Переносной автоматизированный комплекс для определения теплофизических свойств

Изобретение относится к термометрии, а именно к области измерения теплофизических свойств ограждающих конструкций зданий, строительных сооружений и других инженерно строительных объектов, где необходимо определение количественных теплофизических характеристик. Переносной автоматизированный комплекс для определения теплофизических свойств содержит источник тепла, соединенный с программируемым реле, подключенным к персональному компьютеру и аналоговым датчикам температуры, равномерно расположенным по периметру внутренней стороны исследуемого объекта. Беспроводные датчики температуры равномерно расположены по периметру внешней стороны исследуемого объекта с возможностью передачи данных на персональный компьютер. Технический результат – повышение информативности получаемых результатов измерений за счет того, что комплекс позволяет установить фактические коэффициенты сопротивления теплопередачи и теплосопротивления для всего исследуемого объекта в целом с учетом всех неоднородностей строительных материалов оградительных конструкций с высокой достоверностью результата за счет получения реальных значений в ходе эксперимента для каждого отдельного объекта с учетом его специфических особенностей, уменьшение длительности и увеличение скорости проведения исследования за счет упрощения конструкции и мобильности комплекса. 1 ил.

 

Изобретение относится к термометрии, а именно к области измерения теплофизических свойств ограждающих конструкций зданий, строительных сооружений и других инженерно строительных объектов, где необходимо определение количественных теплофизических характеристик.

Известно устройство для измерения удельного сопротивления теплопередаче через исследуемый объект, содержащий теплообменник, два контактных измерителя температуры, нагревательный, накопительный и сливной баки; входной, выходной, соединительный, сливной и возвратный трубопроводы. Теплообменник выполнен с возможностью пространственного перемещения относительно исследуемого объекта. Внешняя поверхность теплообменника, не включая участка, обращенного к внутренней поверхности исследуемого объекта, снабжена тепловой изоляцией. Первый контактный измеритель температуры размещен на внешней поверхности теплообменника, обращенной к внутренней поверхности исследуемого объекта. Второй контактный измеритель температуры размещен на внешней или боковой поверхности исследуемого объекта. Теплообменник через соединительный трубопровод соединен с нагревательным баком, а через выходной трубопровод - со сливным баком. Нагревательный бак через входной трубопровод соединен с накопительным баком. Накопительный бак через сливной и возвратный трубопроводы соединен со сливным баком. Соединительный трубопровод снабжен измерителем расхода теплоносителя и вентилем. Возвратный трубопровод оснащен вентилем и насосом. До достижения теплоносителем рабочей температуры теплообменник располагают на расстоянии от внутренней поверхности исследуемого объекта, исключающем тепловой контакт между ними. При достижении теплоносителем рабочей температуры обеспечивают тепловой контакт между теплообменником и внутренней поверхностью исследуемого объекта. Измеряют температуру нагреваемого участка внутренней поверхности исследуемого объекта. Измеряют промежуток времени между началом нагревания участка внутренней поверхности и началом повышения температуры в заданной точке на внешней (или боковой) поверхности исследуемого объекта. Регистрируют зависимость величины перегрева внешней (или боковой) поверхности исследуемого объекта от времени. Получают зависимость длительности первой стадии нагрева от величины перегрева внешней (или боковой) поверхности исследуемого объекта. Вычисляют значения удельного сопротивления теплопередаче через исследуемый объект для разных моментов времени. Устанавливают постоянное значение удельного сопротивления теплопередаче через исследуемый объект или рассчитывают его среднее значение (RU 74711, МПК G01N 25/18, опубл. 10.07.2008).

Недостатком известного технического решения является большая длительность процедуры измерений всего объекта в целом.

Наиболее близким по технической сущности к предлагаемому техническому решению является устройство измерения сопротивления теплопередаче строительной конструкции, содержащее нагреватель и первый термометр, установленные на одной стороне строительной конструкции, охладитель и второй термометр, установленные на противоположной стороне строительной конструкции, а также измеритель теплового потока, проходящего через строительную конструкцию. Устройство дополнительно снабжено прикрепленной к строительной конструкции теплоизолированной приставной камерой, в которую встроены нагреватель, измеритель теплового потока и первый термометр. Охладитель и второй термометр встроены в короб, снабженный элементами крепления к строительной конструкции (RU 2476866, МПК G01N 25/18, опубл. 27.02.2013).

Недостатками известного технического решения является большая длительность процедуры измерений всего объекта в целом, а также сложность монтажа теплоизолированных нагревательных элементов.

Технический результат заключается в установлении фактических коэффициентов сопротивления теплопередачи и теплосопротивления для всего исследуемого объекта в целом с учетом всех неоднородностей строительных материалов оградительных конструкций с высокой достоверностью результата за счет получения реальных значений в ходе эксперимента для каждого отдельного объекта с учетом его специфических особенностей, уменьшении длительности и увеличении скорости проведения исследования за счет упрощения конструкции и мобильности комплекса.

Сущность изобретения заключается в том, что переносной автоматизированный комплекс для определения теплофизических свойств содержит источник тепла, соединенный с программируемым реле, подключенным к персональному компьютеру и аналоговым датчикам температуры, равномерно расположенным по периметру внутренней стороны исследуемого объекта. Беспроводные датчики температуры равномерно расположены по периметру внешней стороны исследуемого объекта с возможностью передачи данных на персональный компьютер.

На рисунке представлена схема переносного автоматизированного комплекса для определения теплофизических свойств.

Переносной автоматизированный комплекс для определения теплофизических свойств содержит источник тепла 1 (ИТ), соединенный с программируемым реле 2 (ПР), которое подключено к персональному компьютеру 3 (ПК) с программным обеспечением для определения теплофизических свойств исследуемого объекта (например, свидетельство об официальной регистрации программы для ЭВМ №2016612034, от 17.02.2016) и к аналоговым датчикам температуры 4 (ДТ), равномерно расположенным по периметру внутренней стороны исследуемого объекта. Комплекс дополнительно содержит беспроводные датчики температуры 5 (ДТ), равномерно расположенные по периметру внешней стороны исследуемого объекта (например, стены здания или сооружения) с возможностью передачи данных при помощи Wi-Fi или Bluetooth на персональный компьютер 3 (ПК). Количество аналоговых датчиков температуры 4 и беспроводных датчиков температуры 5 зависит от площади или размера объекта, теплофизические свойства которого необходимо определить.

Работа комплекса заключается в следующем. Перед началом проведения исследования устанавливают датчики температуры 4 и 5 по периметру исследуемого объекта на равноудаленное расстояние друг от друга, задают значения, необходимые для дальнейшего проведения исследования, а именно мощность источника теплоснабжения Pист, общую площадь исследуемого объекта Sобщ, время поддержания температуры исследования t и диапазон температуры исследования T. Далее при помощи датчиков температуры 4 и 5 снимают показания, которые зафиксированы программируемым реле 2 и передают на персональный компьютер 3 для исследования. Во время процедуры исследования снимают показатели внутренней и наружной температуры, которые необходимы для дальнейшего расчета искомых показателей. По окончании исследования производится расчет теплофизических свойств исследуемого объекта (коэффициент сопротивления теплопередачи и коэффициент теплосопротивления) по следующим формулам:

Определяют среднюю начальную температуру поддержания (°C)

где Tнi - начальная температура в i момент времени проведения исследования;

n - количество снятых показаний Tнi во время проведения исследования.

Определяют среднюю конечную температуру поддержания (°C)

где Tкi - конечная температура в i момент времени проведения исследования.

Определяют среднюю температуру во время поддержания (°C)

Определяют среднюю температуру на улице за время проведения исследования (°C)

где Tyi - температура окружающей среды в i момент времени проведения исследования.

Определяют площадь стен, потолка, пола исследуемой ограждающей конструкции здания или строительного сооружения или (м2)

где a - высота, b - ширина.

Определяют общую площадь исследуемого объекта (м2)

Определяют затраченную мощность на поддержание установленной температуры (Вт)

где Pуст. - фиксированная мощность источника теплоснабжения;

tраб. - время работы источника теплоснабжения при поддержание установленной температуры;

tпод. - заданное время поддержание установленной температуры (3600 с).

Определяют коэффициент сопротивления теплопередачи (Вт/(м2⋅°C)

Определяют коэффициент теплосопротивления (м2⋅°C)/Вт):

По сравнению с известным техническим решением предлагаемое позволяет установить фактические коэффициенты сопротивления теплопередачи и теплосопротивления для всего исследуемого объекта в целом за счет получения реальных значений в ходе эксперимента для каждого отдельного объекта с учетом его специфических особенностей, кроме того, уменьшить длительность и увеличить скорость проведения исследования за счет упрощения конструкции и мобильности комплекса (является переносным и малогабаритным).

Переносной автоматизированный комплекс для определения теплофизических свойств, содержащий источник тепла и датчики температуры, отличающийся тем, что источник тепла соединен с программируемым реле, подключенным к персональному компьютеру и аналоговым датчикам температуры, равномерно расположенным по периметру внутренней стороны исследуемого объекта, кроме того, комплекс дополнительно содержит беспроводные датчики температуры, равномерно расположенные по периметру внешней стороны исследуемого объекта с возможностью передачи данных на персональный компьютер.



 

Похожие патенты:

Изобретение относится к системам контроля эффективности работы систем отопления, вентиляции и кондиционирования жилых, общественных и административных зданий и может быть использовано при проектировании, реконструкции и оптимизации режимов работы указанных систем, а также при разработке и внедрении энергосберегающих мероприятий.

Изобретение относится к технологии измерения тепловых потоков между твердой поверхностью и текучей средой и может быть использовано в теплофизическом эксперименте при исследовании теплоотдачи.

Устройство для измерений теплопроводности относится к устройствам для измерений высоких значений теплопроводности стационарным методом, предусматривающим использование продольного теплового потока в образце исследуемого материала.

Использование: для качественного определения по меньшей мере одного физического и/или химического свойства ламинатной панели. Сущность изобретения заключается в том, что с помощью устройства мобильной радиосвязи выполняют следующие шаги: а) расположение устройства мобильной радиосвязи на поверхности ламинатной панели, б) измерение по меньшей мере одной физической и/или химической измеряемой величины посредством интегрированного в устройстве мобильной радиосвязи измерительного инструмента и в) по меньшей мере, качественное определение по меньшей мере одного физического и/или химического свойства из измеренной по меньшей мере одной физической и/или химической измеряемой величины.

Изобретение относится к теплофизическому приборостроению, а именно к приборам для измерения коэффициента теплопроводности волокнистых пищевых продуктов животного происхождения.
Настоящее изобретение относится к теплофизике и предназначено для определения теплопроводности снега в условиях естественного залегания снежного покрова и может быть использовано при изучении термических свойств снега разной структуры и плотности.

Изобретение относится к теплофизическим измерениям в области материаловедения и может быть использовано для определения теплопроводности твердых тел. В заявленном способе исследуемый образец приводят в тепловой контакт по плоскости с нагревателем с одной стороны, а с другой стороны приводят в тепловой контакт по плоскости с теплоприемником.

Изобретение относится к области энергетики и предназначено для определения темпов изменения температуры пород недр при извлечении или аккумулировании тепловой энергии.

Изобретение относится к области определения теплофизических характеристик ограждающих конструкций и может быть использовано в строительстве для оценки теплофизических свойств по результатам испытаний в натурных условиях.

Изобретение относится к области обогащения полезных ископаемых, а именно к способам обогащения различных пород полезных ископаемых по их теплофизическим свойствам, и может быть использовано при сепарации минеральных частиц, в том числе алмазосодержащей породы, на различных этапах.

Предлагаемый способ относится к области информационно-измерительной техники и может быть использован для предотвращения пожаров на объектах энергетики и других отраслей промышленности. Предложен способ определения концентрации компонента в двухкомпонентной газовой смеси, помещенной в измерительной камере, основанный на использовании теплопроводности контролируемой газовой смеси, сначала вычисляют массу m контролируемого компонента в газовой смеси по формулеm=ρ vк (λсм1+λсм2-λсм12)/λсм2,где ρ - плотность контролируемого компонента, vк - объем камеры, λсм1 - теплопроводность первого компонента, λсм2 - теплопроводность второго контролируемого компонента, λсм12 - теплопроводность газовой смеси. Затем с учетом массы одной молекулы контролируемого второго компонента, определяют концентрацию искомого параметра. Технический результат - повышение точности измерения концентрации компонента в двухкомпонентной газовой смеси. 1 ил.

Изобретение относится к области измерительной техники, в частности к тепловому неразрушающему контролю объектов, и может быть использовано для технической диагностики качества неоднородных конструкций, например зданий и сооружений, по сопротивлению теплопроводности в условиях нестационарных внешних воздействий. Способ включает измерение температуры на наружной и внутренней поверхностях многослойной конструкции и теплового потока на внутренней ее стороне, накопление по каждому измерению значений температуры на противоположных сторонах многослойной конструкции и значения теплового потока на внутренней и наружной сторонах. В процессе накопления значений температуры и теплового потока измеряют за каждый период изменения наибольшее и наименьшее значения температуры и тепловых потоков на внутренней и наружной поверхностях многослойной конструкции, измеряют среднюю величину наибольшего и наименьшего значений температуры и теплового потока за период измерения, измеряют диапазон изменения наибольших и наименьших значений температуры и теплового потока на наружных и внутренних поверхностях многослойной конструкции с вероятностью 0,95. Ограничивают максимальные и минимальные значения измеряемых температуры и тепловых потоков и определяют сопротивление теплопередаче R многослойной конструкции в точке контролируемого участка поверхности исследуемого объекта с координатами Х0, Y0. Технический результат - повышение достоверности и производительности определения качества исследуемого объекта в нестационарных условиях теплопередачи за счет исключения влияния на результаты внешних мешающих факторов. 1 з.п. ф-лы, 5 ил.

Изобретение относится к области измерительной техники, предназначено для определения параметров стационарного и нестационарного теплообмена в системе «человек-одежда-окружающая среда». Заявлен аппаратный комплекс для оценки теплотехнических параметров текстильных материалов, включащий физическую модель элемента тела человека в виде герметичной цилиндрической емкости с рабочей жидкостью, оснащенной внутренним нагревателем и регулятором температуры; систему моделирования потоотделения, состоящую из термостатированного резервуара с жидкостью и насоса, подающего жидкость на рабочую поверхность с помощью трубопровода, коллектора и распределительных игл; систему непрерывного контроля мощности, потребляемой нагревателем; первичные преобразователи температуры, подключенные к регуляторам температуры для ее непрерывного контроля; средства измерения длительности импульса подачи энергии в рабочий объем и времени между моментами повторных включений нагревателя. Причем аппаратный комплекс дополнительно содержит систему автоматизации испытаний. Модель элемента тела человека выполняется в виде цилиндрического резервуара, к фланцу которого через герметизирующую прокладку прикреплено дно с электронагревателем и измерителем температуры, электронагреватель имеет спиралевидную форму, что обеспечивает более равномерную температуру рабочего объема и рабочей поверхности модели элемента тела человека. Система непрерывного контроля мощности выполнена в виде ваттметра с цифровым выходом, а измеритель температуры рабочего объема выполнен в виде полой трубки длиной не менее 0,5 м из влагостойкого материала, хорошо проводящего тепло, со штуцером и оснащен не менее чем четырьмя первичными преобразователями температуры с цифровым выходом, равномерно размещенными по высоте трубки, пустоты между которыми заполнены мелкодисперсным материалом высокой теплопроводности, например кварцевым песком. Технический результат - повышение качества моделирования эксплуатационных условий и точности измерения теплофизических свойств текстильных. 1 з.п. ф-лы, 5 ил.

Использование в строительстве для оценки теплозащитных свойств по результатам теплофизических испытаний в натурных условиях. Сущность способа определения временного интервала при проведении натурных теплофизических исследований наружных стен зданий, выполненных из кирпича, при котором в толще стенового ограждения возникают условия квазистационарного режима теплопередачи, включает измерение температуры наружного и внутреннего воздуха, температуры внутренней и наружной поверхности стены, температуры в 5 точках путем размещения датчиков на равных расстояниях в толще стены. По результатам измерений строится график, на котором выделяются промежутки времени tстац, в период которых амплитуда колебаний температуры наружного воздуха не более 2°С и длительность которых не менее времени тепловой инерции стены. Находится время прохождения tν ближайшего локального экстремума температур от наружной до внутренней поверхности стены. Исключается из начала выделенного промежутка tстац период времени, равный tν. Дальнейшие операции проводятся с оставшимся промежутком tстац 1. В случае, если tν>tстац, данный интервал исключается из рассмотрения. Задаемся допустимой погрешностью Δtтреб. Проверяется условие Δt≤Δtтреб для каждого результата измерения. Если условие не выполняется, данный результат исключается из временного интервала tстац 1. Если доля исключенных результатов превышает значение Δtтреб, данный интервал tстац 1 не подходит для определения сопротивления теплопередаче, рассматривается следующий интервал. Технический результат - расширение диапазона определения теплофизических характеристик ограждающих конструкций. 5 ил.

Изобретение относится к нестационарным способам определения коэффициента теплопроводности жидких теплоизоляционных материалов. Разработанный способ может применяться в строительстве и теплоэнергетике для исследования теплопроводных качеств сверхтонких жидких теплоизоляционных покрытий. Сущность способа заключается в локальном нанесении на поверхность плоского источника теплоты слоя жидкой тепловой изоляции известной толщины. В режиме охлаждения поверхности плоского источника теплоты в произвольный момент времени по известным значениям температуры поверхности плоского источника теплоты, температуры поверхности теплоизолированного участка и температуры окружающей среды, а также по известной толщине слоя тепловой изоляции вычисляют по специальной расчетной формуле коэффициент теплопроводности жидкой тепловой изоляции. Технический результат - упрощение способа и повышение точности определения коэффициента теплопроводности жидкой тепловой изоляции. 5 ил.

Изобретение относится к области измерения параметров материалов, в частности термоЭДС. Устройство для измерения термоэлектродвижущей силы материалов содержит исследуемую и измерительную термопары, делитель напряжения и источник питания к нему в виде одной из термопар. Оно дополнительно снабжено петлей отрицательной обратной связи, состоящей из последовательно соединенных усилителя, генератора управляемой частоты и преобразователя частоты в напряжение, выход, которого подключен к потенциометру. Ползунок потенциометра со второй термопарой, а нижним вывод потенциометра (клемма) - с входом усилителя и через его входное сопротивление с общей точкой сопротивлений делителя напряжений. Выход генератора связан также с выходом устройства. Техническим результатом предлагаемого изобретения является повышение быстродействия и точности измерений. 1 ил.
Наверх