Способ переработки жидких радиоактивных отходов

Изобретение представляет собой способ переработки жидких радиоактивных отходов и относится к области охраны окружающей среды. Cпособ переработки жидких радиоактивных отходов, содержащих дисперсную фазу, заключается в выделении дисперсной фазы. Перед выделением дисперсной фазы в исходные жидкие радиоактивные отходы добавляют жидкость, нерастворимую в исходных жидких радиоактивных отходах и превышающую их по плотности. Выделение дисперсной фазы проводят центрифугированием. Технический результат – повышение уровня безопасности проведения переработки жидких радиоактивных отходов.

 

Изобретение относится к области охраны окружающей среды, в частности к способам переработки и кондиционирования жидких радиоактивных отходов.

На производствах и в исследовательских лабораториях, где проводятся работы с радиоактивными материалами, нарабатываются жидкие радиоактивные отходы (ЖРО), Согласно действующим санитарным правилам (ОСПОРБ 99/2010 пункт 3.12.10), ЖРО следует концентрировать и переводить в твердые радиоактивные отходы (ТРО) на объекте, где они образуются, или в организациях по обращению с радиоактивными отходами. В ряде случаев ЖРО содержат нерастворимые мелкодисперсные твердые компоненты, находящиеся во взвешенном состоянии. При этом радиационную опасность могут представлять как дисперсионная среда, так и находящаяся в ней нерастворимая дисперсная фаза. В ряде случаев требуется проведение предварительного разделения компонентов ЖРО для проведения последующей утилизации. Необходимость разделения фаз становится особенно очевидной в случаях, когда твердая фаза содержит радиоактивные элементы, обладающие высокоэнергетичным излучением, вызывающим значительный радиолиз жидкой фазы, сопровождающийся выделением водорода при хранении. Основными способами разделения жидкости и распределенных в ней нерастворимых примесей являются фильтрование и химическое связывание дисперсной фазы с последующим отделением образовавшегося осадка. Одним из часто встречающихся случаев рассматриваемых ЖРО являются отходы минеральных масел или водно-масляных эмульсин, содержащих в своем составе нерастворимые механические примеси. ЖРО минеральных масел часто образуются в вакуумных насосах при работе на технологическом оборудовании с порошками радиоактивных материалов. ЖРО эмульсий образуются при механической обработке радиоактивных материалов.

Существует много способов переработки и кондиционирования ЖРО минеральных масел. Можно выделить целое направление способов, при реализации которых для отверждения масла используются смеси, содержащие в различных пропорциях сорбенты и связующие материалы: гипс, цемент, и др. Например, авторы [Knieper J., Printz Н., Wolfe R. A contribution to the problem of solidification of medium and low radioactive liquid wastes. - Atomkernenegrie. 1977, Bd 30, N 1. S. 11] предлагают использовать смесь гипса и пемзы в объемном соотношении 1:1 как в чистом виде, так и с добавлением воды в различных пропорциях. Существенным недостатком данного способа является то, что вакуумное масло не растворяется в отвердителе, а заполняет поры сорбента, в которых по-прежнему будет находиться в жидком состоянии. Наличие в масле мелкодисперсных радиоактивных частиц будет определять выделение из конечного блока водорода, образующегося при радиолизе масла в процессе хранения.

При реализации другого подхода переработки и кондиционирования ЖРО минеральных масел проводится отделение твердой фазы. Например, авторы работы (патент RU 2560407, G21F 9/04, опубл. 20.08.2015) предлагают способ, заключающейся в том, что в жидкие радиоактивные отходы добавляют сорбент, в качестве которого используют слоистый титанат гидразина и/или синтетический титаносиликат иванюкит, перемешивают, отстаивают до образования стабильного осадка и прозрачного раствора, фильтруют или декантируют, контролируют гамма- и/или бета-активность полученного раствора, проводят термическую обработку осадка, насыщенного радионуклидами, с получением керамической матрицы.

Сущность другого способа дезактивации эксплуатационных масел от радиоактивных загрязнений (патент RU 2125745, G21F 9/12, опубл. 27.01.1999) состоит в последовательном введении в нагретое до 80°С масло щелочного перманганата калия и ферроцианидного коллектора при объемном соотношении последнего и масла 0,5:5,0 с образованием коагулянта и последующем отделении радиоактивного осадка декантацией. Обработанное данным способом масло можно возвращать в производственный цикл.

Авторы (патент RU 2069394, G21F 9/12, опубл. 20.11.1996) предлагают способ очистки эксплуатационных масел от радионуклидов, заключающийся в том, что в масло вводят раствор щелочного перманганата, затем добавляют к нему раствор ферроцианидной смеси. Ферроцианидную смесь готовят путем смешивания 0,5-1% раствора K4[Fe(CN)6]⋅3H2O и 0,5-1% раствора Ni(NO3)2⋅6H2O, с последующим отделением осадка.

Недостатки известных способов:

- предложенные в известных способах химические реагенты для связывания и осаждения дисперсной фазы из ЖРО возможно использовать только для кондиционирования конкретных видов ЖРО;

- при реализации данных способов не происходит полного выделения дисперсной фазы из ЖРО, а осуществляется концентрирование;

- использование фильтров ограничено их пропускной способностью и появляются проблемы с дальнейшей утилизацией этих фильтров, содержащих помимо отфильтрованных твердых частиц и жидкую фазу первоначальных ЖРО.

Наиболее близким по назначению к заявляемому является способ, описанный в патенте [JP 3129841 В2, G21F 9/14, опубл. 31.01.2001]. Авторы предлагают высокоактивную смазочно-охлаждающую жидкость для шлифования или высокоактивное минеральное масло, например масло из роторного насоса, пропускать сквозь стеклянный фильтр, задерживающий радиоактивные вещества. Полученное низкоактивное отработанное масло отверждают по методу отверждения пищевых жиров, например с использованием 1,2-гидроксистеарина в качестве отвердителя. Масло, отвержденное таким методом, устойчиво при комнатной температуре и при температурных колебаниях как во время транспортировки вне помещения, так и при длительном хранении в открытом помещении. Как полагают авторы, отвержденное масло можно сжигать в печи, чтобы сократить его объем, без образования вредных газов и без повреждения печи.

Предлагаемый способ имеет ряд недостатков:

- при его реализации не удается полностью выделить мелкодисперсные частицы радиоактивных материалов из ЖРО - размер удаляемых частиц определяется пропускной способностью используемого фильтра;

- при проведении работ образуются ЖРО, которые не всегда можно сжигать, следовательно, возникает необходимость их отверждения для последующей утилизации;

- возникает потребность в дополнительной утилизации отработанных стеклянных фильтров, пропитанных маслом, при этом необходимо учитывать образование водорода в результате процесса радиолиза масла;

- фильтры имеют ограниченный ресурс работы и не подлежат регенерации;

- процесс проводится на технологической установке, обеспечивающей перепад давления на фильтре, после проведения работ требуется дезактивация элементов установки, при этом дополнительно образуются РАО и увеличиваются радиационные риски для персонала.

Задачей заявляемого изобретения является повышение безопасности проведения способа отверждения ЖРО, содержащих дисперсную фазу, сокращение времени, уменьшение затрат и упрощение технологии его реализации.

При использовании изобретения достигается следующий технический результат:

- кондиционирование ЖРО по заявленному способу может проводиться в любых лабораторных или производственных условиях без использования высокотехнологичного специализированного оборудования;

- исключается необходимость хранения жидких радиоактивных отходов на местах их образования и транспортировки к месту переработки и/или захоронения, что повышает радиационную безопасность производства;

- после отделения твердой фазы жидкая фаза ЖРО может быть возвращена в технологический цикл, в результате чего уменьшаются объемы отходов производства, подлежащих захоронению;

при реализации заявленного способа объемы водорода, образующегося в результате радиолиза при хранении отходов, сводятся к минимуму, что освобождает от необходимости принятия дополнительных мер безопасности;

- процесс проводится в герметичных емкостях, после разделения жидкая фаза, содержащая твердые радиоактивные частицы, отверждается непосредственно в рабочей емкости, что сводит к минимуму образование вторичных ЖРО.

Для решения указанной задачи и достижения технического результата предлагается способ переработки ЖРО, содержащих дисперсную фазу, заключающийся в выделении дисперсной фазы, отличающийся тем, что перед выделением дисперсной фазы в исходные жидкие радиоактивные отходы добавляют жидкость, нерастворимую в исходных жидких радиоактивных отходах и превышающую их по плотности, а выделение дисперсной фазы проводят центрифугированием.

После добавления в исходные жидкие радиоактивные отходы нерастворимой в них жидкости и превышающей их по плотности осуществляют центрифугирование, в результате происходит разделение жидкостей (исходной и добавленной) из-за разности плотностей, а дисперсные частицы радиоактивных материалов из исходной жидкой фазы перемещаются в добавленную жидкость и происходит их концентрирование в жидкости с большей плотностью. Жидкость, добавляемую в исходные ЖРО, выбирают таким образом, чтобы из нее можно было легко выделить радиоактивную компоненту, например, выпариванием жидкости или отвердить для перевода в ТРО с использованием доступных технологий. Жидкую фазу исходных ЖРО, очищенную от дисперсных частиц, при сохранении ей эксплуатационных характеристик возвращают в технологический цикл. В противном случае по результатам радиационного контроля утилизируют или кондиционируют и переводят в ТРО согласно заранее выбранной схеме.

Предлагаемый способ можно применять при переработке широкой номенклатуры различных РАО. Для реализации предлагаемого способа не требуется специализированное высокотехнологичное оборудование (специальные сепараторы, многоступенчатые фильтры и т.д.). Переработку ЖРО по предлагаемому способу можно проводить в герметичных емкостях, что позволяет полностью исключить контакт ЖРО с окружающей средой и существенно повысить уровень безопасности проводимых работ. В ходе проведения работ по переработке не происходит радиационного загрязнения основного технологического оборудования, а значит, отпадает необходимость периодической дезактивации или замены всего технологического оборудования или отдельных элементов. Компоненты, получаемые в результате переработки РАО по предлагаемому способу, можно безопасно утилизировать с использованием известных технологий. Реализация предлагаемого способа возможна в лабораторных условиях на месте образования ЖРО. В результате не требуются затраты на перевозку ЖРО в специализированные предприятия по переработке ЖРО. Процесс проводится с соблюдением всех норм радиационной безопасности и не требует значительных капитальных вложений и больших затрат на эксплуатацию и обслуживание.

Практическая отработка способа

Для проведения модельных испытаний по отработке технологии, предназначенной для обращения с радиоактивными отходами, согласно [Федеральные нормы и правила в области использования атомной энергии «Критерии приемлемости радиоактивных отходов для захоронения» НП 093-14.] использовались нерадиоактивные материалы. Для проведения модельных испытаний использовали вакуумное масло ВМ-1С (ТУ 38.1011187-88). В качестве добавляемой жидкости была выбрана дистиллированная вода, как материал, удовлетворяющий предъявляемым требованиям (имеет большую, чем масло плотность и практически не растворяется в ней). Далее, в пробу масла массой 50 г добавили 0,1 г порошка гидрида титана и тщательно перемешали. Полученная смесь имела темно-серый цвет и являлась визуально непрозрачной при толщине слоя ~1 см. От полученной пробы отобрали две пробы массой по 3 г и поместили их в пластиковые пробирки объемом 10 cм3. Далее в пробирки добавили по 3 мл дистиллированной воды и перемешали встряхиванием. Пробирки с полученной смесью центр и фугировали в центрифуге ЦЛС - 3 при 5000 об/мин в течение 5 мин. После этого при визуальном осмотре было выявлено, что произошло разделение масла и воды, а порошок гидрида титана перешел из масла в воду и сконцентрировался в донной части пробирок. Следует отметить, что масло приобрело прозрачность, визуально сопоставимую с первоначальной. Далее, из каждой пробирки отобрали по 2/3 частей масла в отдельную емкость, добавляли новую порцию масла, смешанного с порошком гидрида титана, и проводили центрифугирование по описанной ранее схеме. После перевода порошка гидрида гитана в воду из всей предварительно подготовленной масляной пробы были проведены работы по финальному разделению воды и масла. Для этой цели пробирки, в которых находилась вода с порошком гидрида титана и остатки очищенного масла, выдерживали при температуре минус 15°С в течение 20 мин до полного перехода воды в состояние льда и иммобилизации в нем выделенного из масляной смеси порошка. Масло, оставшееся в жидком состоянии, было удалено из пробирок. После нагрева до комнатной температуры водная фракция, полученная в результате разделения, была отверждена непосредственно в пробирке. Воду отвердили с использованием порошков MgO и KН2РО4, взятых в соотношении, необходимом для образования кристаллогидрата состава KMgPO4×6H2O. Очищенное масло отвердили с помощью парафина (ГОСТ 23683-89) в соответствий с [патент РФ 2589040, G21F 9/16, опубл. 10.07.2016].

Способ переработки жидких радиоактивных отходов, содержащих дисперсную фазу, заключающийся в выделении дисперсной фазы, отличающийся тем, что перед выделением дисперсной фазы в исходные жидкие радиоактивные отходы добавляют жидкость, нерастворимую в исходных жидких радиоактивных отходах и превышающую их по плотности, а выделение дисперсной фазы проводят центрифугированием.



 

Похожие патенты:
Изобретение относится к радиохимической технологии. Способ экстракционного выделения молибдена из радиоактивных растворов включает экстракцию молибдена растворами гидроксамовых кислот, растворенных в смеси не более 30% спирта с парафиновыми углеводородами при соотношении объемов органической и водной фаз менее 0,1.

Изобретение относится к области переработки ионообменных смол, отработавших свой ресурс в процессах ионообменного извлечения из воды катионов и анионов. Способ переработки отработавших ионообменных смол включает измельчение зерен смолы до размера частиц не более 500 мкм, приготовление 18-22% суспензии измельченной смолы в растворе щелочи в концентрации 5-50 г/л, окисление суспензии в реакторе при подаче воздуха в зону окисления в условиях сверхкритического состояния воды при температуре 480-580°С и давлении 235-245 атм, отвод газообразных продуктов окисления в виде паров воды, СО2 и N2, вывод твердых продуктов реакции в виде водной суспензии, доокисление твердых продуктов реакции в дополнительном реакторе при подаче воздуха в зону окисления в условиях сверхкритического состояния воды при температуре 480-580°С и давлении 235-245 атм, конденсацией паров воды, разделение газообразной, твердой и жидкой фаз.

Изобретения могут быть использованы в технологии цветных металлов, при переработке промышленных растворов шлихообогатительных фабрик и аффинажных производств, в технологии производства и переработки отработавшего ядерного топлива.
Изобретение относится к технологиям цементирования материалов с радиоактивными компонентами и может быть использовано при переработке жидких радиоактивных отходов (ЖРО).

Группа изобретений относится к атомной и радиохимической промышленности. Способ очистки жидкости, загрязненной радионуклидами, включает размещение в загрязненной жидкости как минимум по одному элементу из разных пористых материалов - гидрофильному и гидрофобному, один конец которых частично погружают в загрязненную жидкость, а на других путем пропускания электрического тока создают зону выпаривания, в которую транспортируют загрязненную жидкость за счет капиллярных свойств пористого материала, и где путем нагрева жидкости до кипения осуществляют компактирование загрязнений.

Изобретение относится к радиохимической технологии и может быть использовано для денитрации средне- и низкоактивных жидких радиоактивных отходов, подлежащих дальнейшему отверждению (цементации).
Изобретение может быть использовано при подготовке растворов отработавшего ядерного топлива атомных электростанций (ОЯТ АЭС) к экстракционной переработке, при выделении радионуклидов из радиоактивных растворов облученных урановых мишеней в биомедицинских целях, а также при анализе технологических растворов.
Заявленное изобретение относится к способу подготовки карбидного ОЯТ к экстракционной переработке. В заявленном способе предусмотрена автоклавная обработка азотнокислого раствора карбидного ОЯТ.

Изобретение относится к способу гетерогенного каталитического разложения комплексонов и поверхностно-активных веществ в технологических растворах радиохимических производств на никель-феррицианидном катализаторе.

Изобретение относится к области биотехнологии и трансмутации химических элементов. Радиоактивное сырье, содержащее радиоактивные химические элементы или их изотопы, обрабатывают водной суспензией бактерий рода Thiobacillus в присутствии элементов с переменной валентностью.

Изобретение относится к атомной экологии. Установка для комплексной переработки жидких радиоактивных отходов (ЖРО) содержит узлы предочистки ЖРО и сорбционной доочистки фильтрата. Узел предочистки ЖРО содержит снабженную мешалкой цилиндрическую герметичную емкость с плоским дном. В полости емкости размещен с зазором с дном и герметично связан с верхней стенкой емкости, вертикальный трубчатый корпус съемного мешочного фильтра. Мешалка содержит трубчатый вал, с которым скреплены два яруса горизонтальных лопастей, нижний из которых размещен с зазором 2-5 см над дном, а концы его лопастей составляют 1,5-3 см со стенками емкости. Лопасти верхнего яруса выполнены меньше на величину зазора, чем расстояние от вала мешалки до корпуса фильтра. Трубчатый вал надет на отводящую трубу. Верхняя часть вала снабжена зубчатым колесом. Изобретение позволяет упростить конструкцию установки и обеспечить использование в процессе переработки ЖРО одного типа сорбента. 4 з.п. ф-лы, 10 ил.

Изобретение относится к ядерной физике, а именно к технологии переработки жидких радиоактивных отходов. Способ переработки жидких радиоактивных отходов включает подачу смеси жидких радиоактивных отходов и хлорида натрия в зону смешения плазмохимического реактора. Смесь жидких радиоактивных отходов диспергируют внутрь плазмохимического реактора путем подачи их на форсунки, расположенные в верхней части плазмохимического реактора, и одновременно с водоохлаждаемого медного электрода генерируют моноэлектродный высокочастотный факельный разряд, направленный вертикально вниз в плазмохимический реактор. При этом в качестве плазмообразующего газа используют атмосферный воздух. Обрабатывают смесь жидких радиоактивных отходов с хлоридом натрия в воздушно-плазменном потоке при массовом отношении смесь - воздух, равном 1:3, причем температуру в объеме плазмохимического реактора поддерживают не менее 800°C. Затем образующиеся продукты плазмохимической переработки в газовой фазе отводят и очищают в блоке очистки отходящих газов, а продукты плазмохимической переработки в конденсированной фазе в виде расплава хлорида натрия, включающего оксидные соединения металлов, осаждают с последующим извлечением из плазмохимического реактора. Изобретение позволяет уменьшить объем образующихся радиоактивных отходов. 1 ил.

Группа изобретений относится к области прикладной радиохимии в части обращения с образующимися при переработке отработавшего ядерного топлива (ОЯТ) жидкими радиоактивными отходами (ЖРО). Способ заключается во введении в высокоактивный рафинат комплексообразователя (аминоуксусной кислоты), образующего в результате координационного взаимодействия с палладием комплексные соединения, из которых палладий восстанавливается до металла под действием гидразина. Группа изобретений позволяет осуществить селективное (по отношению к продуктам деления) извлечение из азотнокислых сред более 99,3% металлического палладия в виде крупнозернистого осадка в первом варианте и в виде отложений на поверхности частиц зернистого слоя твердофазного катализатора во втором варианте с получением концентрированных растворов регенерированного палладия после его растворения в азотной кислоте. 2 н. и 16 з.п. ф-лы, 1 ил., 9 пр.

Изобретение может быть использовано в области водоочистки и водоподготовки. Установка очистки воды содержит дегазатор в виде колонны (1) с крышкой (2) и с патрубками для подачи очищаемой воды (3) и отвода газов (4) в верхней части колонны и патрубками для подачи воздуха (5) и отвода очищенной воды (6) в нижней части колонны, заполненной насадкой (7), бак-сборник (8), аппарат для подачи воздуха (9). Установка снабжена дополнительным патрубком (10) в нижней части колонны (1) ниже слоя насадки и вторым патрубком (11) в средней части колонны (1) выше слоя насадки (7), причем один из патрубков присоединен к подаче промывной воды (12), а второй патрубок присоединен к отводу промывных вод или баку-накопителю. На патрубке отвода очищенной воды установлена запорная арматура (13). Насадка размещена между двумя перфорированными диафрагмами (14) и (15). Колонна снабжена ультразвуковыми излучателями (16), размещенными по периметру объема, заполненного насадкой. Установка обеспечивает повышенную радиационную безопасность при эксплуатации, повышенную эффективность очистки воды и отмывки материала насадки с последующим отведением радиоактивных осадков на утилизацию. 1 з.п. ф-лы, 1 ил.

Группа изобретений относится к области ядерной энергетики. Способ очистки жидких радиоактивных отходов (ЖРО) предусматривает предварительную фильтрацию, озонирование, дозированное введение в кубовый остаток ЖРО перекиси водорода, обработку кубового остатка импульсным ультрафиолетовым излучением сплошного спектра, микрофильтрацию с отделением шлама, содержащего радиоактивный кобальт, железо, марганец, и сорбцию для удаления радиоактивного цезия. Обработку кубового остатка ЖРО импульсами ультрафиолетового излучения совмещают с воздействием импульсного магнитного поля напряженностью, при этом импульсы ультрафиолетового излучения и импульсы магнитного поля формируют синхронно. Имеется также устройство для осуществления способа очистки ЖРО. Группа изобретений позволяет повысить степень очистки ЖРО. 2 н.п. ф-лы, 3 ил.

Изобретение относится к ядерной технологии, в частности к аналитическому обеспечению процесса переработки облученного ядерного топлива, и раскрывает способ совместного спектрофотометрического определения нептуния, америция и плутония. Способ характеризуется тем, что упаривают аликвоту исследуемого образца, содержащую нептуний, америций и плутоний, растворяют сухой остаток в серной кислоте с концентрацией 1-3 моль л-1, в полученный раствор добавляют двухвалентное серебро в виде оксида (AgO), перемешивают, образец помещают в спектрофотометрическую кювету, проводят измерения и рассчитывают концентрацию и количественное содержание указанных элементов в образце по значениям оптической плотности на соответствующих длинах волн: Am(III) - 503 нм, Pu(VI) - 830 нм и Np(VI) - 1223 нм. Изобретение может быть использовано для упрощения определения массового содержания Am, Pu и Np при одновременном повышении оперативности и точности. 1 табл.
Группа изобретений относится к радиохимической технологии и может быть использована в технологии переработки отработавшего ядерного топлива (ОЯТ). Способ регенерации отработанной экстракционной системы на основе органического раствора трибутилфосфата в гексахлорбутадиене включает ее обработку сорбционно-активной твердофазной композицией. Обработку органического раствора осуществляют в две последовательные стадии. На первой стадии проводят обработку агрегативно-устойчивой водной суспензией, содержащей в дисперсной фазе гидратированный диоксид циркония. На второй стадии обработку содержащим оксалат-ион раствором. Имеется также вариант выполнения способа регенерации отработанной экстракционной системы. Группа изобретений позволяет восстановить эксплуатационные характеристики отработанной экстракционной системы (химические и гидродинамические) и вернуть ее в технологический цикл. 2 н. и 16 з.п. ф-лы, 22 пр.

Изобретение представляет собой способ переработки жидких радиоактивных отходов и относится к области охраны окружающей среды. Cпособ переработки жидких радиоактивных отходов, содержащих дисперсную фазу, заключается в выделении дисперсной фазы. Перед выделением дисперсной фазы в исходные жидкие радиоактивные отходы добавляют жидкость, нерастворимую в исходных жидких радиоактивных отходах и превышающую их по плотности. Выделение дисперсной фазы проводят центрифугированием. Технический результат – повышение уровня безопасности проведения переработки жидких радиоактивных отходов.

Наверх