Способ алкилирования изобутана в трехфазном реакторе с неподвижным слоем катализатора

Изобретение относится к способу алкилирования изобутана в трехфазном реакторе с неподвижным слоем катализатора бутилены подают на каждый слой катализатора, а изобутан, взятый в избытке, в верхнюю часть реактора, проводят реакцию алкилирования, отделяют и возвращают на рецикл непрореагировавпшй изобутан и выводят полученный алкилбензин. Температуру и давление выбирают так, чтобы пары изобутана находились в состоянии насыщения, а дополнительное испарение жидкости в реакторе под действием тепла реакции обеспечивало изотермические условия процесса алкилирования. Жидкость стекает свободно без барботирования под действием силы тяжести при объемной скорости, составляющей не более Wmax, равного

,

и не менее Wmin, равного

,

где D - сечение слоя катализатора, м, ε - порозность слоя катализатора, εг - паросодержание в реакторе в условиях проведения реакции, ρж - плотность жидкости на входе в реактор, кг/м3, ρг - плотность паров в реакторе в условиях проведения реакции, кг/м3, - максимальная линейная скорость свободно стекающей жидкости Umax, м/с, рассчитываемая исходя из системы уравнений

,

,

где Н - высота слоя катализатора, м, g - ускорение свободного падения, м/с2, Δрпот - потерянный напор, Па, dp - средний диаметр частицы катализатора, м, μ - вязкость жидкости, Па/с. Минимальная линейная скорость свободно стекающей жидкости Umin, м/с равна , где Ga - критерий Галилея, определяемый по формуле: , μ - динамическая вязкость жидкости, Па/с, ρж - плотность, г/м3; dp - средний диаметр частицы катализатора, м. Технический результат: повышение стабильности процесса при сохранении высокой активности катализатора в течение длительного времени. 1 ил., 1 табл., 7 ил.

 

Изобретение относится к области каталитической химии и может быть использовано при алкилировании изобутана олефинами, в частности бутиленами.

Известно применение трехфазных каталитических реакторов во множестве химических процессов, в том числе нефтехимической промышленности. Трехфазные реакторы, в которых жидкую фазу подают сверху вниз, могут действовать в различных режимах.

Режим орошения или струйный режим, когда жидкость струится вниз в виде тонких пленок, обычно устанавливается при низких скоростях подачи жидкости и в то же время сравнительно низких скоростях газа, направляемого непрерывно сверху вниз. С ростом скорости подачи газа и с сохранением сравнительно низкой скорости подачи жидкости получают капельный режим. Если же оставляют сравнительно низкой скорость подачи газа и значительно повышают скорость подачи жидкости, то аппарат оказывается в пузырьковом (барботажном) режиме. При одновременном повышении скоростей подачи обеих фаз получают пульсирующий режим. Эти режимы характеризуются сильно различающимися гидродинамическими параметрами, которые, в частности, влияют на процессы массообмена, определяют степень превращения и селективности реакций, которые протекают в трехфазных реакторах (см. Ullmann’s Encyclopedia of Industrial Chemistry, Т. B4, с. 309-320).

Наиболее часто при работе трехфазных реакторов происходит барботирование газа через поток жидкости, что приводит к перегреву и сокращению срока службы катализатора, а также не позволяет достигнуть высокой селективности процесса.

Известен способ проведения гетерогенных реакций, преимущественно гидрогенизации и окисления, в системе "газ-жидкость" в трехфазном реакторе с неподвижным слоем катализатора, где достигают стекания жидкости пленкой и устраняют перегрев за счет того, что частицы гетерогенного катализатора размещены на структурированной насадке из пластин или слоев металла таким образом, что образуют промежутки, в которых отношение гидравлического диаметра для потока жидкости через насадку к эквивалентному диаметру частиц катализатора находится в пределах 2-20, а частицы катализатора, введенные в эти промежутки, свободно распределяются в них, опустившись под действием силы тяжести (см. US 2003/106837 Al, С07С 5/02, 12.06.2003).

Недостатки данного способа состоят в том, что он требует специального изготовления и установления в реакторе металлических насадок определенной формы, в связи с чем является трудоемким, металлоемким и неэкономичным.

Известен также способ осуществления химических реакций, а именно алкилирования ароматических углеводородов олефинами С24, в трехфазном реакторе с неподвижным слоем катализатора, где жидкость падает в пространство между частицами катализатора в струйном режиме без барботирования, что обеспечивается соблюдением условий, определяемых по формулам:

где ρl, ρg, ρair, ρwater - плотности жидких ароматических углеводородов, олефинов, воздуха и воды, кг/м3;

σ, σwater - поверхностные натяжения ароматических углеводородов и воды, Н/м;

ul, ug - приведенные скорости потоков ароматических углеводородов и олефинов, м/с, соответственно (см. ЕР 0776876 А, С07С 15/02, 04.06.1997).

Наиболее близким к предлагаемому изобретению является способ алкилирования изобутана олефинами, в том числе бутиленами, в каталитическом трехфазном реакторе при температуре 40-100°С и повышенном давлении, в котором изобутан подают в верхнюю секцию реактора и последовательно пропускают через все секции с катализатором, а олефинсодержащее сырье подают в секции с катализатором параллельными потоками, каждый из которых смешивают с потоком алкилируюмого агента (соотношение изобутан : олефины 1:(10-200)). Углеводородный поток, содержащий непрореагировавший изобутан и продукты реакции, разделяют на два потока: паровой, полученный путем испарения изобутана за счет тепла реакции или подвода тепла извне, и жидкостной, представляющий собой продукты реакции. Паровой поток затем конденсируют и направляют на рецикл. Благодаря такому приему процесс проходит в равновесной системе пар-жидкость, что обеспечивает примерно одинаковую температуру по всей высоте реактора (изотермические условия). Давление соответствует давлению насыщенных паров реагирующей смеси, в том числе взятого в избытке изобутана, при температуре реакции (Авторское свидетельство СССР №1076423 А1, кл. С07С 9/00, 28.02.1984).

Недостатком предложенного способа является то, что в реакторе происходит барботирование газа через поток жидкости, что приводит к неустойчивости потока и, следовательно, ускоренному падению активности катализатора, а также нестабильности процесса в целом.

Задача изобретения - сохранение стабильной активности катализатора во время цикла реакции и повышение стабильности процесса алкилирвоания изобутана бутиленами.

Для решения этой задачи в способе алкилирования изобутана в трехфазном реакторе с неподвижным слоем катализатора подачу бутиленов на каждый слой катализатора и изобутана, взятого в избытке по отношению к бутиленам, в верхнюю часть реактора, проведение реакции алкилирования при температуре и давлении, которые выбирают так, чтобы пары изобутана находились в состоянии насыщения, а дополнительное испарение жидкости в реакторе под действием тепла реакции обеспечивало изотермические условия процесса алкилирования, отделение и возвращение на рецикл непрореагировавшего изобутана и вывод полученного алкилбензина, жидкость стекает свободно без барботирования под действием силы тяжести при объемной скорости, составляющей

не более значения Wmax, равного

,

и не менее значения Wmin, равного

,

где Wmax - максимальная объемная скорость стекающей жидкости, м3/с,

где Wmin - минимальная объемная скорость стекающей жидкости, м3/с,

D - внутренний диаметр реактора, м,

ε - порозность слоя катализатора,

εг - паросодержание в реакторе в условиях проведения реакции,

ρж - плотность жидкости на входе в реактор, кг/м3,

ρг - плотность паров в реакторе в условиях проведения реакции, кг/м3,

Umax - максимальная линейная скорость свободно стекающей жидкости, м/с, рассчитываемая исходя из системы уравнений:

,

,

где Н - высота слоя катализатора, м,

g - ускорение свободного падения, м/с2,

Δрпот - потерянный напор, Па,

dp - средний диаметр частицы катализатора, м,

μ - динамическая вязкость жидкости, Па/с,

Umin - минимальная линейная скорость свободно стекающей жидкости, м/с, равная

,

где Ga - критерий Галилея, определяемый по формуле:

,

(см. El-Hisnavi А.А., Dudukovic М.Р., Mills P.L. / ASC Symp. Series, 1982, v. 196, p. 431).

Реакция должна протекать в изотермических условиях, что достигается не только испарением жидкости, но и тем, что пары компонента, взятого в избытке, при конденсации на внутренней стенке реактора передают тепловую энергию внешнему теплоносителю или воздуху.

Для того чтобы исключить барботирование, объемная скорость жидкости должна быть не более объемной скорости начала захлебывания Объемная скорость начала захлебывания, которую принимают как максимальную объемную скорость стекающей жидкости, Wmax - такое ее значение, которое равно произведению линейной скорости свободного стекания на полное сечение свободного объема в неподвижном слое катализатора.

Выражение для объемной скорости начала захлебывания Wmax (1) учитывает то, что, во-первых, свободное сечение, через которое проходит жидкость, уменьшается на относительную величину εг (предполагается, что варьирование объемного расхода на εг пренебрежимо мало или парообразование регулируют таким образом, чтобы εг поддерживалось постоянным), во-вторых, в формулу входит не общий объемный расход жидкости, a W - расход той жидкости, которая остается после парообразования в пространстве реактора, который можно определить через материальный баланс потоков

,

Wж - общий расход жидкости, м3/с.

Плотность пара можно определить по закону идеального газа. Формулу (1) можно использовать и в случае, когда паросодержание равно 0. Эта же зависимость может быть выражена и через минимальный диаметр реактора

где U - линейная скорость свободно стекающей жидкости, м/с.

Зависимости диаметра реактора от скорости захлебывания для изобутана при разных диаметрах частиц катализатора отражена на фиг. 1.

Предлагаемое техническое решение иллюстрируется следующими примерами.

Пример 1

В верхнюю часть шестисекционного реактора с неподвижным гранулированным слоем катализатора, представляющего собой цилиндрики цеолита Y в РЗЭНСа-форме высотой 5 мм и диаметром 5 мм, подают алкилируемый компонент (изобутан). Бутилены (олефины) подают шестью параллельными потоками на каждый слой катализатора через устройства, обеспечивающие хорошее смешение потока углеводорода (продуктов реакции алкилирования вместе с неиспарившимся изобутаном), выходящих из предыдущего слоя, и потока бутиленов. Температуру в зоне реакции держат 90°С, давление 1,6 МПа, что соответствует равновесному состоянию пар-жидкость углеводородной смеси. Пары изобутана при этом находятся в состоянии насыщения.

Количественное соотношение потоков устанавливают таким образом, что в целом по реактору расчетное соотношение изобутан : бутилены составляет 6:1, то есть изобутан берут в избытке. Выделяющееся тепло реакции снимают за счет испарения избыточного изобутана в каждой секции, что обеспечивает изотермические условия процесса.

Объемную скорость стекающей жидкости выбирают так, чтобы она составляла не менее Wmin и не более Wmax.

Значения Wmin и Wmax предварительно рассчитывают по формулам (1) ÷(6). В этом и следующих экспериментах значения Wmin и Wmax были рассчитаны по этим формулам с помощью компьютерной программы - в редакторе «Microsoft Excel».

Жидкость стекает свободно под действием силы тяжести. При поддержании скорости жидкости в рассчитанном интервале барботирования не наблюдается.

Углеводородный поток, на выходе из реактора содержащий непрореагировавший изобутан и продукты реакции, разделяют на два потока: паровой, полученный путем испарения изобутана, который затем конденсируют и направляют на рецикл, и жидкостной, представляющий собой продукты реакции – алкилбензин, который выводят из реакционной системы.

Сконденсировавшийся изобутан в виде рециркулята (орошения) смешивают со свежим потоком изобутана и подают в реакционную зону, а именно в слой катализатора. При этом увеличивается кратность циркуляции изобутана, и фактическое соотношение изобутан:бутены на входе в каждый слой катализатора составляет (70-75):1 при общем соотношении по реактору 6:1.

Реакцию проводят в течение 24 ч.

Выход алкилбензина на пропущенные бутилены составляет 195% масс.

Октановое число по моторному методу в чистом виде составляет - 93,6 пунктов.

Показатели процесса приведены в таблице 1.

Пример 2

В верхнюю часть шестисекционного реактора с неподвижным гранулированным слоем катализатора, представляющего собой цилиндрики цеолита X в РЗЭНСа-форме высотой 5 мм и диаметром 5 мм, подают алкилируемый компонент (изобутан). Бутилены (олефины) подают шестью параллельными потоками на каждый слой катализатора через устройства, обеспечивающие хорошее смешение потока углеводорода (продуктов реакции алкилирования вместе с неиспарившимся изобутаном), выходящих из предыдущего слоя, и потока бутена-1. Температуру в зоне реакции держат 80°С, давление (1,32 МПа), что соответствует равновесному состоянию пар-жидкость углеводородной смеси. Пары изобутана при этом находятся в состоянии насыщения. Количественное соотношение потоков устанавливают таким образом, что в целом по реактору расчетное соотношение изобутан : бутилены составляет 6:1, то есть изобутан берут в избытке. Выделяющееся тепло реакции снимают за счет испарения избыточного изобутана в каждой секции, что обеспечивает изотермические условия процесса.

Объемную скорость стекающей жидкости выбирают так, чтобы она составляла не менее Wmin и не более Wmax.

Значения Wmin и Wmax предварительно рассчитывают по формулам (1)÷(6). Жидкость стекает свободно под действием силы тяжести. При поддержании скорости жидкости в рассчитанном интервале барботирования не наблюдается.

В углеводородный поток, на выходе из реактора, содержащий непрореагировавший изобутан и продукты реакции, вводят дополнительное тепло за счет подачи пара через змеевик таким образом, чтобы разделить продукты реакции на два потока: паровой, полученный путем испарения изобутана, который затем конденсируют и направляют на рецикл, и жидкостной, представляющий собой продукты реакции – алкилбензин, который выводят из реакционной системы. При этом увеличивается кратность циркуляции изобутана, и фактическое соотношение изобутан:бутен-1 на входе в каждый слой катализатора составляет 1000:1 при общем соотношении по реактору 6:1. Реакцию проводят в течение 52 ч.

Выход алкилбензина на пропущенные бутилены составляет 204% масс.

Октановое число по моторному методу в чистом виде составляет - 95,2 пунктов.

Качество продуктов приведено в таблице 1.

Пример 3

В верхнюю часть четырехсекционного реактора с неподвижным гранулированным слоем катализатора, представляющего собой экструдаты алюмоциркониевого катализатора диаметром 2,5 мм и длиной 3 мм, подают алкилируемый компонент (изобутан). Бутилены (олефины) подают четырьмя параллельными потоками на каждый слой катализатора через устройства, обеспечивающие хорошее смешение потока углеводорода (продуктов реакции алкилирования вместе с неиспарившимся изобутаном), выходящих из предыдущего слоя, и потока бутена-1. Температуру в зоне реакции держат 40°С, давление (0,60 МПа), что соответствует равновесному состоянию пар-жидкость углеводородной смеси. Пары изобутана при этом находятся в состоянии насыщения. Количественное соотношение потоков устанавливают таким образом, что в целом по реактору расчетное соотношение изобутан:бутилены составляет 6:1, то есть изобутан берут в избытке. Выделяющееся тепло реакции снимают за счет испарения избыточного изобутана в каждой секции, что обеспечивает изотермические условия процесса.

Объемную скорость стекающей жидкости выбирают так, чтобы она составляла не менее Wmin и не более Wmax.

Значения Wmin и Wmax предварительно рассчитывают по формулам (1)÷(6). Жидкость стекает свободно под действием силы тяжести. При поддержании скорости жидкости в рассчитанном интервале барботирования не наблюдается.

В углеводородный поток, на выходе из реактора, содержащий непрореагировавший изобутан и продукты реакции, вводят дополнительное тепло за счет подачи пара через змеевик таким образом, чтобы разделить продукты реакции на два потока: паровой, полученный путем испарения изобутана, который затем конденсируют и направляют на , и жидкостной, представляющий собой алкилбензин, который выводят из реакционной системы. При этом увеличивается кратность циркуляции изобутана, и фактическое соотношение изобутан:бутен-1 на входе в каждый слой катализатора составляет 200:1 при общем соотношении по реактору 6:1.

Реакцию проводят в течение 36 ч.

Выход алкилбензина на пропущенные бутилены составляет 200% масс.

Октановое число по моторному методу в чистом виде составляет 93,9 пунктов.

Качество продуктов приведено в таблице 1.

Пример 4

В верхнюю часть восьмисекционного реактора с неподвижным гранулированным слоем катализатора, представляющего собой экструдаты цеолита Y в РЗЭНСа-форме диаметром 1,2 мм и длиной 3 мм, подают алкилируемый компонент (изобутан). Бутилены (олефины) подают восемью параллельными потоками на каждый слой катализатора через устройства, обеспечивающие хорошее смешение потока углеводорода (продуктов реакции алкилирования вместе с неиспарившимся изобутаном), выходящих из предыдущего слоя, и потока бутена-1. Температуру в зоне реакции держат 60°С, давление (0,85 МПа), что соответствует равновесному состоянию пар-жидкость углеводородной смеси. Пары изобутана при этом находятся в состоянии насыщения.

Количественное соотношение потоков устанавливают таким образом, что в целом по реактору расчетное соотношение изобутан:бутилены составляет 6:1, то есть изобутан берут в избытке. Выделяющееся тепло реакции снимают за счет испарения избыточного изобутана в каждой секции, что обеспечивает изотермические условия процесса.

Объемную скорость стекающей жидкости выбирают так, чтобы она составляла не менее Wmin и не более Wmax.

Значения Wmin и Wmax предварительно рассчитывают по формулам (1)÷(6). Жидкость стекает свободно под действием силы тяжести. При поддержании скорости жидкости в рассчитанном интервале барботирования не наблюдается.

В углеводородный поток, на выходе из реактора, содержащий непрореагировавший изобутан и продукты реакции, вводят дополнительное тепло за счет подачи пара через змеевик таким образом, чтобы разделить продукты реакции на два потока: паровой, полученный путем испарения изобутана, который затем конденсируют и направляют на рецикл и жидкостной, представляющий собой продукты реакции – алкилбензин, который выводят из реакционной системы. При этом увеличивается кратность циркуляции изобутана, и фактическое соотношение изобутан:бутен-1 на входе в каждый слой катализатора составляет 250:1 при общем соотношении по реактору 6:1.

Реакцию проводят в течение 36 ч.

Выход алкилбензина на пропущенные бутилены составляет 200% масс.

Октановое число по моторному методу в чистом виде составляет - 94,0 пунктов.

Качество продуктов приведено в таблице 1.

Пример 5

В верхнюю часть двухсекционного реактора с неподвижным гранулированным слоем катализатора, представляющего собой экструдаты цеолита X в Pd-РЗЭНСа-форме диаметром 2,0 мм и длиной 3 мм, подают алкилируемый компонент (изобутан). Бутилены (олефины) подают двумя параллельными потоками на каждый слой катализатора через устройства, обеспечивающие хорошее смешение потока углеводорода (продуктов реакции алкилирования вместе с неиспарившимся изобутаном), выходящих из предыдущего слоя, и потока бутена-1. Температуру в зоне реакции держат 90°С, давление (1,62 МПа), что соответствует равновесному состоянию пар-жидкость углеводородной смеси. Пары изобутана при этом находятся в состоянии насыщения. Количественное соотношение потоков устанавливают таким образом, что в целом по реактору расчетное соотношение изобутан:бутилены составляет 6:1, то есть изобутан берут в избытке. Выделяющееся тепло реакции снимают за счет испарения избыточного изобутана в каждой секции, что обеспечивает изотермические условия процесса.

Объемную скорость стекающей жидкости выбирают так, чтобы она составляла не менее Wmin и не более Wmax.

Значения Wmin и Wmax предварительно рассчитывают по формулам (1)÷(6). Жидкость стекает свободно под действием силы тяжести. При поддержании скорости жидкости в рассчитанном интервале барботирования не наблюдается.

В углеводородный поток, на выходе из реактора, содержащий непрореагировавший изобутан и продукты реакции, вводят дополнительное тепло за счет подачи пара через змеевик таким образом, чтобы разделить продукты реакции на два потока: паровой, полученный путем испарения изобутана, который затем конденсируют и направляют на рецикл, и жидкостной, представляющий собой продукты реакции – алкилбензин, который выводят из реакционной системы. При этом увеличивается кратность циркуляции изобутана, и фактическое соотношение изобутан:бутен-1 на входе в каждый слой катализатора составляет 100:1 при общем соотношении по реактору 6:1.

Реакцию проводят в течение 28 ч.

Выход алкилбензина на пропущенные бутилены составляет 198% масс.

Октановое число по моторному методу в чистом виде составляет - 93,7 пунктов.

Качество продуктов приведено в таблице 1.

Пример 6

В верхнюю часть десятисекционного реактора с неподвижным гранулированным слоем катализатора, представляющего собой экструдаты цеолита X в Ni-РЗЭНСа-форме диаметром 2,5 мм и длиной 3 мм, подают алкилируемый компонент (изобутан). Бутилены (олефины) подают десятью параллельными потоками на каждый слой катализатора через устройства, обеспечивающие хорошее смешение потока углеводорода (продуктов реакции алкилирования вместе с неиспарившимся изобутаном), выходящих из предыдущего слоя, и потока бутена-1. Температуру в зоне реакции держат 100°С, давление (1,70 МПа), что соответствует равновесному состоянию пар-жидкость углеводородной смеси. Пары изобутана при этом находятся в состоянии насыщения. Количественное соотношение потоков устанавливают таким образом, что в целом по реактору расчетное соотношение изобутан : бутилены составляет 6:1, то есть изобутан берут в избытке. Выделяющееся тепло реакции снимают за счет испарения избыточного изобутана в каждой секции, что обеспечивает изотермические условия процесса.

Объемную скорость стекающей жидкости выбирают так, чтобы она составляла не менее Wmin и не более Wmax.

Значения Wmin и Wmax предварительно рассчитывают по формулам (1)÷(6). Жидкость стекает свободно под действием силы тяжести. При поддержании скорости жидкости в рассчитанном интервале барботирования не наблюдается.

В углеводородный поток, на выходе из реактора, содержащий непрореагировавший изобутан и продукты реакции вводят дополнительное тепло за счет подачи пара через змеевик таким образом, чтобы разделить продукты реакции на два потока: паровой, полученный путем испарения изобутана, который затем конденсируют и направляют на рецикл и жидкостной, представляющий собой продукты реакции – алкилбензин, который выводят из реакционной системы. При этом увеличивается кратность циркуляции изобутана, и фактическое соотношение изобутан:бутен-1 на входе в каждый слой катализатора составляет 500:1 при общем соотношении по реактору 6:1.

Реакцию проводят в течение 46 ч.

Выход алкилбензина на пропущенные бутилены составляет 204% масс.

Октановое число по моторному методу в чистом виде составляет 94,5 пунктов.

Качество продуктов приведено в таблице 1.

Пример 7

В верхнюю часть трехсекционного реактора с неподвижным гранулированным слоем катализатора, представляющего собой экструдаты цеолита Y в Pt-РЗЭНСа-форме диаметром 1,6 мм и длиной 3 мм, подают алкилируемый компонент (изобутан). Бутилены (олефины) подают тремя параллельными потоками на каждый слой катализатора через устройства, обеспечивающие хорошее смешение потока углеводорода (продуктов реакции алкилирования вместе с неиспарившимся изобутаном), выходящих из предыдущего слоя, и потока бутена-1. Температуру в зоне реакции держат 80°С, давление (1,32 МПа), что соответствует равновесному состоянию пар-жидкость углеводородной смеси. Пары изобутана при этом находятся в состоянии насыщения. Количественное соотношение потоков устанавливают таким образом, что в целом по реактору расчетное соотношение изобутан : бутилены составляет 6:1, то есть изобутан берут в избытке. Выделяющееся тепло реакции снимают за счет испарения избыточного изобутана в каждой секции, что обеспечивает изотермические условия процесса.

Объемную скорость стекающей жидкости выбирают так, чтобы она составляла не менее Wmin и не более Wmax.

Значения Wmin и Wmax предварительно рассчитывают по формулам (1)÷(6). Жидкость стекает свободно под действием силы тяжести. При поддержании скорости жидкости в рассчитанном интервале барботирования не наблюдается.

В углеводородный поток, на выходе из реактора, содержащий непрореагировавший изобутан и продукты реакции, вводят дополнительное тепло за счет подачи пара через змеевик таким образом, чтобы разделить продукты реакции на два потока: паровой, полученный путем испарения изобутана, который затем конденсируют и направляют на рецикл, и жидкостной, представляющий собой продукты реакции – алкилбензин, - который выводят из реакционной системы. При этом увеличивается кратность циркуляции изобутана, и фактическое соотношение изобутан:бутен-1 на входе в каждый слой катализатора составляет 800:1 при общем соотношении по реактору 6:1.

Реакцию проводят в течение 42 ч.

Выход алкилбензина на пропущенные бутилены составляет 204% масс.

Октановое число по моторному методу в чистом виде составляет - 95,1 пунктов.

Качество продуктов приведено в таблице 1.

Пример 8 (сравнительный)

В верхнюю часть шестисекционного реактора с неподвижным гранулированным слоем катализатора, представляющего собой цилиндрики цеолита Y в РЗЭНСа-форме высотой 5 мм и диаметром 5 мм, подают алкилируемый компонент (изобутан).

Бутилены (олефины) подают шестью параллельными потоками на каждый слой катализатора через устройства, обеспечивающие хорошее смешение потока углеводорода (продуктов реакции алкилирования вместе с неиспарившимся изобутаном), выходящих из предыдущего слоя, и потока бутиленов. Температуру в зоне реакции держат 80°С, давление (1,32 МПа), что соответствует равновесному состоянию пар-жидкость углеводородной смеси. Пары изобутана при этом находятся в состоянии насыщения. Количественное соотношение потоков устанавливают таким образом, что в целом по реактору расчетное соотношение изобутан : бутилены составляет 6:1, то есть изобутан берут в избытке. Выделяющееся тепло реакции снимают за счет испарения избыточного изобутана в каждой секции, что обеспечивает изотермические условия процесса.

Осуществляют расчет Wmin и Wmax по формулам (1)÷(6), но не поддерживают скорость жидкости в этих пределах. Значение реальной объемной скорости жидкости не достигает значения Wmin. Углеводородный поток, на выходе из реактора содержащий непрореагировавший изобутан и продукты реакции, разделяют на два потока: паровой, полученный путем испарения изобутана, который затем конденсируют и направляют на рецикл, и жидкостной, представляющий собой продукты реакции – алкилбензин, который выводят из реакционной системы.

Сконденсировавшийся изобутан в виде рециркулята (орошения) смешивают со свежим потоком изобутана и подают в реакционную зону, а именно в слой катализатора.

При этом увеличивается кратность циркуляции изобутана, и фактическое соотношение изобутан:бутены на входе в каждый слой катализатора составляет (70-75):1 при общем соотношении по реактору 6:1.

Реакцию проводят в течение 12 ч.

Выход алкилбензина на пропущенные бутилены составляет 190% масс.

Октановое число по моторному методу в чистом виде составляет - 92,0 пунктов.

Результаты приведены в таблице 1.

Пример 9 (сравнительный)

В верхнюю часть шестисекционного реактора с неподвижным гранулированным слоем катализатора, представляющего собой цилиндрики цеолита Y в РЗЭНСа-форме высотой 5 мм и диаметром 5 мм, подают алкилируемый компонент (изобутан). Бутилены (олефины) подают четырьмя параллельными потоками на каждый слой катализатора через устройства, обеспечивающие хорошее смешение потока углеводорода (продуктов реакции алкилирования вместе с неиспарившимся изобутаном), выходящих из предыдущего слоя, и потока бутена-1. Температуру в зоне реакции держат 80°С, давление (1,32 МПа), что соответствует равновесному состоянию пар-жидкость углеводородной смеси. Пары изобутана при этом находятся в состоянии насыщения. Количественное соотношение потоков устанавливают таким образом, что в целом по реактору расчетное соотношение изобутан : бутилены составляет 6:1, то есть изобутан берут в избытке. Выделяющееся тепло реакции снимают за счет испарения избыточного изобутана в каждой секции, что обеспечивает изотермические условия процесса.

Осуществляют расчет Wmin и Wmax по формулам (1)÷(6), но не поддерживают скорость жидкости в этих пределах. Значение реальной объемной скорости жидкости превышает значение Wmax.

В углеводородный поток, на выходе из реактора, содержащий непрореагировавший изобутан и продукты реакции, вводят дополнительное тепло за счет подачи пара через змеевик таким образом, чтобы разделить продукты реакции на два потока: паровой, полученный путем испарения изобутана, который затем конденсируют и направляют на рецикл, и жидкостной, представляющий собой продукты реакции – алкилбензин, который выводят из реакционной системы.

При этом увеличивается кратность циркуляции изобутана, и фактическое соотношение изобутан:бутен-1 на входе в каждый слой катализатора составляет 200:1 при общем соотношении по реактору 6:1.

Реакцию проводят в течение 24 ч.

Выход алкилбензина на пропущенные бутилены составляет 195% масс.

Октановое число по моторному методу в чистом виде составляет 93,0 пункта.

Качество продуктов приведено в таблице 1.

Как следует из приведенных примеров, для получения удовлетворительных результатов процесса алкилирования изобутана бутиленами необходимо поддерживать объемную скорость стекающей жидкости в промежуточных границах, ее допускаемых, - минимального и максимального значений.

Из сравнения примеров 1 и 9 видно, что тот же выход алкилбензина и тот же срок службы катализатора, выраженный через продолжительность межрегенерационного пробега, в примере по прототипу обеспечивается при соотношении изобутан: бутилены на входе в каждый слой 200:1 (в примере по изобретению то же соотношение составляет 70:1). Таким образом, требуемые выход продуктов и срок службы катализатора при слишком высокой скорости стекания жидкости могут быть достигнуты лишь за счет увеличения доли рецикла, то есть снижения производительности процесса. Октановое число в способе по прототипу, несмотря на это, остается более низким.

Из сравнения примеров 1 и 8, в которых процесс алкилирования изобутана осуществляют в одних и тех же условиях, включая равную кратность циркуляции, видно, что при недостаточной скорости жидкости падает октановое число, срок службы катализатора и выход алкилбензина.

Можно видеть, что при проведении алкилирования изобутана бутиленами по прототипу - без поддержания скорости жидкости в требуемых пределах - процесс станет нестабильным. Выход и октановое число продукта окажутся непостоянными, а катализатор потребует более частой регенерации.

Проведение алкилирования изобутана предложенным способом обеспечивает повышение стабильности процесса при сохранении высокой активности катализатора в течение длительного времени.

Способ алкилирования изобутана в трехфазном реакторе с неподвижным слоем катализатора, включающий подачу бутиленов на каждый слой катализатора и изобутана, взятого в избытке по отношению к бутиленам, в верхнюю часть реактора, проведение реакции алкилирования при температуре и давлении, которые выбирают так, чтобы пары изобутана находились в состоянии насыщения, а дополнительное испарение жидкости в реакторе под действием тепла реакции обеспечивало изотермические условия процесса алкилирования, отделение и возвращение на рецикл непрореагировавшего изобутана и вывод полученного алкилбензина, отличающийся тем, что жидкость стекает свободно без барботирования под действием силы тяжести при объемной скорости, составляющей

не более значения Wmax, равного

Wmax=0,787D2[ε(1-εг)]{[ρжг/(1-εгг]Umax}/ρж,

и не менее значения Wmin, равного

Wmin=0,787D2[ε(1-εг)]{[ρжг/(1-εгг]Umin}/ρж,

где Wmax - максимальная объемная скорость стекающей жидкости, м3/с,

где Wmin - минимальная объемная скорость стекающей жидкости, м3/с,

D - внутренний диаметр реактора, м,

ε - порозность слоя катализатора,

εг - паросодержание в реакторе в условиях проведения реакции,

ρж - плотность жидкости на входе в реактор, кг/м3,

ρг - плотность паров в реакторе в условиях проведения реакции, кг/м3,

Umax - максимальная линейная скорость свободно стекающей жидкости, м/с, рассчитываемая исходя из системы уравнений

где Н - высота слоя катализатора, м,

g - ускорение свободного падения, м/с2,

Δрпот - потерянный напор, Па,

dp - средний диаметр частицы катализатора, м,

μ - динамическая вязкость жидкости, Па/с,

Umin - минимальная линейная скорость свободно стекающей жидкости, м/с, равная

где Ga - критерий Галилея, определяемый по формуле



 

Похожие патенты:

Настоящее изобретение относится к способу восстановления связи С-O до соответствующей связи С-Н в субстрате при помощи донора водорода, катализатора на основе переходного металла и основания в растворяющей смеси, содержащей по меньшей мере два растворителя.

Изобретение относится к химической промышленности, в том числе нефтехимии и газохимии, и может быть использовано при приготовлении катализаторов для процесса получения углеводородов из СО и H2 по методу Фишера-Тропша.

Изобретение относится к способу получения C2-C36 линейных или разветвленных углеводородов и кислородсодержащих углеводородов. Способ включает: а) проведение эндотермической реакции газификации с реагентом из биомассы при температуре менее или равной примерно 750 K, с получением синтез-газа, при этом температура является оптимальной для реакции утилизации синтез-газа или для реакции образования углерод-углеродных связей; б) проведение экзотермической реакции утилизации синтез-газа или реакции образования углерод-углеродных связей с синтез-газом стадии (а), без какой-либо промежуточной обработки синтез-газа стадии (а), при температуре выше или равной температуре реакции газификации, выполняемой на стадии (а), где реакция производит C2-C36 линейные или разветвленные углеводороды или кислородсодержащие углеводороды и теплоту, и в) использование теплоты, выделяемой при реакции утилизации синтез-газа или реакции образования углерод-углеродных связей стадии (б), в эндотермической реакции газификации стадии (а).

Изобретение относится к электрокаталитическому способу получения углеводородов, в частности диенов, олефинов, алканов и спиртов, путем гальваностатического электролиза смеси 10-ундециленовой и уксусной кислот, которые частично нейтрализованы и находятся в виде соли.

Изобретение относится к способу получения углеводородов С2+ превращением метана в коаксиальном реакторе с одним диэлектрическим барьером под действием плазмы барьерного разряда.

Изобретение относится к вариантам способа получения С2-С36 линейных или разветвленных углеводородов и кислородсодержащих углеводородов. .
Изобретение относится к катализатору для осуществления способа гидрирования олефинов и кислородсодержащих соединений в составе синтетических жидких углеводородов, полученных по методу Фишера-Тропша, содержащему пористый носитель из -оксида алюминия с нанесенным на него каталитически активным компонентом - палладием, характеризующемуся тем, что поры носителя имеют эффективный радиус от 4,0 до 10,0 нм, причем содержание примесей посторонних металлов в носителе не превышает 1500 ррм, а содержание палладия в катализаторе составляет 0,2-2,5 мас.%.
Изобретение относится к способу получения бензина или его компонентов с октановым числом 92-93 по исследовательскому методу из сырья, содержащего диметиловый эфир, в присутствии катализаторов на основе цеолита типа ZSM-5 с SiO2/Al 2O3=60-83, содержащего не более 23,0% оксида алюминия, не более 0,09% оксида натрия и цинк в пределах 2-5%, при этом процесс ведут при температуре 300-400°С и давлении 2,5-4,5 МПа.

Изобретение относится к способу переработки газообразных алканов путем воздействия ионизирующим излучением на содержащую их сырьевую смесь с получением продуктов радиолиза, в процессе которого из продуктов радиолиза постоянно удаляют водород и конденсируемую фракцию, являющуюся целевым продуктом, а оставшуюся часть смешивают с исходной смесью, содержащей алканы, с получением сырьевой смеси, характеризующемуся тем, что воздействие ионизирующим излучением осуществляют при температуре реакционной смеси не ниже минимальной температуры конденсации низших спиртов и эфиров и не выше 350°С.
Изобретение относится к способу приготовления катализатора для синтеза Фишера-Тропша, включающему следующие стадии а) - d): а) предварительную обработку оксида алюминия или диоксида кремния в сферической форме посредством пропитки в водном растворе с рН 7 или ниже, который выбран из группы, состоящей из водного раствора азотной кислоты, водного раствора уксусной кислоты, водного раствора серной кислоты, водного раствора соляной кислоты, ионно-обменной воды и дистиллированной воды; b) пропитку обработанного оксида алюминия или диоксида кремния в растворе циркония, находящемся в объёмном количестве, в два или большее число раз превышающем объем оксида алюминия или диоксида кремния, чтобы нанести цирконий на обработанный оксид алюминия или диоксид кремния, с) отжиг оксида алюминия или диоксида кремния с нанесённым на него цирконием с получением носителя, в котором цирконий в виде оксида селективно нанесен вблизи внешней поверхности носителя металла, d) нанесение на носитель одного или нескольких типов металлов, выбранных из группы, состоящей из кобальта и рутения в количестве от 3 до 50 масс.

Изобретение относится к устройству для алкилирования изобутана олефинами на твердом катализаторе в виде ректификационной колонны, содержащему ректификационные секции и реакционные секции с твердым катализатором, которые имеют питающий канал и переливной карман, связанные с ректификационными секциями.

Изобретение относится к галогеналюминатному соединению четвертичного фосфония формулы (I), в которой R1-R3 представляют собой одинаковые алкильные группы, содержащие от 1 до 8 атомов углерода, R4 отличается от R1-R3 и выбран из С4-С12 алкилов, а X представляет собой галоген.

Изобретение относится к области получения катализаторов алкилирования изобутана изобутеном. Описывается способ получения катализатора на основе цеолита типа NaNH4Y с остаточным содержанием Na2O не более 0,8 мас.%, включающий пропитку при перемешивании кристаллов цеолита водным раствором нитрата лантана до содержания в цеолите 3,0 мас.% лантана, смешение со второй суспензией, полученной пептизацией водным раствором HNO3 до рН 1-3 порошка гидроксида алюминия (псевдобемита), гранулирование формовочной массы, провяливание при комнатной температуре 18-24 ч, сушку с подъемом температуры 2 град/мин и выдержкой при 110±10°C не менее 5 ч, прокаливание с подъемом температуры 10 град/мин, выдержкой при 280±10°C не менее 4 ч и при 510±10°C не менее 4 ч; порошки цеолита и гидроксида алюминия имеют размер частиц менее 20 мкм, во вторую суспензию дополнительно вводят раствор сульфата циркония и метасиликат алюминия с размером частиц менее 20 мкм, а формовочную массу с плотностью 1,25±0,05 г/см3 гранулируют методом сферообразования в углеводородной жидкости с последующей коагуляцией в растворе аммиака с концентрацией 17±0,5 мас.%, содержащего 5,5±0,2 мас.% парамодибдата или паравольфрамата аммония, при следующем массовом соотношении компонентов в формовочной массе, %: цеолит типа NaNH4Y - (9,2-10,7), нитрат лантана (0,67-0,77), гидроксид алюминия (псевдобемит) - (11,3-12,4), сульфат циркония - (9,0-12,8), метасиликат алюминия - (0,73-1,0), азотная кислота - (0,36-0,4), вода - до 100.

Изобретение относится к области получения катализаторов алкилирования изобутана изобутеном. Описывается способ приготовления катализатора на основе цеолита типа NaNH4Y с остаточным содержанием оксида натрия не более 0,8 мас.%, включающий пропитку при перемешивании кристаллов цеолита с водным раствором нитрата лантана в количестве, обеспечивающем содержание лантана в цеолите 3,0 мас.%, смешение образовавшейся суспензии со второй суспензией, полученной пептизацией водным раствором азотной кислоты до рН 1-3 порошка гидроксида алюминия, гранулирование формовочной массы, провяливание при комнатной температуре 18-24 ч, сушку с подъемом температуры 2 градуса в минуту и выдержкой при 110±10°С не менее 5 ч и прокаливание с подъемом температуры 10 градусов в минуту и выдержкой при 280±10°С не менее 4 ч и при 510±10°С не менее 4 ч; порошки цеолита и гидроксида алюминия псевдобемитной модификации имеют размер частиц менее 40 мкм, а в формовочную массу дополнительно вводят при перемешивании порошок сульфатированного тетрагонального диоксида циркония с содержанием 5 мас.% (SO4)2 2- и с частицами размером менее 40 мкм, а также микроигольчатый волластонит немодифицированный - природный силикат кальция CaSiO3 с характеристическим отношением l:d=(12-20):1 и длиной микроигл l<20 мкм, при следующем массовом соотношении компонентов в формовочной массе, %: цеолит типа NaNH4Y - (26,14-30,68), нитрат лантана (1,90-2,22), гидроксид алюминия (псевдобемит) - (14,88-19,40), сульфатированный оксид циркония - (9,90-14,61) и микроигольчатый волластонит - природный силикат кальция CaSiO3, азотная кислота - (0,44-0,57), вода - до 100.

Изобретение относится к способу алкилирования изопарафинов. Способ включает: пропускание изопарафина, содержащего от 4 до 10 атомов углерода, в реактор алкилирования; и пропускание олефина, содержащего от 2 до 10 атомов углерода, в реактор алкилирования, где реактор алкилирования функционирует в условиях проведения реакции и содержит катализатор в виде ионной жидкости на фосфониевой основе для проведения реакции между олефином и изопарафином с получением алкилата, где ионная жидкость на фосфониевой основе представляет собой галогеналюминат четвертичного фосфония, который содержит органический катион на фосфониевой основе и неорганический анион и обладает структурой в форме PhR1R2R3R4, где R1, R2 и R3 включают идентичные алкильные группы, содержащие от 3 до 6 атомов углерода, а алкильная группа R4 содержит, по меньшей мере, на 1 атом углерода больше, чем алкильная группа R1, и имеет от 4 до 12 атомов углерода.
Изобретение относится к технологии производства катализаторов и может быть использовано для процесса алкилирования изопарафиновых углеводородов олефинами в нефтеперерабатывающей и нефтехимической отраслях промышленности.

Изобретение относится к способу получения алкилбензина путем алкилирования изобутана олефинами в каталитическом реакторе при повышенной температуре и давлении, в котором изобутан подают в верхнюю секцию реактора и последовательно пропускают через все секции с катализатором, а олефинсодержащее сырье распределяют на несколько потоков, число которых равно числу секций катализатора, и подают одновременно в секции с катализатором параллельными потоками для проведения реакции алкилирования, углеводородный поток, содержащий непрореагировавший изобутан и продукты реакции, разделяют на два потока: паровой, полученный путем испарения изобутана, который затем конденсируют и направляют на рецикл, и жидкостной, представляющий собой продукты реакции, который выводят из реакционной системы или частично направляют на рецикл.

Изобретение относится к способам получения катализаторов. .
Изобретение относится к химии гетерогенного катализа, в частности к процессам получения высокооктанового компонента бензина при алкилировании бутан-бутиленовой фракции бутенами на гетерогенных катализаторах.
Изобретение относится к способу конверсии углеводородных соединений и, в частности, к применению цеолитного катализатора для алкилирования олефин/парафин или ароматического алкилирования.

Изобретение относится к загрузке каталитических труб, используемых в трубчатых реакторах, проводящих сильноэндотермические или сильноэкзотермические реакции, и применимо к реактору конверсии с водяным паром природного газа или различных углеводородных фракций с получением синтез-газа.

Изобретение относится к способу алкилирования изобутана в трехфазном реакторе с неподвижным слоем катализатора бутилены подают на каждый слой катализатора, а изобутан, взятый в избытке, в верхнюю часть реактора, проводят реакцию алкилирования, отделяют и возвращают на рецикл непрореагировавпшй изобутан и выводят полученный алкилбензин. Температуру и давление выбирают так, чтобы пары изобутана находились в состоянии насыщения, а дополнительное испарение жидкости в реакторе под действием тепла реакции обеспечивало изотермические условия процесса алкилирования. Жидкость стекает свободно без барботирования под действием силы тяжести при объемной скорости, составляющей не более Wmax, равного , и не менее Wmin, равного , где D - сечение слоя катализатора, м, ε - порозность слоя катализатора, εг - паросодержание в реакторе в условиях проведения реакции, ρж - плотность жидкости на входе в реактор, кгм3, ρг - плотность паров в реакторе в условиях проведения реакции, кгм3, - максимальная линейная скорость свободно стекающей жидкости Umax, мс, рассчитываемая исходя из системы уравнений , ,где Н - высота слоя катализатора, м, g - ускорение свободного падения, мс2, Δрпот - потерянный напор, Па, dp - средний диаметр частицы катализатора, м, μ - вязкость жидкости, Пас. Минимальная линейная скорость свободно стекающей жидкости Umin, мс равна, где Ga - критерий Галилея, определяемый по формуле:, μ - динамическая вязкость жидкости, Пас, ρж - плотность, гм3; dp - средний диаметр частицы катализатора, м. Технический результат: повышение стабильности процесса при сохранении высокой активности катализатора в течение длительного времени. 1 ил., 1 табл., 7 ил.

Наверх