Способ производства холоднокатаного проката для автомобилестроения

Изобретение относится к области металлургии, конкретно к технологии производства холоднокатаного проката повышенной прочности из микролегированной стали, предназначенного для изготовления деталей автомобиля методом штамповки. Для повышения прочностных свойств при сохранении штампуемости, и для получения физико-механических свойств равномерных по длине и сечению полосы способ включает выплавку стали, разливку, горячую прокатку, охлаждение водой, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг в колпаковой печи и дрессировку, при этом выплавляют сталь, содержащую, мас.%: углерод 0,06-0,12, кремний - не менее 0,40, марганец - 1,10-1,50, хром - не менее 0,10, железо и неизбежные примеси - остальное, рекристаллизационный отжиг осуществляют до конечной температуры T=-1,1239×ε+665,42, где 1,1239 - эмпирический коэффициент, ε - степень обжатия при холодной прокатке, %, 665,42 - эмпирический коэффициент, после чего выдерживают под нагревательным колпаком с отключенными горелками не более 4 часов, затем с температуры не менее 580°C осуществляют ускоренное охлаждение под муфелем со скоростью 25-35°C/час. Кроме того, распаковку садки производят при температуре не более 90°C, а дрессировку осуществляют с обжатием 0,8-1,6%. 2 з.п. ф-лы, 3 табл.

 

Изобретение относится к области металлургии, конкретно к технологии производства холоднокатаного проката повышенной прочности из микролегированной стали, предназначенного для изготовления деталей автомобиля методом штамповки.

Известен способ отжига рулонов холоднокатаной низкоуглеродистой стали, включающий нагрев рулонов до температуры рекристаллизационного отжига, заданной по стендовой термопаре, выдержку при этой температуре, выдержку под колпаком с потушенными горелками и охлаждение согласно которому, температуру рекристаллизационного отжига под колпаком печи устанавливают 820°C по зональной термопаре, при этом температура по окончании нагрева рулона по стендовой термопаре составляет 670°C при температуре ядра рулона 650°C, а охлаждение рулонов до температуры 600°C по стендовой термопаре ведут со скоростью 16°С/ч, далее выдерживают рулоны под колпаком с потушенными горелками в течение 5 ч, затем от температуры 280°C по стендовой термопаре производят окончательное охлаждение водой (Патент РФ №2458153, C21D 1/26, C21D 9/67, опубл. 10.08.2012 г.).

Недостаток известного способа состоит в том, что он не обеспечивает требуемого уровня механических свойств холоднокатаного высокопрочного проката.

Известен способ рекристаллизационного отжига рулонов из стальных холоднокатаных полос по одностадийному режиму в колпаковой печи с защитной атмосферой, включающий нагрев стопы рулонов от температуры 190-210°C до температуры начала отжига, выдержку при понижении температуры до температуры конца отжига, отключение нагрева, снятие нагревательного колпака, охлаждение под муфелем, распаковку и последующее охлаждение на воздухе, согласно которому нагрев стопы рулонов от 190-210°C ведут со скоростью 25-80°C/ч до температуры начала отжига 610-670°C, осуществляют выдержку продолжительностью 7-36 ч при понижении температуры до температуры конца отжига 580-640°C, при этом температура начала отжига на 20-40°C выше температуры конца отжига, затем с температуры не более 550°C осуществляют ускоренное охлаждение под муфелем с продувкой его холодным защитным газом, распаковку производят при температуре не более 120°C. Кроме того, после отключения нагрева охлаждение стопы рулонов осуществляют под нагревательным колпаком не более 13 ч (Патент РФ №2445382, C21D 9/48, C21D 9/663, опубл. 20.03.2012 г.).

Недостаток известного способа состоит в том, что он не обеспечивает получение высококачественного холоднокатаного проката для автомобилестроения высоких категорий прочности на толщинах более 1, 0 мм.

Техническим результатом изобретения является повышение прочностных характеристик холоднокатаного проката при сохранении штампуемости, а также в получении физико-механических свойств, равномерных по длине и сечению полосы.

Указанный технический результат достигается тем, что в способе производства холоднокатаного проката для автомобилестроения, включающем выплавку стали, разливку, горячую прокатку, охлаждение водой, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг в колпаковой печи и дрессировку, согласно которому рекристаллизационный отжиг осуществляют до конечной температуры T=-1,1239×ε+665,42, где 1,1239 - эмпирический коэффициент, ε - степень обжатия при холодной прокатке, %, 665,42 - эмпирический коэффициент, после чего выдерживают под нагревательным колпаком с отключенными горелками не более 4 часов, затем с температуры не менее 580°C осуществляют ускоренное охлаждение под муфелем со скоростью 25-35°C/час, при этом выплавляют сталь следующего химического состава, мас. %:

углерод 0,06-0,12
кремний не менее 0,40
марганец 1,10-1,50
хром не менее 0,10
железо и неизбежные примеси остальное

Кроме того, распаковку садки производят при температуре не более 90°C, а дрессировку осуществляют с обжатием 0,8-1,6%.

Сущность изобретения заключается в следующем. На механические свойства холоднокатаного проката влияют как химический состав стали, так и режимы деформационно-термической обработки.

Углерод - один из упрочняющих элементов, При содержании углерода менее 0,06% прочностные свойства стали ниже допустимого уровня. Увеличение содержания углерода более 0,12% приводит к снижению пластичности стали, что недопустимо ввиду образования разрывов при штамповке.

Кремний применен как легирующий элемент, при содержании кремния менее 0,40% снижаются прочностные характеристики.

Марганец обеспечивает получение заданных механических свойств. При содержании марганца менее 1,10% прочность стали ниже допустимой. Увеличение содержания марганца более 1,50% чрезмерно упрочняет сталь, ухудшает ее пластичность.

Хром применен в стали как легирующий элемент, достаточное содержание которого обеспечивает в сталях при всех температурах легированного феррита. Легирование феррита сопровождается его упрочнением. Причем чем мельче зерно феррита, тем выше его прочность.

Хром входит в твердый раствор феррита и упрочняет его, образует устойчивые карбиды. Карбидообразующие элементы препятствуют росту зерна аустенита при нагреве. Сталь, легированная хромом, при одинаковой температуре сохраняет более высокую дисперсность карбидных частиц и соответственно большую прочность. При содержании хроме менее 0,10% невозможно обеспечить требуемый уровень прочности.

Математическая зависимость, связывающая температуру отжига с суммарным обжатием при холодной прокатке - эмпирическая и получена при обработке опытных данных. Данная зависимость позволяет рассчитать оптимальную температуру отжига, достаточную для полного протекания первичной рекристаллизации, но не достаточную для собирательной рекристаллизации. За счет этого обеспечивается равномерная по сечению микроструктура отожженного проката.

Выдержка под нагревательным колпаком с отключенными горелками не более 4 часов позволяет получить равномерную структуру по длине и сечению полосы при отжиге в колпаковых печах. Равномерная микроструктура позволяет получить максимальное относительное удлинение при сохранении высокой прочности.

Ускоренное охлаждение под муфелем с температуры не менее 580°C позволяет зафиксировать полученную оптимальную микроструктуру проката. При отклонении от данной температуры в структуре проката наблюдается существенная разнобалльность, и снижается относительное удлинение, а также есть вероятность получения дефекта поверхности «сварка».

Скорость охлаждения 25-35°C/час обусловлена получением требуемых свойств по длине и сечению полосы. При запредельных значениях скорости охлаждения растет вероятность получения неравномерной структуры, что, в свою очередь, приведет к разбросу значений механических свойств по длине и сечению полосы.

Максимальная температура распаковки 90°C выбрана из условия отсутствия окисления поверхности холоднокатаного проката при его дальнейшем охлаждении.

Дрессировка холоднокатаного проката с обжатием 0,8-1,6% обеспечивает оптимальный уровень механических свойств. Дрессировка с обжатием менее 0,8% приводит к появлению площадки текучести на диаграмме растяжения при испытании на разрыв, а значит к старению металла. Дрессировка с обжатием более 1,6% не обеспечивает необходимый уровень относительного удлинения.

Примеры реализации способа.

В кислородном конвертере выплавили стали, химический состав которых приведен в таблице 1. Выплавленную сталь разливали на машине непрерывного литья в слябы. Слябы нагревали в нагревательной печи с шагающими балками и прокатывали на непрерывном широкополосном стане 2000. Горячекатаные полосы на отводящем рольганге охлаждали водой до определенных температур и сматывали в рулоны. Охлажденные рулоны подвергали соляно-кислотному травлению в непрерывном травильном агрегате. Затем травленые полосы прокатывали на 5-клетевом стане. Холоднокатаные полосы отжигали в колпаковых печах с водородной защитной атмосферой. Распаковку садки производили при температуре 85°C. Отожженные полосы дрессировали с обжатием 1,2%. Технологические параметры и механические свойства холоднокатаного проката приведены в таблицах 2, 3. Механические свойства проката определяли на продольных образцах.

Из таблиц 1-3 видно, что в случае реализации предложенного способа (плавки №№ 1-3) на холоднокатаном прокате достигаются механические свойства, соответствующие классу прочности 420 МПа. При запредельных значениях заявленных параметров механические свойства проката класса прочности 420 получить не удалось.

1. Способ производства холоднокатаного проката, включающий выплавку стали, разливку, горячую прокатку, охлаждение водой, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг в колпаковой печи и дрессировку, отличающийся тем, что выплавляют сталь следующего химического состава, мас.%:

углерод 0,06-0,12
кремний не менее 0,40
марганец 1,10-1,50
хром не менее 0,10
железо и неизбежные примеси остальное,

при этом рекристаллизационный отжиг осуществляют путем нагрева рулонов до температуры Т=-1,1239×ε+665,42, где 1,1239 - эмпирический коэффициент, ε - степень обжатия при холодной прокатке, %, 665,42 - эмпирический коэффициент, выдерживают под нагревательным колпаком с отключенными горелками не более 4 часов, затем с температуры не менее 580°С осуществляют ускоренное охлаждение под муфелем со скоростью 25-35°С/час.

2. Способ по п. 1, отличающийся тем, что распаковку рулонов производят при температуре не более 90°С.

3. Способ по п. 1, отличающийся тем, что дрессировку осуществляют с обжатием 0,8-1,6%.



 

Похожие патенты:

Изобретение относится к области металлургии, а именно к термической обработке в колпаковых печах рулонов холоднокатаной полосы из низкоуглеродистой стали. Технический результат изобретения заключается в повышении производительности колпаковых печей и снижении расхода энергоресурсов при гарантированном обеспечении требуемого комплекса механических свойств холоднокатаной полосы, а также в значительном снижении отсортировки по дефекту «пятна слипания сварки».

Изобретение относится к способу подогрева отжигаемого материала в отжигательной печи и к печи для осуществления способа. Способ подогрева отжигаемого материала в колпаковой отжигательной печи с двумя печными стендами (1, 2), на каждом из которых под защитным муфелем (7, 8) размещен отжигаемый материал (3, 4), причем подвергаемый термообработке в защитном муфеле (8) отжигаемый материал (3) подогревают с помощью газообразного теплоносителя, направляемого в контуре между обоими защитными муфелями (7, 8), поглощающего тепло термообработанного в защитном муфеле (7) отожженного материала (4) и отдающего тепло подогреваемому отжигаемому материалу (3) в другом защитном муфеле (8).

Изобретение относится к области металлургии. Для обеспечения равномерности нагрева отжигаемого материала высокотемпературная печь для отжига рулонов (4) содержит печной стенд (2), несущее устройство (3), образующее опорную поверхность (17) для соосного размещения рулона (4) над печным стендом (2) с зазором, защитный колпак (6), соосно охватывающий печной стенд (2) с несущим устройством (3), подключенный к трубопроводу (10) для подачи защитного газа и к трубопроводу для отвода защитного газа, содержащий цилиндрический корпус (7) и закрывающий сверху корпус (7) купол (16), вращающееся уплотнение (9) между печным стендом (2) и защитным колпаком (6), а также нагревательный колпак (13), охватывающий с зазором защитный колпак (6), при этом осевой участок корпуса защитного колпака (6), определяемый расстоянием (h) по высоте между опорной поверхностью (17) несущего устройства (3) и печным стендом (2), содержит поверхность, которая составляет, по меньшей мере, три четверти от поверхности купола.
Изобретение относится к изготовлению тонколистовой холоднокатаной трубной стали, используемой для трубок амортизаторов автомобилей. .

Изобретение относится к области черной металлургии, конкретно к технологии отжига в колпаковой печи рулонных холоднокатаных полос из низкоуглеродистой стали, предназначенных для изготовления деталей автомобиля методом штамповки.

Изобретение относится к черной металлургии, в частности к термической обработке холоднокатаного низкоуглеродистого проката, предназначенного для сложной и весьма глубокой вытяжки (СВ и ВГ).
Изобретение относится к прокатному производству, в частности к производству тонколистовой холоднокатаной рулонной стали толщиной до 0,5 мм. .

Изобретение относится к области металлургии, в частности к производству черной жести из малоуглеродистой стали. .
Изобретение относится к прокатному производству, в частности к технологии термообработки низкоуглеродистой тонколистовой стали. .

Изобретение относится к области термообработки, в частности к отжигу холоднокатаной полосовой малоуглеродистой стали. .

Изобретение относится к области металлургии. Для повышения коррозионной стойкости детали способ её изготовления включает стадии холодной прокатки подложки (3) с использованием рабочих валков, рабочая поверхность которых имеет шероховатость Ra2.5 меньшую или равную 3,6 мкм; нанесения металлического покрытия (7) по меньшей мере на одной поверхности (5) отожженной подложки (5) с помощью электролитического осаждения с образованием металлического листа (1); деформирования отрезанного металлического листа (1) с формированием деталей, при этом внешняя поверхность (21) металлического покрытия (7) после проведения стадии деформирования имеет волнистость Wa0,8 меньшую или равную 0,5 мкм.

Изобретение относится к изготовлению упаковочного алюминированного стального листа из холоднокатаного листа из нелегированной или низколегированной стали. Способ включает следующие этапы: нанесение на стальной лист силикатного покрытия, рекристаллизационный отжиг стального листа, нагрев листа посредством электромагнитной индукции при температурах в температурном интервале рекристаллизации стали и со скоростью нагрева, превышающей 75 К/с, погружение стального листа, прошедшего рекристаллизационный отжиг, в ванну с расплавленным алюминием для нанесения слоя алюминия, причем стальной лист, погруженный в ванну с алюминием, имеет температуру по меньшей мере 700°С, извлечение алюминированного стального листа из ванны с алюминием и охлаждение его при скорости охлаждения по меньшей мере 100 К/с.
Изобретение относится к области металлургии, а именно к способу изготовления конструктивного элемента посредством горячей обработки давлением полуфабриката из стали.

Изобретение относится к области металлургии. Для обеспечения стойкости листа к замедленному разрушению, повышения его предела прочности, адгезии гальванического покрытия, удлинения и раздаваемости отверстий стальной лист на своей поверхности имеет слой гальванического покрытия и выполнен из стали, содержащей, в мас.%: C 0,05-0,40, Si 0,5-3,0 и Mn 1,5-3,0, Р в пределах 0,04 или менее, S в пределах 0,01 или менее, N в пределах 0,01 или менее, Al в пределах 2,0 или менее, O в пределах 0,01 или менее, Fe и неизбежные примеси, микроструктура стального листа содержит феррит, бейнит, по объемной доле, 30% или больше отпущенного мартенсита и 8% или больше аустенита, при этом предел прочности стального листа составляет 980 МПа или больше, при этом слой гальванического покрытия имеет оксид, содержащий, по меньшей мере, один химический элемент, выбранный из Si, Mn и Al, а в сечении в направлении по толщине листа, включая стальной лист и слой гальванического покрытия доля площади проекции оксида составляет 10% или больше.

Изобретение относится к способу производства плоского проката с покрытием, полученным методом погружения в расплав. Способ включает предварительное окисление в печи типа DFF, при этом стальной плоский прокат на участке предварительного окисления DFF-печи в течение 1-15 с подвергают воздействию окислительной атмосферы, образованной посредством распыления содержащего кислород газового потока в пламя горелки для образования покрывного слоя FeO.
Изобретение относится к области металлургии, в частности к производству cверхнизкоуглеродистых холоднокатаных сталей для глубокой вытяжки изделий и последующего однослойного эмалирования и может быть использовано при изготовлении деталей бытовой техники, посуды, санитарно-гигиенических приборов, в химической промышленности, в строительстве и др.

Изобретение относится к области металлургии. В настоящем изобретении предложен стальной лист, полученный методом горячей прокатки, который имеет улучшенное свойство удлинения при сохранении удовлетворительно высокой прочности, составляющей по меньшей мере 590 МПа.

Изобретение относится к области металлургии, в частности к производству оцинкованного полосы под полимерное покрытие, преимущественно лакокрасочное с массой цинкового покрытия не более 300 г/м2.

Изобретение относится к области металлургии. Для повышения коррозионной стойкости стального листового изделия и обеспечения хорошей свариваемости осуществляют предварительное покрытие стальной полосы или листа алюминием, или алюминиевым сплавом, резку указанной стального листа или полосы с предварительным покрытием для получения стальной заготовки с предварительным покрытием, нагрев заготовки в предварительно нагретой печи до температуры и в течение времени согласно диаграмме в соответствии с толщиной заготовки при средней скорости нагрева Vc в температурном диапазоне от 20 до 700°C, составляющей от 4 до 12°C/с и при скорости нагрева Vc' в температурном диапазоне от 500 до 700°C, составляющей от 1,5 до 6°C/с, затем перемещение указанной нагретой заготовки к штамповочному прессу, горячую штамповку нагретой заготовки в штамповочном прессе для получения горячештампованного стального листового изделия, охлаждение нагретой заготовки от температуры на выходе из печи до температуры 400°C при средней скорости охлаждения, по меньшей мере, 30°C/с.
Изобретение относится к области металлургии, в частности к производству холоднокатаной полосы с высокими вытяжными свойствами для холодной штамповки, применяемой в автомобилестроении.

Изобретение относится к области металлургии, в частности к изготовлению листа, который используют в автомобильной промышленности. Для обеспечения необходимого уровня ВН-эффекта и способности к раздаче отверстия при сохранении механических свойств, присущего классу прочности 780 МПа феррито-мартенситной стали способ включает выплавку стали, содержащей, мас.%: С 0,10-0,15, Si 0,10-0,40, Mn 1,8-2,4, Cr 0,20-0,40, Mo 0,10-0,40, Al 0,02-0,08, P не более 0,02, S не более 0,02, Fe и неизбежные примеси, горячую прокатку при температуре начала от 1050 до 1200°C и конца 800-890°C, смотку листа в рулон при 580-650°C, холодную прокатку с суммарным обжатием 45-70% на толщину 0,9-1,5 мм и термическую обработку в агрегате непрерывного действия путем нагрева до температуры отжига 730-790°C, выдержки, замедленного охлаждения до температур ниже Ar1, ускоренного охлаждения до 250-330°C и перестаривания при упомянутой температуре.
Наверх