Способ определения термоокислительной стабильности смазочных материалов

Изобретение относится к технологии оценки качества жидких смазочных материалов. При осуществлении способа испытывают пробы смазочного материала постоянной массы в присутствии воздуха, при оптимальных температурах ниже критической, выбранных в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, фотометрируют ее, определяют параметры термоокислительной стабильности и проводят оценку процесса окисления. При этом пробы смазочного материала постоянной массы испытывают как с перемешиванием, так и без перемешивания, при фотометрировании определяют оптическую плотность, часть термостатированной пробы используют для измерения кинематической вязкости при температурах 40 и 100°C, определяют индекс вязкости, часть пробы используют для определения противоизносных свойств, а термоокислительную стабильность исследуемого смазочного материала определяют по показателю отношения произведения оптической плотности и десятичного логарифма индекса вязкости к показателю противоизносных свойств, строят графические зависимости показателя термоокислительной стабильности от оптической плотности термостатированного смазочного материала при его испытании с перемешиванием и без перемешивания, по которым определяют влияние продуктов окисления и температурной деструкции на величину показателя термоокислительной стабильности. Достигается повышение информативности способа определения термоокислительной стабильности смазочных материалов за счет учета температуры испытания, изменения оптической плотности, индекса вязкости и триботехнической характеристики.1 табл., 4 ил.

 

Изобретение относится к технологии оценки качества жидких смазочных материалов.

Известен способ определения термоокислительной стабильности смазочных материалов, который включает испытание пробы смазочного материала в присутствии воздуха с перемешиванием, постоянного объема при оптимальной температуре, выбранной в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, определяют фотометрированием коэффициент поглощения светового потока окисленным смазочным материалом, вязкость и коэффициент термоокислительной стабильности КТОС из соотношения КТОСП⋅μОИСХ, где КП - коэффициент поглощения светового потока окисленным смазочным материалом; μО, μИСХ - соответственно вязкость окисленного и исходного смазочного материалов, строят графическую зависимость коэффициента термоокислительной стабильности от коэффициента поглощения светового потока окисленным смазочным материалом и по тангенсу угла наклона этой зависимости к оси абсцисс на участке до точки перегиба определяют скорость образования промежуточных продуктов окисления, по тангенсу угла наклона зависимости к оси абсцисс после точки перегиба определяют скорость образования конечных продуктов окисления и их влияние на увеличение вязкости испытуемого смазочного материала, а по координатам точки перегиба зависимости определяют начало образования конечных продуктов окисления (Патент РФ №2247971 С1, дата приоритета 17.02.2004, дата публикации 10.03.2005, авторы: Ковальский Б.И. и др., RU).

Наиболее близким по технической сущности и достигаемому результату является способ определения термоокислительной стабильности смазочных материалов, при котором испытывают пробу смазочного материала постоянной массы в присутствии воздуха с перемешиванием, при оптимальных как минимум трех температурах ниже критической, выбранных в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, определяют фотометрированием коэффициент поглощения светового потока, вязкость исходного и окисленного материалов, определяют относительную вязкость как отношение вязкости окисленного смазочного материала к вязкости исходного, а термоокислительную стабильность определяют по показателю отношения коэффициента поглощения светового потока к относительной вязкости, строят графические зависимости показателя термоокислительной стабильности от коэффициента поглощения светового потока, по которым определяют однородность состава продуктов окисления и температурную область работоспособности исследуемого смазочного материала (Патент РФ №2334976 С1, дата приоритета 26.12.2006, дата публикации 27.09.2008, авторы: Ковальский Б.И. и др., RU, прототип).

Общим недостатком известного аналога и прототипа является то, что известные способы обладают недостаточной информативностью о качестве товарных смазочных материалов, так как не учитывают изменение противоизносных свойств в процессе их термостатирования и их связь с оптическими свойствами и вязкостно-температурными характеристиками.

Технической проблемой, решаемой изобретением, является повышение информативности способа определения термоокислительной стабильности смазочных материалов путем учета процессов окисления и температурной деструкции и влияния их продуктов на противоизносные свойства и индекс вязкости.

Для решения технической проблемы предложен способ определения термоокислительной стабильности смазочных материалов, при котором испытывают пробы смазочного материала постоянной массы в присутствии воздуха, при оптимальных температурах ниже критической, выбранных в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, фотометрируют ее, определяют параметры термоокислительной стабильности и проводят оценку процесса окисления. Согласно изобретению пробы смазочного материала постоянной массы испытывают как с перемешиванием, так и без перемешивания, при фотометрировании определяют оптическую плотность, часть термостатированной пробы используют для измерения кинематической вязкости при температурах 40 и 100°C, определяют индекс вязкости, часть пробы используют для определения противоизносных свойств, а термоокислительную стабильность исследуемого смазочного материала определяют по показателю отношения произведения оптической плотности и десятичного логарифма индекса вязкости к показателю противоизносных свойств, строят графические зависимости показателя термоокислительной стабильности от оптической плотности термостатированного смазочного материала при его испытании с перемешиванием и без перемешивания, по которым определяют влияние продуктов окисления и температурной деструкции на величину показателя термоокислительной стабильности.

На фиг. 1 приведены зависимости показателя термоокислительной стабильности от оптической плотности при испытании моторных масел различной базовой основы без перемешивания при температуре 180°C: 1 - минеральное Zic HIFLO 10W-40 SL; 2 - частично-синтетическое Castrol Magnatec 10W-40 R SL/CF; 3 - синтетическое ALPHA'S 5W-30 SN; на фиг. 2 - зависимости показателя термоокислительной стабильности от оптической плотности при испытании моторных масел с перемешиванием при температуре 180°C (обозначения те же); на фиг. 3 - зависимости показателя термоокислительной стабильности от оптической плотности при испытании моторных масел без перемешивания при температуре 170°C (обозначения те же); на фиг. 4 - зависимости показателя термоокислительной стабильности от оптической плотности при испытании моторных масел с перемешиванием при температуре 170°C (обозначения те же).

Способ определения термоокислительной стабильности смазочных материалов осуществляется следующим образом. Пробы исследуемого смазочного материала постоянной массы, например 100±0,1 г, нагревают до температуры ниже критической, например 180°C, и испытывают в двух вариантах: первый вариант с перемешиванием механической мешалкой для смешивания с кислородом воздуха и исследованием процессов окисления, а второй вариант - испытание без перемешивания, что позволяет исследовать процессы температурной деструкции. Температура термостатирования и частота вращения мешалки в процессе испытания поддерживались автоматически.

Через равные промежутки времени испытания отбирают часть пробы термостатированного смазочного материала для прямого фотометрирования и определения оптической плотности D, часть пробы используют для определения кинематической вязкости при температурах 40 и 100°C и вычисления индекса вязкости (ГОСТ 25371-97, ИСО 2909-81), а часть пробы используют для определения противоизносных свойств термостатированных масел на трехшариковой машине трения со схемой «шар-цилиндр» с параметрами: нагрузка 13 Н, скорость скольжения 0,68 м/с, температура смазочного материала в объеме 80°C, время испытания 2 часа. Противоизносные свойства термостатированных смазочных материалов оценивались по среднеарифметическому значению диаметра пятна износа на трех шарах с двух параллельных опытов. Термостатирование смазочных масел прекращалось после достижения оптической плотности значений равных 0,4-0,5.

Для выявления влияния температуры на оптическую плотность, индекс вязкости и противоизносные свойства испытания моторных масел проводили также при температуре 170°C с перемешиванием и без перемешивания. По полученным данным оптической плотности, индекса вязкости и противоизносным свойствам вычислялся показатель термоокислительной стабильности ПТОС

где D - оптическая плотность термостатированного смазочного материала; lgИВ - десятичный логарифм индекса вязкости; И - среднеарифметическое значение диаметра пятна износа, мм.

Результаты испытания моторных масел различной базовой основы сведены в таблицу. По полученным экспериментальным данным строились графические зависимости показателя термоокислительной стабильности ПТОС от оптической плотности для минерального масла Zic HIFLO 10W-40 SL (1), частично-синтетического Castrol Magnatec 10W-40 R SL/CF (2) и синтетического ALPHA'S 5W-30 SN (3) для температур 180°C (фиг. 1, фиг. 2) и 170°C (фиг. 3, фиг. 4), причем на фиг. 1 и фиг. 3 моторные масла исследовались без перемешивания, а на фиг. 2 и фиг. 4 - с перемешиванием, что позволило оценить влияние продуктов окисления и температурной деструкции на оптические свойства, индекс вязкости, противоизносные свойства и в целом на значение показателя термоокислительной стабильности.

Согласно данным (фиг. 1-4) зависимости показателя термоокислительной стабильности от оптической плотности независимо от температуры термостатирования и наличия или отсутствия перемешивания пробы испытуемого смазочного материала описываются линейными уравнениями вида

где α - коэффициент, характеризующий скорость изменения показателя термоокислительной стабильности.

Согласно данным таблицы показано, что скорость изменения показателя термоокислительной стабильности зависит от базовой основы смазочного материала, температуры термостатирования и степени перемешивания во время испытания.

Согласно данным (фиг. 1) при температуре испытания 180°C без перемешивания при одном и том же значении оптической плотности самое высокое значение показателя ПТОС установлено для минерального масла (1), а самое низкое для синтетического масла (3), однако при испытании моторных масел при температуре 180°C с перемешиванием установлен обратный результат, самое высокое значение показателя ПТОС установлено для синтетического масла (3), а самое низкое для минерального (1). Таким образом, продукты температурной деструкции (при отсутствии перемешивания масел) оказывают положительное влияние на минеральное масло (фиг. 1), а продукты окисления (фиг. 2) положительное влияние оказывают на синтетическое моторное масло.

При понижении температуры термостатирования до 170°C продукты температурной деструкции и окисление отрицательно влияют на синтетическое моторное масло (3) как с перемешиванием его при испытании, так и без перемешивания (фиг. 3, фиг. 4). Эти продукты оказывают положительное влияние на частично-синтетическое моторное масло (2) (фиг. 3, фиг. 4). Полученная информация имеет практическое значение при выборе моторных масел двигателей внутреннего сгорания.

Предлагаемое техническое решение позволяет повысить информативность способа определения термоокислительной стабильности смазочных материалов за счет учета температуры испытания, изменения оптической плотности, индекса вязкости и триботехнической характеристики и промышленно применимо.

Способ определения термоокислительной стабильности смазочных масел, при котором испытывают пробы смазочного материала постоянной массы в присутствии воздуха, при оптимальных температурах ниже критической, выбранных в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, фотометрируют ее, определяют параметры термоокислительной стабильности и проводят оценку процесса окисления, отличающийся тем, что пробы смазочного материала постоянной массы испытывают как с перемешиванием, так и без перемешивания, при фотометрировании определяют оптическую плотность, часть термостатированной пробы используют для измерения кинематической вязкости при температурах 40 и 100°C, определяют индекс вязкости, часть пробы используют для определения противоизносных свойств, а термоокислительную стабильность исследуемого смазочного материала определяют по показателю отношения произведения оптической плотности и десятичного логарифма индекса вязкости к показателю противоизносных свойств, строят графические зависимости показателя термоокислительной стабильности от оптической плотности термостатированного смазочного материала при его испытании с перемешиванием и без перемешивания, по которым определяют влияние продуктов окисления и температурной деструкции на величину показателя термоокислительной стабильности.



 

Похожие патенты:

Изобретение относится к области анализа материалов, преимущественно смазочных масел, в частности для оценки влияния масел на поверхности деталей цилиндропоршневой группы и коленчатого вала двигателей внутреннего сгорания в зонах высоких температур.

Изобретение относится к измерительной технике, в частности для определения качества нефтепродуктов, и может быть применено для контроля температурной стойкости и термоокислительной стабильности смазочных материалов.

Изобретение относится к технологии классификации жидких смазочных материалов. При осуществлении способа испытывают пробу смазочного материала в присутствии воздуха с перемешиванием, постоянного объема, минимум, при трех температурах, выбранных в зависимости от базовой основы, назначения и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления.

Изобретение относится к технологии оценки качества жидких смазочных материалов. Предложен способ определения термоокислительной стабильности смазочных материалов, при котором испытывают пробы смазочного материала постоянного объема в присутствии воздуха с перемешиванием при оптимальных, как минимум трех, температурах ниже критической, выбранных в зависимости от базовой основы, назначения смазочного материала и группы эксплуатационных свойств в течение времени, характеризующего одинаковую степень окисления.

Изобретение относится к оценке эксплуатационных свойств моторных масел в условиях динамического тонкослойного окисления и может быть использовано в нефтехимической промышленности, в частности в лабораториях при производстве новых видов моторных масел.

Изобретение относится к оценке лакообразующих свойств моторных масел в условиях динамического тонкослойного окисления и может быть использовано в нефтехимической промышленности, в частности в лабораториях при производстве новых видов моторных масел.

Изобретение относится к технологии испытания смазочных масел. При осуществлении способа отбирают пробу масла, делят ее на равные части, каждую из которых нагревают при атмосферном давлении с конденсацией паров и отводом конденсата, при этом для каждой последующей части пробы масла температуру испытания повышают на постоянную величину, после чего определяют коэффициент поглощения светового потока, также дополнительно определяют кинематическую вязкость термостатированной пробы масла при температурах 40 и 100°C, индекс вязкости, строят графические зависимости индекса вязкости от температуры испытания и от коэффициента поглощения светового потока, по величине изменения индекса вязкости от коэффициента поглощения светового потока определяют влияние концентрации продуктов температурной деструкции на индекс вязкости, а температурную стойкость определяют по величине изменения индекса вязкости в зависимости от температуры испытания и концентрации продуктов температурной деструкции, при этом чем меньше изменение индекса вязкости, тем выше температурная стойкость испытуемого масла.

Изобретение относится к области контроля качества нефтепродуктов. Способ включает отбор проб в различных местах в процессе приготовления пластичных смазочных материалов, их гомогенизацию и анализ, причем гомогенизацию объединенных проб пластичных смазочных материалов производят при их перемешивании плунжером со скоростью 60±10 двойных тактов в минуту, а анализ содержания воды в пластичных смазочных материалах осуществляют с помощью ИК Фурье-спектроскопии, для этого сначала приготавливают различные образцы пластичных смазочных материалов с известным содержанием воды, затем для образцов пластичных смазочных материалов с известным содержанием воды строят тарировочный график зависимости содержания воды от оптической плотности на частоте наибольшего поглощения 3388 см-1 и по результатам тарировочного графика на этой частоте определяют содержание воды в исследуемых пластичных смазочных материалах.

Изобретение относится к области исследования смазочных масел. Способ включает в себя непрерывное пропускание воздуха через испытуемое смазочное масло при температуре, на 20°С превышающей максимальную рабочую температуру испытуемого смазочного масла, отбор через равные промежутки времени окисленного смазочного масла и определение таких показателей степени деградации смазочного масла, как содержание осадка, нерастворимого в изооктане, а также фактор нестабильности эксплуатационных свойств смазочного масла, после чего строят график зависимости изменения определяемых показателей от времени окисления, проводят касательные на начальном участке полученной кривой и на участке, где произошел значительный рост определяемого показателя, координату точки пересечения двух касательных на оси времени окисления принимают за значение условного эксплуатационного ресурса.

Изобретение относится к области исследования материалов и может быть использовано для исследования вязкостно-температурных свойств жидкости и количественной оценки интенсивности и динамики структурных превращений в процессе подбора состава смазочных композиций моторных масел на стадии их разработки.

Изобретение относится к измерительной технике, в частности для определения механизма процессов окисления товарных смазочных масел или механизма старения работающих.

Изобретение относится к испытаниям древесностружечных плит, а именно к способу определения незавершенности процесса отверждения термореактивного связующего древесных частиц в пределах толщи плиты.

Изобретение относится к области авиационно-космической техники. Способ определения аэродинамического нагрева натуры в опережающих летных исследованиях на модели включает определение высоты и скорости полета модели, теплопроводности, объемной теплоемкости и степени черноты материала ее теплозащиты, а также аэродинамического теплового потока на наружной поверхности натуры в сходственных с моделью точках из условия подобия в этих точках распределений температуры в материалах теплозащиты модели и натуры.

Изобретение относится к области исследования свойств жидкостей с помощью тепловых средств и может использоваться для исследования динамических процессов термостимулированной структурной перестройки многокомпонентных жидкостей.

Изобретение относится к области пожарной безопасности зданий и сооружений. Сущность: осуществляют проведение технического осмотра, инструментальное измерение геометрических характеристик элементов фермы в их опасных сечениях; выявление условий опирания и крепления элементов фермы, схем обогрева их поперечных сечений; установление марки стали фермы, характеристик металла сопротивлению на сжатие и растяжение, определение величины нагрузки оценочного испытания на стальную ферму, схем ее приложения, интенсивности силовых напряжений в металле в опасных сечениях элементов стальной фермы, определение времени наступления предельного состояния по признаку потери несущей способности элементов стальной фермы под испытательной нагрузкой оценочного огневого испытания.

Изобретение относится к технологии определения качества смазочных масел, в частности к определению влияния продуктов окисления на индекс вязкости. Способ определения термоокислительной стабильности смазочных материалов, при котором испытывают пробу смазочного материала в присутствии воздуха с перемешиванием постоянного объема при оптимальной температуре, выбранной в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств.

Изобретение относится к области измерений. Сущность: осуществляют кратковременное нагружение твердого или жидкого образца ударным импульсом до возникновения в нем разрыва или откола.

Изобретение относится к области измерительной техники и может быть использовано для измерения радиуса пучка излучения. Предложенный способ включает в себя этапы, на которых источник (2) пучка (20) излучения возбуждает (S1) нагреванием эталон (1) периодическим образом с частотой (f) для получения периодического теплового возбуждения эталона (1).

Гигрометр // 2587527
Изобретение относится к аналитическому приборостроению и предназначено для измерения объемной доли влаги (ОДВ) в газах. Гигрометр предназначен для измерения объемной доли влаги, использующий кулонометрическую ячейку.

Изобретение относится к области нанотехнологий и молекулярной биологии. Предложен способ детекции проникновения углеродных нанотрубок (УНТ) в биологическую ткань, геном клеток которой содержит промотор гена теплового шока, сшитый с кодирующей областью дрожжевого транскрипционного фактора Gal4, и генетическую репортерную конструкцию UAS-GFP.

Изобретение относится к компьютерным системам диагностики производственных объектов. В частности, предложена интеллектуальная информационная система технической диагностики состояния подвижных миксеров, которая включает подвижной миксер с тензодатчиками и компьютер технолога со специализированным программным обеспечением. При этом система реализована на основе аппарата нейронных сетей для обработки первичных данных о состоянии подвижных миксеров и экспертной системой для генерации управляющих рекомендаций относительно текущего состояния и типа ремонта подвижных миксеров. Специализированное программное обеспечение включает в себя нейросетевой программный анализатор термограмм подвижных миксеров, реализующий многосегментную архитектуру многослойных нейронных сетей, при этом специализированное программное обеспечение включает в себя модуль нейросетевого прогнозирования изменений состояния подвижных миксеров. Кроме того, система содержит тепловизоры для диагностики текущего состояния футеровки подвижных миксеров без вывода их из эксплуатации. Предлагаемая система обеспечивает: высокую точность определения фактического состояния футеровки подвижных миксеров; высокую оперативность диагностики состояния футеровки подвижных миксеров; диагностику технического состояния подвижных миксеров без вывода их из эксплуатации; прогнозирование степени износа футеровки, с возможностью планирования ремонта подвижных миксеров; накопление полученного опыта с последующим его анализом. 1 табл., 1 ил.

Изобретение относится к технологии оценки качества жидких смазочных материалов. При осуществлении способа испытывают пробы смазочного материала постоянной массы в присутствии воздуха, при оптимальных температурах ниже критической, выбранных в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, фотометрируют ее, определяют параметры термоокислительной стабильности и проводят оценку процесса окисления. При этом пробы смазочного материала постоянной массы испытывают как с перемешиванием, так и без перемешивания, при фотометрировании определяют оптическую плотность, часть термостатированной пробы используют для измерения кинематической вязкости при температурах 40 и 100°C, определяют индекс вязкости, часть пробы используют для определения противоизносных свойств, а термоокислительную стабильность исследуемого смазочного материала определяют по показателю отношения произведения оптической плотности и десятичного логарифма индекса вязкости к показателю противоизносных свойств, строят графические зависимости показателя термоокислительной стабильности от оптической плотности термостатированного смазочного материала при его испытании с перемешиванием и без перемешивания, по которым определяют влияние продуктов окисления и температурной деструкции на величину показателя термоокислительной стабильности. Достигается повышение информативности способа определения термоокислительной стабильности смазочных материалов за счет учета температуры испытания, изменения оптической плотности, индекса вязкости и триботехнической характеристики.1 табл., 4 ил.

Наверх