Способ микроклонального размножения картофеля in vitro сорта картофеля алена

Изобретение относится к биотехнологии. Изобретение представляет собой способ микроклонального размножения картофеля, при котором выделяют апикальные этиолированные проростки (1-1,5 см), стерилизуют в 0,3%-ном растворе диацида в течение 3-5 минут с последующей трехкратной промывкой стерильной H2O, культивируют меристемы, получают оздоровленные растения, проводят микрочеренкование, черенки вносят в стеклянные банки с металлической крышкой. Для микрочеренкования и образования микроклубней в питательную среду дополнительно вносят тиамин 1-1,2 мг/л, аскорбиновую кислоту 2,1-4 мг/л, Fe-хелат 374-390 мг/л, сахарозу 81000-85000 мг/л, аденин 1-1,5 мг/л, кинетин 1-2 мг/л, индолилуксусную кислоту (ИУК) 0,5-1,5 мг/л, получение микроклубней картофеля осуществляют при температуре 19-20°C, при условии светового дня 8 часов (5000 лк) и полной темноты 16 часов при относительной влажности воздуха 70-80%. Полученные микроклубни отделяют от растений и переносят в условия пониженных температур (4±2)°C на 2-3 месяца для дальнейшей реализации или высадки в грунт. Изобретение позволяет возродить и получить в короткие сроки оздоровленный сибирский сорт картофеля “Алена”, повысить коэффициент размножения растений-регенерантов, размер и количество микроклубней, ускорить рост эксплантов, обеспечить техническую простоту культивирования и снизить трудоемкость работы. 1 з.п. ф-лы, 1 табл., 3 пр.

 

Изобретение относится к биотехнологии растений, в частности к получению безвирусного и продуктивного исходного материала для дальнейшего семеноводства картофеля.

Картофель - вегетативно-размножаемая культура, относительно слабая по устойчивости к вирусам, важнейший продукт питания населения. Россия занимает одно из последних мест по урожайности культуры картофеля. Низкая урожайность связана с резкими температурными колебаниями, инфицированностью почвы возбудителями болезней и низким качеством семенного материала. Зараженность патогенами семенного материала является одной из основных причин снижения урожайности картофеля.

По данным ЗАО «Тепличный» г. Омска (2014), картофель, используемый в промышленном картофелеводстве Омского региона, практически на 100% поражен мозаичными вирусами (X, Y, S, L, М) и вироидами (ВВКК), приводящими к большим потерям урожая (от 50 до 90%), плохому хранению и снижению качества картофеля. Отечественный сибирский сорт картофеля «Алена» высокоурожайный, крупноплодный, ранний имеет отличные вкусовые и качественные характеристики, отличается высокой товарностью, сорт способен давать стабильный урожай в разных почвенно-климатических зонах, при этом он устойчив к температурным стрессам, однако находится на грани полного исчезновения за счет вырождения вирусами и вследствие этого в настоящее время в промышленном картофелеводстве Западной Сибири не используется.

Сибирский сорт картофеля «Алена» рекомендуется к выращиванию не только в Западно-Сибирском регионе, но и в регионах: Волго-Вятский, Уральский Восточно-Сибирский и Дальневосточный.

Известен способ микроклонального размножения картофеля, включающий культивирование оздоровленных растений картофеля in vitro путем черенкования на питательную среду, содержащую макро- и микроэлементы по прописи Мурасиге-Скуга, сахарозу, Fe-хелат, глицерин, ИУК, агар-агар, витамины по Уайту, получение меристемных растений-регенерантов и высадку растений в грунт, при этом перед высадкой в грунт меристемные растения-регенеранты подвергаются ежесуточному воздействию температурой +4-+5°C в течение 2 ч продолжительностью 6-7 дней [патент RU №2487532 (13) С1, МПК А01Н 4/00, А01G 7/00, 20.07.2013 (аналог)].

Наиболее близким по технической сущности к заявленному изобретению является способ микроклонального размножения картофеля, включающий культивирование оздоровленных растений картофеля in vitro путем микрочеренкования на питательную среду, содержащую макро- и микроэлементы по прописи Мурасиге-Скуга, Fe-хелат, агар-агар, витамины по Уайту, сахарозу, глицерин, активированный уголь, аскорбиновую кислоту, получение растений-регенерантов и высадку растений-регенерантов в грунт, причем микрочеренкование исходных растений проводят на апикальную, среднюю и базальную части, выращивание апикальной и средней частей осуществляется на питательной среде с содержанием сахарозы в количестве 20000 мг/л при температуре 23-25°C днем и 17-18°C ночью с последующим высаживанием растений-регенерантов картофеля в грунт, а выращивание базальной части проводят на питательной среде с содержанием сахарозы 80000 мг/л в темноте при температуре 8-10°C с последующим получением микроклубней картофеля in vitro [патент RU 2329639 (13) С2, МПК А01G 4/00, 27.07.2008 (прототип)].

Недостатками данных способов размножения картофеля применительно к генотипу сорта «Алена» являются недостаточно высокая скорость роста растений in vitro, небольшой выход растений-регенерантов и микроклубней из одного исходного растения, маленькие размеры микроклубней и трудоемкость работы с пробирками, которые не позволяют выращивать несколько растений и получать более жизнеспособные микроклубни большего размера и количества, тем самым снижая себестоимость оздоровленных растений и микроклубней.

Техническим результатом заявленного изобретения является возрождение и получение в короткие сроки оздоровленного сибирского сорта картофеля «Алена», повышение коэффициента размножения растений-регенерантов, размеров и количества микроклубней, ускорение роста эксплантов, обеспечение технической простоты культивирования и снижение трудоемкости работы. Конечной целью изобретения является обеспечение импортозамещения используемых голландских и немецких сортов картофеля.

Указанный технический результат достигается тем, что в способе микроклонального размножения картофеля, включающем стерилизацию питательной среды, культивирование растений картофеля in vitro путем микрочеренкования исходных растений на питательную среду, содержащую макро- и микроэлементы по прописи Мурасиге-Скуга, Fe-хелат, агар-агар, витамины по Уайту и сахарозу, аскорбиновую кислоту, получение растений-регенерантов, получение микроклубней картофеля in vitro с использованием питательной среды, согласно заявляемому изобретению осуществляют предварительное оздоровление исходных растений картофеля от вирусной инфекции стерилизацией в 0,3%-ном растворе диацида в течение 3-5 минут с последующей трехкратной промывкой стерильной дистиллированной H2O, причем для культивирования оздоровленных растений и получения микроклубней картофеля используют питательную среду, содержащую дополнительно аденин 1-1,5 мг/л, кинетин 1-2 мг/л, индолилуксусную кислоту (ИУК) 0,5-1,5 мг/л, а тиамин, аскорбиновая кислота, Fe-хелат и сахароза берутся в следующей концентрации: 1-1,2 мг/л; 2,1-4 мг/л; 374-390 мг/л и 81000-85000 мг/л, получение микроклубней картофеля осуществляют при температуре 19-20°C, при условии светового дня 8 часов (5000 лк) и полной темноты 16 часов и относительной влажности воздуха 70-80%.

Стерилизацию питательной среды для культивирования оздоровленных растений и получения микроклубней картофеля осуществляют с использованием автоклавов в стеклянных банках с металлической герметичной крышкой и вырезанным отверстием в крышке для внесения эксплантов.

Опыты проводились в условиях научно-производственной лаборатории «Прикладная биотехнология» ФГБОУ ВО «Омский государственный технический университет» с сортом картофеля «Алена».

Способ осуществляют следующим образом.

Оздоровление картофеля от вирусной инфекции осуществлялось вычленением апикальных этиолированных проростков, разделением их на кусочки (1-1,5 см с одной почкой), стерилизацией в 0,3%-ном растворе диацида в течение 3-5 минут с последующей трехкратной промывкой стерильной дистиллированной H2O.

Использование 0,3%-ного раствора диацида с целью стерилизации выделенных этиолированных проростков в течение 3-5 минут с последующей трехкратной промывкой стерильной H2O позволяет полностью ингибировать развитие бактериальной и вирусной инфекции.

Экспериментально было доказано, что использование диацида менее 0,3%-ного раствора не позволяет полностью стерилизовать растительные экспланты от бактериальной и вирусной инфекции. Использование диацида более 0,3%-ного раствора приводит к частичному замедлению процессов регенерации или гибели растений.

После стерилизации растительных эксплантов из них вычленяют апикальные меристемы и вносят их на стерильную питательную среду (табл. 1), содержащую макро- и микроэлементы по прописи Мурасиге-Скуга, Fe-хелат, агар-агар, витамины по Уайту, сахарозу 20000 мг/л, кинетин 1-2 м г/л, ИУК 1-2 мг/л для морфогенеза и образования меристемных оздоровленных растений-регенерантов.

Питательная среда в контрольном варианте готовилась по прототипу, в опытном - с добавлением 374-390 мг/л Fe-хелата, 0,5-1,5 мг/л ИУК, 1-2 мг/л кинетина, 1-1,5 мг/л аденина, 1,0-1,2 мг/л тиамина, 2,1-4 аскорбиновой кислоты, 81000-85000 мг/л сахарозы.

Для культивирования растений-регенерантов используют стеклянные банки с металлической герметичной крышкой, с вырезанным отверстием в крышке для внесения эксплантов, которые выдерживают условия автоклавирования. После внесения в банку питательной среды отверстие закрывают ватно-марлевой пробкой и обворачивают фольгой, помещают в медицинские бюксы и автоклавируют 20 мин при давлении 1 атм и температуре 120°C.

При использовании стеклянных банок с металлической крышкой и отверстием для внесения эксплантов снижается себестоимость оздоровленных растений и микроклубней, увеличивается выход и размер микроклубней, упрощается способ размножения. Следует отметить, что использование пробирок - дорогой, громоздкий, трудоемкий процесс, а микроклубни, полученные в пробирках, имеют меньшие размеры и менее жизнеспособны.

Также следует отметить, что применение стеклянных банок с металлической крышкой для культивирования растений-регенерантов и микроклубнеобразования экономически выгоднее контейнерной технологии, т.к. позволяет использовать банки многократно, подвергать их автоклавированию, в отличие от пластиковых контейнеров и громоздких пробирок. Себестоимость стеклянных банок гораздо дешевле пробирок и пластиковых контейнеров.

Размножение оздоровленных растений-регенерантов проводили микрочеренкованием in vitro в условиях ламинар-бокса. Микрочеренки помещали в стерильные стеклянные банки со стерильной питательной средой, содержащей макро- и микроэлементы по прописи Мурасиге-Скуга, агар-агар, витамины: тиамин 1-1,2 мг/л и аскорбиновую кислоту 2,1-4 мг/л; Fe-хелат 374-390 мг/л, сахарозу 81000-85000 мг/л, аденин 1-1,5 мг/л, кинетин 1-2 мг/л, индолилуксусную кислоту (ИУК) 0,5-1,5 мг/л.

Повышение содержания витаминов тиамина до 1-1,2 мг/л и аскорбиновой кислоты 2,1-4 мг/л способствует более интенсивному росту и здоровому развитию растения, более мощному развитию корневой системы, стимулированию ростовых процессов, влиянию на обмен веществ в растении.

В результате проведенных исследований установлено, что повышение содержания эссенциального элемента Fe-хелат с 374 до 390 мг/л оказывает положительное влияние на процессы фотосинтеза и дыхание растений картофеля, т.к. элементы Fe-хелат являются переносчиками электронов, а как кофактор Fe-хелат у растений картофеля входит в состав многих антиоксидантных ферментов (Fe-супероксиддисмутаза, пероксидазы, каталаза).

Экспериментально установлено, что введение в питательную среду сахарозы в количестве 81000-85000 мг/л более интенсивнее стимулирует процесс индукции микроклубнеобразования, повышает выход и размеры микроклубней у генотипа сорта картофеля «Алена».

Введенный в состав питательной среды аденин - аминопроизводное пурина - содержится в ферментах и коферментах растений картофеля, очень важен для клеток растений как составляющая нуклеиновых кислот (ДНК и РНК), и в культуре тканей имеет цитокининовый эффект, т.е. стимулирует образование побегов растений (дифференциацию), резко усиливает процессы клеточного деления (цитокинез), повышает интенсивность фотосинтеза у растений картофеля, а также участвует во многих физиологических процессах.

Комплексное использование в питательной среде ИУК, аденина и кинетина и взаимовлияние их друг на друга способствует более интенсивному стимулированию ростовых процессов, ризогенезу, геморизогенезу, морфогенезу и приживаемости растений. Учитывая, что соотношение ауксинов к цитокининам является ключевым фактором деления клеток и дифференцировки тканей растения картофеля, поэтому экспериментальным путем было установлено оптимальное соотношение и концентрации внесения в питательную среду ауксинов и цитокининов (ИУК 0,5-1,5 мг/л, аденина 1-1,5 мг/л и кинетина1-2 мг/л).

На следующем этапе банки с черенками подписывали и выставляли на стеллажи с освещением 5000-лк люминесцентными лампами при фотопериоде: 16-часовом освещении (день) и 8 часов полной темноты (ночь), при температуре 22-25°C, влажности воздуха 70% для дальнейшего получения растений-регенерантов, которые могут быть реализованы для высадке в грунт.

Для получения микроклубней картофеля использовали ту же питательную среду, которая использовалась выше для микрочеренкования, содержащую макро- и микроэлементы по прописи Мурасиге-Скуга, агар-агар, витамины: тиамин 1-1,2 мг/л и аскорбиновую кислоту 2,1-4 мг/л; Fe-хелат 374-390 мг/л, сахарозу 81000-85000 мг/л, аденин 1-1,5 мг/л, кинетин 1-2 мг/л, индолилуксусную кислоту (ИУК) 0,5-1,5 мг/л, однако режимы культивирования были следующие: 8 часов освещения (5000-7000 лк), 16 часов полной темноты, при пониженной температуре 19-20°C и относительной влажности воздуха 70-80%.

Полученные микроклубни отделяли от растений и переносили в условия пониженных температур (4±2)°C на 2-3 месяца для дальнейшей реализации или высадки в грунт.

Полученные предлагаемым способом оздоровленные микроклубни картофеля были физиологически зрелыми, хорошо хранились и при последующем выращивании in vivo формировали здоровые растения. Предлагаемый способ прост в использовании, экологически безопасен и может быть использован на картофелевыращивающих предприятиях.

Пример 1. Оздоровление картофеля от вирусной инфекции осуществлялось вычленением апикальных этиолированных проростков исходных растений, разделением их на кусочки (1-1,5 см с одной почкой), стерилизацией в 0,3%-ном растворе диацида в течение 3-5 минут, с последующей трехкратной промывкой стерильной дистиллированной H2O.

После стерилизации растительных эксплантов из них вычленяют апикальные меристемы и вносят их на стерильную питательную среду, содержащую макро- и микроэлементы по прописи Мурасиге-Скуга, Fe-хелат, агар-агар, витамины по Уайту, сахарозу 20000 мг/л, кинетин 1,5 мг/л, ИУК 1,5 мг/л для морфогенеза и образования меристемных оздоровленных растений-регенерантов.

Для культивирования растений-регенерантов используют стерильные стеклянные банки с металлической герметичной крышкой и вырезанным отверстием в крышке для внесения эксплантов. После внесения оздоровленных эксплантов в стерильную банку со стерильной питательной средой отверстие закрывают ватно-марлевой пробкой, банки с эксплантами подписывают и выставляют на стеллажи с освещением 5000-лк люминесцентными лампами при фотопериоде: 16-часовом освещении (день) и 8 часов полной темноты (ночь), при температуре 22-25°C, влажности воздуха 70% для дальнейшего получения растений-регенерантов. Полученные растения-регенеранты, имеющие 12-15 листьев, извлекают из банок и черенкуют в условиях ламинар-бокса, и черенки помещают в стерильные банки со стерильной питательной средой, содержащей макро- и микроэлементы по прописи Мурасиге-Скуга, агар-агар, тиамин 1,2 мг/л, аскорбиновую кислоту 3 мг/л; Fe-хелат 380 мг/л, сахарозу 85000 мг/л, аденин 1,5 мг/л, кинетин 2 мг/л, индолилуксусную кислоту (ИУК) 1,5 мг/л.

На следующем этапе банки с черенками подписывают и выставляют на стеллажи с освещением 5000-лк люминесцентными лампами при фотопериоде: 16-часовом освещении (день) и 8 часов полной темноты (ночь), при температуре 22-25°C, влажности воздуха 70% для дальнейшего получения растений-регенерантов, которые могут быть реализованы для высадки в грунт.

Для получения микроклубней картофеля использовали ту же питательную среду, что и для микрочеренкования при условиях культивирования: 8 часов освещения (5000-7000 лк), 16 часов полной темноты, при пониженной температуре 19-20°C и относительной влажности воздуха 70-80%.

Полученные микроклубни отделяют от растений и переносят в условия пониженных температур (4±2)°C на 2-3 месяца для дальнейшей реализации или высадке в грунт.

По окончании культивирования микроклубни отделяются и направляются на реализацию потребителям для высадки семенного картофеля в грунт или переносятся на хранение в холодильные камеры при температуре (4±2)°C сроком на 2-3 месяца до момента реализации.

Пример 2. Осуществляется аналогично примеру 1 за исключением того, что для культивирования оздоровленных растений и получения микроклубней картофеля используется питательная среда, содержащая компоненты в следующем количестве: тиамин 1,0 мг/л, аскорбиновую кислоту 4 мг/л; Fe-хелат 390 мг/л, сахарозу 84000 мг/л, аденин 1,0 мг/л, кинетин 1,5 мг/л, индолилуксусную кислоту (ИУК) 1,0 мг/л.

Пример 3. Осуществляется аналогично примеру 1 за исключением того, что для культивирования оздоровленных растений и получения микроклубней картофеля используется питательная среда, содержащая компоненты в следующем количестве: тиамин 1,1 мг/л, аскорбиновую кислоту 2,5 мг/л; Fe-хелат 375 мг/л, сахарозу 82000 мг/л, аденин 1,3 мг/л, кинетин 1,0 мг/л, индолилуксусную кислоту (ИУК) 0,5 мг/л.

Использование заявляемого способа микроклонального размножения картофеля in vitro позволяет получить безвирусные растения-регенеранты отечественного сорта картофеля «Алена» с повышенной жизнеспособностью, приживаемостью, высокими морфометрическими показателями и увеличенным выходом и размерами микроклубней.

Полученные предлагаемым способом оздоровленные микроклубни картофеля были физиологически зрелыми, хорошо хранились и при последующем выращивании in vivo формировали здоровые растения.

Предлагаемый способ прост в использовании, экологически безопасен и может быть использован на картофелевыращивающих предприятиях.

1. Способ микроклонального размножения картофеля, включающий стерилизацию питательной среды, культивирование растений картофеля in vitro путем микрочеренкования исходных растений на питательную среду, содержащую макро- и микроэлементы по прописи Мурасиге-Скуга, Fe-хелат, агар-агар, витамины по Уайту и сахарозу, аскорбиновую кислоту, получение растений-регенерантов, получение микроклубней картофеля in vitro с использованием питательной среды, отличающийся тем, что осуществляют предварительное оздоровление исходных растений картофеля от вирусной инфекции стерилизацией в 0,3%-ном растворе диацида в течение 3-5 минут, с последующей трехкратной промывкой стерильной дистиллированной H2O, причем для культивирования оздоровленных растений и получения микроклубней картофеля используют питательную среду, содержащую дополнительно аденин 1-1,5 мг/л, кинетин 1-2 мг/л, индолилуксусную кислоту (ИУК) 0,5-1,5 мг/л, а тиамин, аскорбиновая кислота, Fe-хелат и сахароза берутся в следующей концентрации: 1-1,2 мг/л; 2,1-4 мг/л; 374-390 мг/л и 81000-85000 мг/л, получение микроклубней картофеля осуществляют при температуре 19-20°C при условии светового дня 8 часов (5000 лк) и полной темноты 16 часов и относительной влажности воздуха 70-80%.

2. Способ по п. 1, отличающийся тем, что стерилизацию питательной среды для культивирования оздоровленных растений и получения микроклубней картофеля осуществляют с использованием автоклавов в стеклянных банках с металлической герметичной крышкой и вырезанным отверстием в крышке для внесения эксплантов.



 

Похожие патенты:

Изобретение относится к сельскохозяйственной биотехнологии. Изобретение представляет собой питательную среду для ввода меристем винограда в условия in vitro, содержащую аммоний азотнокислый, калий азотнокислый, кальций азотнокислый, кальций хлористый, магний сернокислый, натрий фосфорнокислый, железо сернокислое, этилендиаминотетраацетат натрия, борную кислоту, марганец сернокислый, цинк сернокислый, калий йодистый, натрий молибденовокислый, медь сернокислую, кобальт хлористый, миоинозит, тиамин, пиридоксин, 6-бензиламинопурин, сахарозу, агар, воду при следующем соотношении компонентов, мг/л: аммоний азотнокислый 350-450; калий азотнокислый 1000-1200; кальций азотнокислый 400-500; кальций хлористый 50-70; магний сернокислый 300-350; натрий фосфорнокислый 150-200; железо сернокислое 27,8-30,0; этилендиаминотетраацетат натрия 37,3-40,0; борная кислота 6,0-6,4; марганец сернокислый 22,0-22,6; цинк сернокислый 8,0-9,2; калий йодистый 0,40-0,80; натрий молибденовокислый 0,2-0,3; медь сернокислая 0,02-0,03; кобальт хлористый 0,02-0,03; миоинозит 50-100; тиамин 0,2-0,5; пиридоксин 0,2-0,5; 6-бензиламинопурин 0,2-0,5; сахароза 20000-30000; агар 5000-6000; вода остальное до 1,0 л.
Изобретение относится к области биотехнологии и сельского хозяйства, в частности к растениеводству. В способе клональное размножение оздоровленных растений осуществляют путем черенкования.

Изобретение относится к области сельского хозяйства, в частности к растениеводству и питомниководству. Способ включает использование в качестве исходных эксплантов одно- и двухузловых сегментов весенних или летних побегов, их стерилизацию, выгонку пазушных побегов, мультипликацию и укоренение, которое осуществляется на питательной среде 1/2 WPM, перевод растений к нестерильным условиям и высаживание в грунт.

Изобретение относится к области биотехнологии растений. Изобретение представляет собой способ хранения микрорастений березы в условиях in vitro, включающий культивирование микропобегов на питательной среде MS без гормонов с повышенным содержанием аскорбиновой кислоты 2,0 мг/л, с добавлением агар-агара 6 г/л при хранении пробирочных растений при температуре +4…+7°С в темноте.

Изобретение относится к области биотехнологии растений. Способ включает культивирование оздоровленных растений картофеля in vitro путем микрочеренкования на питательную среду, содержащую макро- и микроэлементы по прописи Мурасиге-Скуга, Fe-хелат, агар-агар, витамины по Уайту, аскорбиновую кислоту и сахарозу, получение растений-регенерантов и получение микроклубней картофеля.

Изобретение относится к области биотехнологии. Изобретение представляет собой способ клонального микроразмножения растений сем.

Изобретение относится к области биотехнологии растений. Изобретение представляет собой способ повышения эффективности культивирования in vitro березы повислой, лимонника китайского, рододендрона и сирени, включающий размножение микропобегов на искусственных питательных средах в течение трех недель в сочетании с микрочеренкованием побегов, допуская на экспланте не более двух пазушных почек.

Изобретение относится к области биотехнологии. Изобретение представляет собой способ получения растений хризантемы килеватой (Chrysanthemum carinatum Schousb.) в условиях in vitro путем введения в культуру клеток семян с целью каллусообразования и последующей регенерации растений, заключающийся в том, что стерилизованные семена помещают на питательную среду Мурасиге-Скуга с добавлением 0,7% агар-агара, 1 мг/л 6-бензиламинопурина, 0,1-1 мг/л индолил-3-уксусной кислоты, доведенную до 1 л стерильной дистиллированной водой, культивируют в течение одного пассажа до появления каллуса, не более 26 суток, затем каллусы пересаживают на питательную среду Мурасиге-Скуга с половинной концентрацией всех компонентов и 0,7% агар-агара, добавляют 0,2-1 мг/л 6-бензиламинопурина и культивируют 2-4 пассажа до появления растений-регенерантов.
Изобретение относится к биотехнологии и сельскому хозяйству. Изобретение представляет собой способ клонального размножения растений в автотрофных условиях на гидропонике, в котором клональное размножение растений осуществляют путем черенкования регенерантов и укоренения черенков на питательной среде, где укоренение черенков проводят в автотрофных условиях на гидропонике с использованием жидких питательных сред, содержащих только минеральные элементы, культивирование растений осуществляют при нормальных, либо повышенных концентрация СО2 в посеве, при интенсивности облучения посева не менее 60 Вт ФАР/м2, орошение и аэрация оснований черенков и корневой системы растений производят путем периодического подтопления их питательным раствором.

Изобретение относится к области сельского хозяйства. Изобретение представляет собой способ размножения трансгенных растений клевера лугового методом культуры почек in vitro, включающий выделение почек из поверхностно стерилизованных в течение 5 мин в 0,1%-ном водном растворе диоцида и 4-5 раз промытых в стерильной воде отрезков стеблей длиной 1,5-2.0 см с пазушными почками вегетирующих трансгенных растений клевера лугового и помещение их на агаризованную питательную среду Гамборга В5, где вначале отрезки стеблей с пазушными почками длиной 1,5-2,0 см промывают в проточной водопроводной воде (10 мин) и после поверхностной стерилизации при встряхивании отделенные пазушные почки культивируют на агаризованной среде Гамборга В5 с 2,0 мг/л БАП до размера не менее 4,0 мм, а затем 4 пассажа на агаризованной среде Гамборга В5 с 2,0 мг/л БАП и 50 мг/л канамицина до образования морфогенной ткани только с зелеными побегами, при этом размноженными трансгенными (канамицин устойчивыми) растениями являются растения-регенеранты клевера лугового, образовавшие корни не менее 50 мм на агаризованной среде Гамборга В5 с 2,0 мг/л БАП и 50 мг/л канамицина.

Изобретение относится к области сельского хозяйства, в частности к биотехнологии. Способ включает высадку микрорастений на пластиковые поддоны, покрытые лутрасилом с предварительно выполненными в нем посадочными отверстиями, путем погружения корневой системы растений в водный антисептический раствор с последующим обеспечением проточной циркуляции воды в поддоне и верхнего мелкодисперсного увлажнения растений. В качестве водного антисептического раствора используют 0,01% раствор перманганата калия. Способ позволяет сократить ресурсоемкость процесса адаптации растений. 1 з.п. ф-лы, 1 табл.

Изобретение относится к биотехнологии. Изобретение представляет собой способ микроклонального размножения картофеля, при котором выделяют апикальные этиолированные проростки, стерилизуют в 0,3-ном растворе диацида в течение 3-5 минут с последующей трехкратной промывкой стерильной H2O, культивируют меристемы, получают оздоровленные растения, проводят микрочеренкование, черенки вносят в стеклянные банки с металлической крышкой. Для микрочеренкования и образования микроклубней в питательную среду дополнительно вносят тиамин 1-1,2 мгл, аскорбиновую кислоту 2,1-4 мгл, Fe-хелат 374-390 мгл, сахарозу 81000-85000 мгл, аденин 1-1,5 мгл, кинетин 1-2 мгл, индолилуксусную кислоту 0,5-1,5 мгл, получение микроклубней картофеля осуществляют при температуре 19-20°C, при условии светового дня 8 часов и полной темноты 16 часов при относительной влажности воздуха 70-80. Полученные микроклубни отделяют от растений и переносят в условия пониженных температур °C на 2-3 месяца для дальнейшей реализации или высадки в грунт. Изобретение позволяет возродить и получить в короткие сроки оздоровленный сибирский сорт картофеля “Алена”, повысить коэффициент размножения растений-регенерантов, размер и количество микроклубней, ускорить рост эксплантов, обеспечить техническую простоту культивирования и снизить трудоемкость работы. 1 з.п. ф-лы, 1 табл., 3 пр.

Наверх