оптоволоконную линию временной задержки калиброванной длины и вывод через передающую оптическую систему на фотоприемник поверяемого устройства.

Изобретение относится к навигационному приборостроению и предназначено для оценки основных характеристик блока инерциальных измерителей инерциальной навигационной системы (как платформенной, так и бесплатформенной), содержащего по меньшей мере три однотипных инерциальных измерителя с некомпланарными осями чувствительности, по измерительной информации, полученной в любых допустимых условиях функционирования, в том числе по результатам лабораторных, заводских и приемосдаточных испытаний.

Изобретение относится к трехосным гироскопам средней и повышенной точности, а конкретно к способу оценки их систематических погрешностей. Технический результат заключается в повышении точностных характеристик трехосного гироскопа за счет повышения достоверности оценки систематических погрешностей трехосного гироскопа, с одновременным уменьшением трудоемкости процесса измерений.

Группа изобретений относится к оборудованию для контроля рабочих параметров при бурении и может быть использована для ремонта средств передачи сигналов измерения из скважины на поверхность в процессе бурения как в горизонтальных, так и в других скважинах в процессе бурения.

Изобретение относится к приборостроению и может быть использовано в лазерной гироскопии при юстировке кольцевых резонаторов лазерных гироскопов по величине порога зоны нечувствительности (порога захвата).

Изобретение относится к области гироскопического приборостроения и предназначено для определения величин масштабных коэффициентов лазерного гироскопа при проведении калибровок (паспортизации) бесплатформенных инерциальных навигационных систем.

Изобретение относится к области приборостроения и может быть использовано при построении одноосных и трехосных измерителей параметров движения - угловых скоростей и линейных ускорений для инерциальных навигационных систем и пилотажных систем управления подвижных объектов.

Варианты осуществления настоящего раскрытия относятся к способу и устройству для калибровки гиродатчиков с использованием измерений магнитного датчика и фонового вычисления в ходе нормальной работы изделия.

Способ определения погрешности геодезических приборов за неправильность формы цапф и боковое гнутие зрительной трубы включает закрепление на объективном конце зрительной трубы исследуемого прибора отражающего зеркала под углом 45° к визирной оси, размещение на продолжении горизонтальной оси вращения зрительной трубы исследуемого прибора марки.

Изобретение относится к области приборостроения и может быть использовано при изготовлении роторов электростатических гироскопов. Способ предназначен для использования при изготовлении роторов чувствительных элементов электростатических гироскопов.

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве двухстепенных гироблоков. Предложенный способ определения погрешности двухстепенного гироблока заключается: в установке гироблока на неподвижном основании; выставке оси прецессии в вертикальное положение; выставке измерительной оси в положение, перпендикулярное плоскости меридиана; замыкании цепи обратной связи датчик угла - усилитель-преобразователь - датчик момента; включении гиромотора; разгоне ротора до начальной скорости вращения; измерении тока в цепи датчика момента и измерении скорости вращения ротора, выключении гиромотора; начальное значение скорости вращения ротора гиромотора устанавливают на 10-30% выше значения его номинальной скорости, а ток в цепи обратной связи и скорость вращения ротора измеряют непрерывно на его выбеге. От реализации заявленного способа достигается технический результат, заключающийся в повышении достоверности результатов определения погрешности гироблока, уменьшении трудоемкости определения погрешности гироблока. 2 ил.

Изобретение относится к способу и устройству для изготовления ротора электростатического гироскопа. Процесс изготовления ротора включает формообразование сферической заготовки ротора, его балансировку и нанесение тонкопленочного износостойкого покрытия переменной толщины. Образуют наружную сферическую поверхность покрытия с центром, смещенным относительно геометрического центра заготовки ротора на расчетную величину δ в сторону, противоположную направлению вектора дисбаланса ротора. Для этого в процессе напыления осуществляют циклическое возвратно-поступательное перемещение ротора вдоль оси потока напыляемого материала с заданной амплитудой ΔL отклонения ротора от среднего положения. Величина ΔL выбирается в зависимости от требуемого смещения δ. При этом цикл указанного перемещения синхронизирован с вращением ротора, а ротор ориентируют вектором дисбаланса в определенную сторону относительно источника напыляемого материала. В устройстве привод вращения соединен с элементами крепления ротора посредством одноколейного вала, у которого шатунная шейка имеет эксцентриситет ΔL относительно оси вращения ротора. Указанная шейка и упор, жестко закрепленный на основании камеры, с помощью шарниров связаны с концами шатуна. Привод вращения установлен на направляющих, задающих возможность его возвратно-поступательного перемещения вдоль оси потока напыляемого материала. При этом предусмотрено варьирование расстоянием между осями шарниров, а шатунная шейка установлена с возможностью изменения эксцентриситета ΔL относительно оси вращения ротора. Технический результат заключается в повышении и стабильности процесса изготовления ротора электростатического гироскопа за счет корректировки дисбаланса с сохранением геометрических параметров сферы. 2 н.п.ф-лы, 4 ил.

Изобретение относится к области геофизики и может быть использовано для оценки влияния геомагнитной активности на метрологические характеристики инклинометрического и навигационного оборудования в процессах его калибровки, поверки и эксплуатации. Технический результат - минимизация влияния геомагнитной активности на метрологические характеристики инклинометрического и навигационного оборудования в процессах его калибровки, поверки и эксплуатации. Способ оценки влияния геомагнитной активности на метрологические характеристики инклинометрического и навигационного оборудования включает измерение и расчет параметров геомагнитного поля. При этом рассчитывают контрольные индексы геомагнитной активности, характеризующие составляющую дополнительной погрешности инклинометрического и навигационного оборудования, проявляющуюся в периоды ненулевой геомагнитной активности, полученные результаты сравнивают с установленными нормами и по их разности судят о степени отклонения метрологических характеристик инклинометрического и навигационного оборудования. 2 ил.

Изобретение относится к устройству определения неправильного распознавания в группе параметров движения транспортного средства, используемых для управления вождением транспортного средства. Технический результат заключается в обеспечении возможности точного определения, происходит ли неправильное распознавание в группе параметров, которая включает в себя множество параметров движения, вычисленных на основе входных данных. Такой результат достигается за счет того, что вычисляется множество параметров движения, которые используются для управления вождением транспортного средства и основаны на входных данных, вычисляется различие между каждыми двумя из множества параметров движения, весовой коэффициент вычисляется согласно ортогональности между каждыми двумя частями входных данных в обстановке движения транспортного средства и определяется, происходит ли неправильное распознавание в группе параметров, которая включает в себя множество параметров движения, с помощью значений, каждое из которых сформировано умножением различия на весовой коэффициент. 4 з.п. ф-лы, 8 ил.

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве двухстепенных поплавковых гироскопов с газодинамическим подвесом ротора гиромотора. В известном способе балансировки гирокамеры двухстепенный поплавковый гироскоп устанавливают на неподвижном основании в положение, при котором выходная ось гироскопа горизонтальна, а ось вращения ротора гиромотора вертикальна. Затем включают систему термостабилизации и систему обратной связи, нагревают гироскоп до рабочей температуры и измеряют ток в цепи датчика момента обратной связи. Далее перемещают балансировочные грузы, установленные на торце гирокамеры, вдоль оси параллельной измерительной оси гироскопа; разворачивают гироскоп вокруг выходной оси на угол 90°; измеряют ток в цепи датчика момента обратной связи; перемещают балансировочные грузы, установленные на торце гирокамеры вдоль оси, параллельной оси вращения ротора гиромотора. При этом перед началом балансировки гироскоп устанавливают в положение, при котором его выходная ось вертикальна, измеряют ток в цепи датчика момента обратной связи, а при горизонтальном положении выходной оси и оси вращения ротора гиромотора после разворота на 90° дополнительно разворачивают гироскоп вокруг выходной оси на угол 180° в ту же сторону, измеряют ток в цепи датчика момента обратной связи. Далее вычисляют среднее значение тока в цепи датчика момента обратной связи при горизонтальных положениях выходной оси и оси вращения ротора гиромотора, а перемещение балансировочных грузов вдоль измерительной оси гироскопа и оси вращения ротора гиромотора производят соответственно до совпадения значения тока, измеренного при вертикальной оси вращения ротора гиромотора, и среднего значения тока, определенного при горизонтальных положениях выходной оси и оси вращения ротора гиромотора, с величиной тока, измеренного при вертикальном положении выходной оси. Техническим результатом является повышение точности балансировки гирокамеры двухстепенного поплавкового гироскопа с газодинамическим подвесом ротора гиромотора. 1 ил.
Наверх