Электродетонатор для прострелочно-взрывных работ, защищенный от блуждающих токов

Изобретение относится к средствам инициирования и предназначено для инициирования детонирующего шнура, шашечных зарядов взрывчатых веществ и т.п. в негерметичной прострелочно-взрывной аппаратуре, использующейся преимущественно при геологоразведке и разработке нефтяных и газовых месторождений. Устройство включает капсюль-детонатор и электровоспламенитель, снабженный трансформатором, обеспечивающим защиту от блуждающих токов. Трансформатор представляет собой сердечник из магнитодиэлектрического материала на основе Mo-пермаллоя, на который намотаны две обмотки. Первичная обмотка подключается к линии электропитания, вторичная замкнута на мостик накаливания электровоспламенителя. Количество витков в первичной обмотке W1 определяется соотношением W1≥(50000/μ)0,5, где μ - начальная магнитная проницаемость материала сердечника, а соотношение витков первичной и вторичной обмоток составляет не менее 2 и не более 4. Повышается гидробаростойкость электродетонатора, что обеспечивает возможность применения его в более глубоких скважинах. 1 табл., 1 ил.

 

Изобретение относится к средствам инициирования и предназначено для инициирования детонирующего шнура, шашечных зарядов взрывчатых веществ и т.п. в составе негерметичной прострелочно-взрывной аппаратуры (ПВА), использующейся при геологоразведке и разработке нефтяных и газовых месторождений. Функционирование ПВА происходит в скважинах на глубине несколько километров, что обуславливает воздействие высокой температуры и давления.

Известен патрон герметичный ПГ-170 [1]. В его состав входит капсюль-детонатор (КД) и электровоспламенитель (ЭВ) с мостиком накаливания, на который нанесен воспламенительный состав. Мостик непосредственно подключается к линии электропитания - геофизическому кабелю. КД представляет собой оболочку, содержащую инициирующий и основной заряды взрывчатого вещества.

Функционирует патрон ПГ-170 следующим образом.

При подаче переменного или постоянного электрического тока за счет джоулева тепла происходит разогрев мостика накаливания ЭВ и воспламенение состава, нанесенного на мостик. Форс газообразных продуктов воспламеняет инициирующий заряд КД, что приводит к его взрыву и инициированию основного заряда. Последний создает взрывной импульс, обеспечивающий выполнение возложенных на патрон функций.

Патрон ПГ-170 обладает высокими эксплуатационными характеристиками (термостойкость 170°C, гидробаростойкость150 МПа). Однако применение его ограничено из-за низкой стойкости к блуждающим токам различного происхождения (гальванического, электростатического, токов утечки и наводки). Безопасный ток патрона (значение тока, не вызывающего срабатывание изделия) составляет 0,2 А при сопротивлении мостика от 1 до 4 Ом, что соответствует минимально допустимому уровню, принятому для ЭД промышленного назначения [2].

Следствием низкого уровня защиты от блуждающих токов являются и дополнительные издержки при ведении прострелочно-взрывных работ. Они обусловлены тем, что согласно Правилам безопасности [3] при использовании изделий, чувствительных к блуждающим токам, необходимо обесточивать близкорасположенное электрооборудование и осветительные приборы на время спуска ПВА в скважину. Время спуска ПВА на геофизическом кабеле составляет несколько часов, количество спусков не ограничено, поэтому работа на соседних скважинах может прекращаться на длительное время.

Известен электродетонатор Dynawell 1423HNS [4], выпускаемый фирмой DYNAenergetics Gmbh & Со. Данный электродетонатор по конструкции и механизму функционирования аналогичен патрону ПГ-170 за тем отличием, что в его электрическую цепь последовательно мостику включен резистор, увеличивающий общее сопротивление изделия до (50±2) Ом. Безопасный ток при этом составляет также 0,2 А, но безопасное значение разности потенциалов увеличивается более чем в 10 раз. Тем самым вероятность несанкционированного срабатывания под действием блуждающих токов уменьшается.

Еще более безопасным является патрон герметичный нечувствительный ПГН-150 [5], принятый за прототип настоящего изобретения. Его конструкция включает КД и ЭВ с мостиком накаливания, снабженный трансформатором, выполняющим функции узла защиты от блуждающих токов. Трансформатор состоит из кольцевого сердечника из феррита марки НМ 2000, первичной обмотки из 6 витков и вторичной обмотки из 2 витков. Концы вторичной обмотки присоединены к мостику накаливания ЭВ. Концы первичной обмотки через токопроводящие элементы подключаются к линии электропитания. На мостик нанесен воспламенительный состав. КД представляет собой оболочку, содержащую инициирующий и основной заряды взрывчатых веществ. Патрон используется в составе системы, включающей прибор контроля ТЕСТ-ЭДТ-А и прибор взрывной высокочастотный ПВВ-1.

Механизм функционирования ПГН-150 следующий.

При подаче на первичную обмотку переменного напряжения в ней возникает электрический ток, создающий магнитный поток, пронизывающий витки вторичной обмотки и индуцирующий в них э.д.с. В мостике, замкнутом на вторичную обмотку, возникает ток. Если его величина достигает значения тока воспламенения, процесс развивается так же, как в аналогах: мостик разогревается, воспламеняет нанесенный на мостик состав, затем воспламеняется и взрывается инициирующий заряд КД, что приводит к детонации основного заряда КД. Если ток в мостике оказывается меньше безопасного тока, происходит отказ.

Величина индуцированного тока зависит от частоты. Как показано в работе [6], при частоте тока в линии электропитания до 1 кГц и более 10 МГц ток в мостике прототипа не может превысить безопасное значение. Таким образом, обеспечивается защита от блуждающих токов низкой частоты, в частности постоянных токов гальванического происхождения и токов утечки, имеющих, как правило, частоту 50 Гц, а также от блуждающих токов высокой частоты, наводимых электромагнитными полями.

Максимальные значения тока в мостике достигаются в диапазоне частот от 50 кГц до 500 кГц. Однако для подрыва ПГН-150 используют электрический сигнал меньшей частоты, так как с увеличением частоты увеличивается индуктивное сопротивление линии электропитания и уменьшается ток в первичной обмотке. При длине линии электропитания, составляющей 2-6 км, оптимален сигнал частотой 15 кГц, вырабатываемый прибором ПВВ-1. Сигнал частотой около 50 кГц используют для контроля сопротивления мостика, осуществляемого с помощью прибора ТЕСТ-ЭДТ-А, подключаемого непосредственно к контактам ПГН-150.

Эффективная защита от постоянных блуждающих токов, переменных токов низкой (менее 1 кГц) и высокой (более 10 МГц) частоты определяет широкое применение патрона ПГН-150. Однако недостаточная гидробаростойкость, составляющая 50 МПа, накладывает существенные ограничения. Учитывая, что плотность скважинной жидкости составляет до 2000 кг/м, давлению 50 МПа может соответствовать высота столба жидкости 2,5 км. Между тем глубина нефтяных и газовых скважин нередко превышает 5 км. Ограничение по гидробаростойкости обусловлено магнитоупругим эффектом, состоящим в изменении намагниченности магнетика под действием механических деформаций. С ростом давления деформация увеличивается, что приводит к снижению коэффициента полезного действия (КПД) трансформатора, уменьшению тока в мостике и вероятности срабатывания. Этому способствует оболочка, окружающая сердечник, обеспечивающая неравномерное распределение воздействующих на него усилий.

Цель настоящего изобретения состоит в повышении гидробаростойкости и, соответственно, расширении области применения ЭД с узлом защиты от блуждающих токов трансформаторного типа.

Поставленная цель достигается тем, что в качестве материала сердечника использован магнитодиэлектрик на основе Mo-пермаллоя, количество витков в первичной обмотке трансформатора W1 определяется соотношением W1≥(50000/μ)0,5, где μ - начальная магнитная проницаемость материала сердечника, а соотношение количества витков первичной и вторичной обмоток W1/W2 оставляет от 2 до 4.

Пример предлагаемого ЭД представлен на фиг. 1. Он включает КД 1 и ЭВ 2, снабженный трансформатором, состоящим из кольцевого сердечника 3 из магнитодиэлектрика на основе Mo-пермаллоя с начальной магнитной проницаемостью μ, равной 140±10%, вторичной обмотки 4 из семи витков, замкнутой на мостик накаливания 5, и первичной обмотки 6 из двадцати одного витка, концы которой присоединены к гильзе 7 и штырю 8, являющимися токопроводящими элементами, подключаемыми к линии электропитания. На мостик нанесен воспламенительный состав 9. КД 1 содержит гильзу 7, снаряженную взрывчатыми веществами 10.

Механизм функционирования предлагаемого ЭД не отличается от прототипа, патрона ПГН-150. Как при малой (до 1 кГц), так и при большой (более 10 МГц) частоте тока в линии электропитания из-за очень низкого КПД трансформатора ток в мостике не превышает безопасное значение практически при любых значениях тока в линии питания (первичной обмотке). В областях, примыкающих к частоте 15 кГц, КПД трансформатора достаточно большой, что обеспечивает достижение тока воспламенения в мостике ЭВ при относительно небольших значениях тока в линии питания, например, при использовании прибора ПВВ-1.

Магнитная проницаемость сердечника из магнитодиэлектрика на основе Mo-пермаллоя при воздействии давления не изменяется. Ограничения по глубине применения ЭД, обусловленные магнитоупругим эффектом, присущим сердечнику пртотипа, снимаются, что позволяет вести прострелочно-взрывные работы с предлагаемым ЭД в более глубоких скважинах. Эксперименты проводились как на сердечниках в состоянии поставки, так и на сердечниках в составе ЭВ.

Количество витков в первичной обмотке трансформатора W1 определяется соотношением W1≥(50000/μ)0,5, основанным на расчетных и эмпирических данных, полученных для сердечников с типоразмерами, пригодными для использования в ЭД. При меньшем количестве витков в первичной обмотке индукционная связь между обмотками становится достаточно слабой. Это приводит к снижению надежности срабатывания ЭД до неприемлемого уровня (при использовании прибора ПВВ-1), а также к возрастанию погрешности измерений сопротивления мостика, выполняемых в процессе производства ЭД. Дефектные изделия могут попадать потребителю, а годные - в брак.

Соотношение количества витков первичной и вторичной обмоток W1/W2 должно составлять от 2 до 4. Как видно из данных таблицы 1, полученных для ЭД, представленного на фиг. 1, с мостиком накаливания сопротивлением (0,75±0,25) Ом, при частоте сигнала 15 кГц, это соотношение оптимально: ток воспламенения в мостике ЭВ достигается при минимальных значениях тока в первичной обмотке и линии питания.

Список литературы

1. Щукин Ю.Г., Лютиков Г.Г., Поздняков З.Г. Средства инициирования промышленных взрывчатых веществ. - М.: Недра, 1996. - 155 с.

2. Технический регламент Таможенного Союза «О безопасности взрывчатых веществ и изделий на их основе» (TP ТС 028/2012) - http://www.rospromtest.ru.

3. Федеральные нормы и правила в области промышленной безопасности «Правила безопасности при взрывных работах», утвержденные приказом Федеральной службы по экологическому, технологическому и атомному надзору от 16 декабря 2013 г. N 605 - http://docs.cntd.ru/document/499066484.

4. Dynaenergetics. Dynawell Technical Information. - http://www. dynawell.com.

5. Комплект конструкторской документации на патрон ПГН-150 ВПД-Н ДИШВ.773955.504. Инв. №16105 ФГУП НПП «Краснознаменец», 1995 г.

6. Агеев М.А., Климова А.А., Попов В.К. Защищенность электродетонаторов типа ПВПД-Н и ПГН от несанкционированного срабатывания. // Каротажник - 2013, - Вып.7 (229). - С. 47-56.

Электродетонатор для прострелочно-взрывных работ, защищенный от блуждающих токов, содержащий капсюль-детонатор и электровоспламенитель, снабженный трансформатором, состоящим из сердечника, первичной обмотки, подключаемой к линии электропитания, и вторичной обмотки, замкнутой на мостик накаливания электровоспламенителя, отличающийся тем, что в качестве материала сердечника использован магнитодиэлектрик на основе Мо-пермаллоя, количество витков в первичной обмотке трансформатора W1 определяется соотношением W1≥(50000/μ)0,5, где μ - начальная магнитная проницаемость материала сердечника, а соотношение витков первичной и вторичной обмоток составляет не менее 2 и не более 4.



 

Похожие патенты:

Изобретение относится к области взрывных работ. Инициирующее устройство содержит гильзу с замедляющим зарядом, выполненным из трех частей, при этом одна из крайних частей выполнена в виде колпачка, снаряженного бризантным взрывчатым составом, скорость горения которого превышает скорость горения состава промежуточной части, выполненной с участками разного сечения, с размещением участка большего сечения со стороны колпачка.

Изобретение относится к средствам инициирования. Электродетонатор с электромеханической блокировкой содержит корпус с токовыводами, внутри которого размещен заряд взрывчатого вещества, инициатор с электровыводами, ключ, выполненный в виде двухкомпонентной микроэлектромеханической системы (далее - МЭМС-ключ), включающей две группы электрически независимых контактов, разомкнутых в исходном положении, срабатывающих под действием перегрузки, электронно-временной блок, обеспечивающий отсчет времени действия перегрузки, превышающей пороговый уровень, и формирующий электрический импульс на выходе в случае превышения длительности действия перегрузки, превышающей пороговый уровень, определенного временного значения, причем контактные группы выполнены таким образом, что замыкание контактов разных групп осуществляется под действием сил, направления действия которых для разных контактных групп взаимоперпендикулярны.

Изобретение относится к области вооружений, а именно к средствам инициирования, к низковольтным полупроводниковым электродетонаторам, и может быть использовано в качестве малогабаритного средства инициирования боеприпасов.

Изобретение относится к средствам инициирования. Электродетонатор безопасного обращения содержит корпус с токовыводами, внутри которого установлен заряд взрывчатого вещества, инициатор с электровыводами, МЭМС-ключи, выполненные в виде микроэлектромеханических систем, разомкнутые в исходном положении, срабатывающие под действием перегрузки, электронно-временной блок, обеспечивающий отсчет времени действия перегрузки, превышающей пороговый уровень, и формирующий управляющий сигнал на выходе в случае превышения регистрируемым временем определенной величины.

Изобретение относится к средствам инициирования, а именно к низковольтным полупроводниковым электродетонаторам, и может быть использовано в боеприпасах в качестве малогабаритного средства инициирования.

Изобретение относится к области вооружений и может быть использовано во взрывателях снарядов разрывного действия. Контактный датчик цели с функцией самоликвидации содержит корпус с электровводом и электровыводом, чувствительные элементы, выполненные в виде микроэлектромеханических систем (далее - МЭМС-устройство), срабатывание одного из них осуществляется при контакте снаряда с целью под действием линейной перегрузки, превышающей пороговый уровень.

Изобретение относится к области вооружений и может быть использовано во взрывателях боеприпасов разрывного действия. Контактный датчик цели содержит чувствительные элементы, выполненные в виде МЭМС-устройств, срабатывание которых осуществляется под действием линейной перегрузки, превышающей пороговый уровень, при этом вход МЭМС-устройства соединен с электровводом контактного датчика, выход МЭМС-устройства соединен с входом электронно-временного блока, обеспечивающего отсчет времени действия перегрузки, превышающей пороговый уровень, выход которого соединен с выходом контактного датчика.

Изобретение относится к области вооружений и может быть использовано во взрывателях боеприпасов разрывного действия. Контактное устройство содержит как минимум два, предпочтительно более, чувствительных элемента, выполненных в виде микроэлектромеханических систем (далее - МЭМС-устройство), срабатывающих под действием перегрузки.

Изобретение относится к области электрических средств воспламенения и предназначено для автономного воспламенения взрывчатых веществ, пиротехнических композиций и т.п., например, в фейерверках, или в составе электрических средств инициирования и пироавтоматики.

Изобретение относится к области вооружений, в частности к взрывателям боеприпасов. Головной взрыватель содержит датчик формирования команды на подрыв, источник питания, электронный блок, детонатор, предохранительно-исполнительный механизм, включающий электродетонатор, в корпусе которого установлены заряд взрывчатого вещества, инициатор, соединенный с электронным блоком.

Изобретение относится к детонирующим устройствам. Безопасный электродетонатор для пристрелочно-взрывной аппаратуры содержит установленный в гнезде электроввод, состоящий из двух контактов, соединенных на торце мостиком накаливания, цилиндрический корпус, пусковой и основной заряды и сквозной осевой канал.

Изобретение относится к области взрывных работ, в частности к электрическому взрыванию зарядов, и может быть использовано в горной промышленности, строительстве и других областях.

Электродетонатор относится к области безопасных средств взрывания, а именно к низковольтным мостиковым электродетонаторам, и может быть использовано в качестве малогабаритного средства инициирования при проведении взрывных работ.

Изобретение относится к способам изготовления электрических инициирующих элементов, а более конкретно к способам изготовления электромеханических инициаторов. .

Изобретение относится к устройствам для подрыва бризантных взрывчатых веществ - электродетонаторам с взрывающимся мостиком. .

Изобретение относится к средствам инициирования и предназначено для инициирования детонирующего шнура в герметичной прострелочно-взрывной аппаратуре. .

Изобретение относится к электрическим средствам инициирования и может быть использовано в средствах воспламенения пороховых зарядов к боеприпасам, патронам стрелкового оружия, патронам малокалиберной артиллерии, взрывным боеприпасам, детонаторам, фейерверкам.

Изобретение относится к области электрических средств инициирования и может быть применено при разработке конструкций пиропатронов, предназначенных для использования, например, в системах вскрытия, отделения, отцепления и т.д.

Изобретение относится к области электрических средств инициирования и может быть применено при разработке конструкций пиропатронов, предназначенных для использования, например, в системах вскрытия, отделения, отцепления и т.д.

Изобретение относится к средствам взрывания. .

Группа изобретений относится к области прострелочно-взрывных работ. Устройство для перфорации скважин содержит по меньшей мере один перфорационный заряд; инициирующее устройство, которое содержит баллистическую цепь, приспособленную для поджигания по меньшей мере одного перфорационного заряда, при этом баллистическая цепь содержит детонатор и детонаторный шнур; и баллистический перекрывающий затвор, расположенный между детонатором и детонаторным шнуром, причем баллистический перекрывающий затвор предотвращает воспламенение детонаторного шнура, и при этом баллистический перекрывающий затвор выполнен с возможностью удаления из позиции между детонатором и детонаторным шнуром при поступлении команды с поверхности.

Изобретение относится к средствам инициирования и предназначено для инициирования детонирующего шнура, шашечных зарядов взрывчатых веществ и т.п. в негерметичной прострелочно-взрывной аппаратуре, использующейся преимущественно при геологоразведке и разработке нефтяных и газовых месторождений. Устройство включает капсюль-детонатор и электровоспламенитель, снабженный трансформатором, обеспечивающим защиту от блуждающих токов. Трансформатор представляет собой сердечник из магнитодиэлектрического материала на основе Mo-пермаллоя, на который намотаны две обмотки. Первичная обмотка подключается к линии электропитания, вторичная замкнута на мостик накаливания электровоспламенителя. Количество витков в первичной обмотке W1 определяется соотношением W1≥0,5, где μ - начальная магнитная проницаемость материала сердечника, а соотношение витков первичной и вторичной обмоток составляет не менее 2 и не более 4. Повышается гидробаростойкость электродетонатора, что обеспечивает возможность применения его в более глубоких скважинах. 1 табл., 1 ил.

Наверх