Плазмотрон, излучатель и способ изготовления излучателя

Изобретение относится к наукоемкой технологии и может быть применено для плазменно-электромагнитного воздействия на различные виды материальной среды, расположенной как на близком, так и значительном расстояниях от излучателя. Технический результат - повышение эффективности устройства. Плазмотрон включает коаксиально расположенные конденсаторные пластины, между которыми расположены излучатель и по меньшей мере пара выполненных из пористого проницаемого керамического (фаянсового) состава для подачи кислорода и водорода труб, изолированных диэлектрическим огнеупорным составом, причем кислород и водород по трубам подается в камеру смешивания, после чего в разрядной камере происходит пробой смеси с образованием водяной плазмы, которая, дополнительно ускоряясь электромагнитным полем излучателя, линейно излучается в пространство. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к наукоемкой технологии и может быть применено для плазменно-электромагнитного воздействия на различные виды материальной среды, расположенной как на близком, так и значительном расстояниях от излучателя.

Известен пентагоновский рельсотрон, имеющий возможность ускорять материальные тела (ракеты) электромагнитным полем с ускорением до 2,3 км/с2, см. https://lenta.ru/news/2016/05/29/railgun. Предполагается, что у России нет средств уничтожать ракеты, летящие с такой скоростью. Недостаток рельсотрона - очень низкий КПД, выражающийся тем, что для ускорения материального тела в связи с высокой скоростью электромагнитного поля по отношению к скорости ускоряемого тела используется очень малая доля от всей затрачиваемой электромагнитной энергии.

Известен также плазменный излучатель, см. Российский патент №2578192, недостатками которого является то, что ускорение материального тела (плазмы) начинается с нулевой скорости и низкой плотностью ускоряемой электромагнитной энергии.

Указанные недостатки устраняются предлагаемым изобретением за счет получения кислородно-водородной плазмы путем непрерывного сжигания водорода. Полученная таким образом энергетическая плазма получает ускорение электромагнитным полем, которое происходит от некоторой уже имеющейся скорости до скорости значительно превышающей скорость снаряда ускоряемого пентагоновским рельсотроном. При этом плазма, содержащая значительное количество энергии, продолжает ее наращивать за счет энергии электромагнитного поля. Так как электромагнитное поле индуктирует в плазме ток, то кроме сказанного с помощью токопроводящей непрерывно излучающей плазмы, имеющей форму жгута (провода), представляется возможность передавать электромагнитную энергию, аналогично передаваемой энергии высоковольтной линией электропередач, при коротком замыкании. Если условно плазменный жгут разбить на параллельные проводники, то при одинаковых направлениях тока проводники притягиваются (см. X. Кухлинг, Справочник по физике, Москва, «Мир», 1982, стр. 349). Кроме того, на плазму по всему сечению ее периметра действуют радиально сжимающие силы, одни из которых образованы электрическим полем, другие - магнитным полем. Непрерывность пополнения энергией плазмой может быть обеспечена как за счет прохождения ее между сближенных обеспечивающих токовую нагрузку конденсаторных пластин постоянно заряженного конденсатора, так и магнитным полем, образованным суммой излучающих параллельно включенных индуктивностей, имеющих правую и левую обмотки при развороте одной из них в сторону излучения энергии, см. заявку №2017104502, дата публ. 28.04.2017, бюл. №13. Физика работы образования линейного излучения состоит в следующем. Магнитные силовые линии проводника с током представляют собой концентрические окружности. Внутри длинной катушки поле однородно. В коаксиально расположенных параллельно включенных катушках, имеющих различное направление витков, получаем два направленных в разные стороны вектора напряженности электрического поля. Направим вектора встречно за счет переворачивания катушек на 180 градусов. Получаем так называемые стоячие волны, т.е. волны, которые распространяются в радиальном направлении вдоль плоскости, проходящей перпендикулярно оси катушек. При направлении векторов согласованно в случае одинаковых частот получаем эллипсы с различным эксцентриситетом (включая прямую и окружность), см. X. Кухлинг, Справочник по физике, Москва, Мир, 1982, стр. 238. Это значит, что излучаемая магнитная энергия имеет линейную или эллипсоидную форму. В качестве аналога можно рассмотреть двух винтовой вертолет с вращением винтов в разные стороны с возникающей при этом вертикально подъемной силой.

При сжигании водорода образуется значительное давление образованных ионов водорода и кислорода (плазмы) которая получает дополнительное ускорение в пространстве электромагнитным полем направленного действия, см. Российский патент №2599771.

На фиг 2а показана схема (см. также Российский патент №2605053 с приоритетом изобретения 06.11.2015) образования электромагнитного поля направленного действия. Она содержит два источника ЭДС Е8 и Е9, образованных, например, двумя вторичными катушками трансформатора. Излучающие катушки Lпр и Lлев, имеющие противоположные обмотки, расположенные коаксиально и направленные так, что согласно правилам право ходового винта образуют суммарное магнитное поле, временная диаграмма которого представляет эллипсоиды, что определяет осевую направленность излучения (вектор Пойтинга вдоль оси излучения в среднем имеет постоянное значение). На фиг 2б показано аналогичное излучение магнитной энергии в виде эллипсоидов от одного источника напряжения Е, при этом индуктивности Lпр и Lлев соединены параллельно. Кроме того, уплотнение энергии электромагнитного излучения происходит при сложении электрического и магнитного полей, см. фиг 1. При направлении вектора напряженности электрического поля от оси излучения плотность суммарной энергии полей снижается. Плотность суммарной энергии полей зависит так же от абсолютных величин суммарных напряженностей электрических и магнитных полей.

На фиг. 1 изображен плазмотрон. Он содержит коаксиально расположенные конденсаторные пластины 1 и 2, образующие емкостную камеру 10. В емкостной камере расположен излучатель 5 и устройство подачи водорода и кислорода, которое осуществляется по толщинам труб 4, изготовленных из пористого огнеупорного керамического (фаянсового) состава, играющего роль фитилей. Трубы 4 изнутри и снаружи изолированы огнеупорным керамическим (фаянсовым) составом 3 (см. патенты №2511795 и 2517721). Разрядная камера 7 разделена от смесительной камеры 6 термостойкой перегородкой с установленными там клапанами, которые условно не показаны.

Работа устройства заключается в том, что при подаче под давлением в смесительную камеру водорода и кислорода происходит образование там гремучего газа, который, попадая в разрядную камеру, воспламеняется, и образованная плазма под давлением вылетает в пространство, одновременно дополнительно ускоряясь магнитным полем.

Известно, что КПД трансформатора может превышать 90%. Поэтому предлагается излучающее устройство выполнить на базе трансформатора. На основании фиг. 2 предлагается следующее устройство излучателя. Он содержит трансформатор, имеющий гибкий магнитопровод форма которого представляет, например, тороид, изготовленный путем намотки изолированного электротехнического провода, представляющий собой излучающий элемент. Первичная и нагрузочные излучающие индуктивности вторичных катушек, соединенные последовательно или параллельно с излучающими индуктивностями, выполнены из того же изолированного электротехнического провода. Все перечисленные элементы излучателя могут иметь как индуктивную, так и электрическую связь. Главное, чтобы проектированием и расчетом, учитывая принцип суперпозиции, добиться максимально возможного линейно направленного излучения электромагнитной энергии. Кроме того, при наличии положительной внутренней обратной связи от дополнительных катушек, которые играют роль первичных при получении энергии от вторичных катушек, увеличивается оборачиваемость магнитного потока магнитопровода, что приводит к увеличению излучаемой мощности. При этом все излучающие элементы излучателя должны иметь одностороннее направление векторов магнитных напряженностей. Таким образом, способ изготовления излучателя, содержащего трансформатор, излучающие индуктивности и дополнительные катушки, заключающийся в том, что магнитопровод трансформатора его первичная и вторичные катушки, излучающие индуктивности и дополнительные катушки последовательно мотаются изолированным проводом из электротехнической стали. С целью снижения сопротивления излучателя и, как следствие, увеличение тока, вторичные катушки трансформатора и дополнительные катушки могут мотаться медным изолированным проводом. С целью повышения плотности излучаемой электромагнитной энергии магнитопровод трансформатора, его первичная катушка могут подключаться параллельно к источнику питания. Ввиду того, что излучатель в целом представляет одну общую индуктивность, то совместно с конденсатором она может образовать параллельный или последовательный колебательный контур, работающий в резонансном низкочастотном режиме, что несомненно повысит эффективность работы устройства.

Использование изобретения в военном деле позволит поражать различные цели, как в воздухе, космосе, на земле и воде.

1. Плазмотрон, отличающийся тем, что включает коаксиально расположенные конденсаторные пластины, между которыми расположены излучатель и по меньшей мере пара выполненных из пористого проницаемого керамического или фаянсового состава для подачи кислорода и водорода труб, изолированных диэлектрическим огнеупорным составом, причем кислород и водород по трубам подается в камеру смешивания, после чего в разрядной камере происходит пробой смеси с образованием водяной плазмы, которая, дополнительно ускоряясь электромагнитным полем излучателя, линейно излучается в пространство.

2. Плазмотрон по п. 1, отличающийся тем, что излучатель состоит из гибкого магнитопровода, первичной и двух вторичных катушек, нагрузкой которых являются излучающие индуктивности с противоположными обмотками, последовательно которым подключены дополнительные катушки, играющие роль первичных, причем магнитопровод, излучающие индуктивности имеют одностороннее направление векторов магнитных напряженностей, а все элементы излучателя выполнены из одного изолированного электротехнического провода.

3. Плазмотрон по п. 1, отличающийся тем, что излучатель дополнительно содержит конденсатор, образующий с ним параллельный или последовательный колебательный контур, работающий в низкочастотном резонансном режиме.



 

Похожие патенты:

Изобретение относится к плазменной технике и может быть использовано для плазменной обработки термочувствительных поверхностей, стерилизации, а также для дезинфекции раневых поверхностей и стимулирования процессов их заживления.

Изобретение относится к плазменной и медицинской технике и может быть использовано для активации иммунного ответа и процессов заживления, уменьшения микробного обсеменения инфицированных ран и язв, их обеззараживания неравновесной аргоновой плазмой атмосферного давления без инициации новых полирезистентных штаммов, для лечения бактериальных, грибковых и вирусных воспалений кожи.

Изобретение относится к соединительному компоненту для сборки в головку горелки для обработки материалов. Этот соединительный компонент содержит цилиндрический корпус, который включает в себя проксимальный конец и дистальный конец, определяющие продольную ось.

Изобретение относится к области плазменной техники. Источник (1) плазмы, предназначенный для нанесения покрытия на подложку (9) и выполненный с возможностью соединения с источником (Р) энергии, содержит электрод (2), магнитный узел (4), находящийся на периферии упомянутого электрода и содержащий совокупность магнитов, соединенных между собой магнитной опорой (46), включающий в себя по меньшей мере первый и второй центральные магниты (43, 44) и по меньшей мере один головной магнит (45), электрически изолирующую оболочку (5), расположенную таким образом, чтобы окружать электрод и магниты.

Изобретение относится к области плазменной техники. Устройство включает в себя ускоритель плазмы с воронкообразным участком высокой степени сжатия, отходящим от входа ускорителя, и вытянутым участком, соединенным с воронкообразным участком высокой степени сжатия, который может располагаться между концом воронкообразного участка и выходом ускорителя.

Изобретение относится к области термообработки посредством плазменной горелки. Расходуемый компонент горелки для термообработки включает в себя приемник, размещенный внутри упомянутой горелки для термообработки, причем расходуемый компонент содержит:- корпус расходуемого компонента; и- сигнальное устройство, содержащее опознавательную метку идентификации по радиочастотным сигналам (RFID), расположенную на или в корпусе расходуемого компонента, для передачи сигнала, связанного с расходуемым компонентом, причем сигнал является независимым от выявляемой физической характеристики расходуемого компонента.

Изобретение относится к средствам формирования плазмы высокочастотных разрядов и может быть использовано, например, для травления поверхности, проведении газофазных плазмохимических реакций, спектрального анализа жидких и твердых проб.

Группа изобретений относится к источникам излучения, в частности к лампам барьерного разряда, и может быть использована в различных областях науки и техники, где необходима подсветка коротковолновым ультрафиолетовым или вакуумным ультрафиолетовым излучением, например в фотохимии, в фотобиологии, фотоионизационных приборах.

Изобретение обеспечивает генерацию плотной объемной импульсной плазмы и может быть использовано для интенсификации процессов взаимодействия частиц в объеме и одновременного ограничения температуры поверхности изделий, нагреваемых ионным потоком из плазмы.

Изобретение относится к области переработки зольных отходов угольных тепловых электростанций с целью их утилизации в качестве, в частности, материалов для производства строительных изделий.

Изобретение относится к области плазменно-электромагнитного воздействия на различные виды материальной среды, расположенной как на близком, так и значительном расстояниях от излучателя. Технический результат - повышение излучающей мощности плазменного потока, Образованная из гремучего газа плазма ускоряется электромагнитным полем, представляющим собой сумму электрического и магнитного полей, при этом для воспламенения гремучего газа напряженность электрического поля разрядной камеры превышает напряжение пробоя, гремучего газа, подаваемого из смесительной камеры в разрядную, а магнитное поле, ускоряющее образованную плазму, представляет собой сумму нескольких магнитных полей, которые образуются магнитопроводом, его обмоточным проводом и двумя параллельно соединенными индуктивностями, пара индуктивностей последовательно электрически связана со вторичной обмоткой и обмоткой обратной связи трансформатора, эти обмотки имеют форму полой спирали, внутри которой прокачивается охлаждающая вода. Горячая выходная вода из обмоток поступает на вход устройства разложения воды, на выходе которого образованный гремучий газ поступает в разрядную камеру. 1 з.п. ф-лы, 3 ил.

Изобретение относится к способу и системе для нанесения покрытий на подложку. В системе узел нанесения покрытия расположен внутри вакуумной камеры. Узел нанесения покрытия включает источник паров, обеспечивающий наносимый на подложку материал, подложкодержатель, удерживающий подложку, на которую наносят покрытие, таким образом, чтобы они располагались перед источником паров, узел катодной камеры и удаленный анод. Узел катодной камеры включает катод, необязательный первичный анод и экран, изолирующий катод от вакуумной камеры. Указанный экран имеет отверстия для пропускания тока электронной эмиссии от катода в вакуумную камеру. Источник паров расположен между катодом и удаленным анодом, а удаленный анод соединен с катодом. Система включает первичный источник питания, присоединенный между катодом и первичным анодом, и вторичный источник питания, присоединенный между узлом катодной камеры и удаленным анодом. Способ включает генерирование первичной дуги в испускающем электроны катодном источнике между катодной мишенью и первичным анодом, генерирование удаленной дуги, удерживаемой в зоне нанесения покрытия между узлом катодной камеры и анодом, соединенным с катодной мишенью, и генерирование потока паров металла из источника паров металла по направлению к по меньшей мере одной подложке, предназначенной для нанесения покрытия. Получаемые покрытия имеют улучшенную адгезию, гладкость, сверхтонкую микроструктуру, высокую плотность, низкую концентрацию дефектов и пористость и, соответственно, высокие функциональные характеристики.2 н. и 34 з.п. ф-лы, 29 ил.

Изобретение относится к области генерирования плазмы. Устройство содержит по меньшей мере два коаксиальных волновода (4), каждый из которых сформирован из центрального проводника (1) и внешнего проводника (2) для направления сверхвысокочастотных волн в камеру обработки. По меньшей мере два электромагнитных волновода (4) соединены с магнитным контуром (21-22), удлиненным в одном направлении, при этом указанный магнитный контур окружает волноводы, создавая магнитное поле, способное достичь состояния ЭЦР вблизи указанных волноводов. Технический результат - повышение однородности плазмы, направляемой к обрабатываемым подложкам. 8 з.п. ф-лы, 1 табл., 9 ил.

Изобретение относится к способам исследования локальных параметров плазмы в газоразрядных источниках плазмы. В заявленном способе локальной диагностики максвелловской плазмы с помощью одиночного цилиндрического зонда Ленгмюра предусмотрено введение в газоразрядное пространство тонкого зондодержателя с зондом на конце в виде отрезка металлической нити, подключенной через источник зондового напряжения к металлическому корпусу газоразрядного устройства или дополнительному опорному электроду. При этом принимаются меры по защите зондовой цепи от электрических наводок и по очистке собирающей поверхности зонда, регистрации его вольт-амперной характеристики изменением зондового напряжения в обе стороны от плавающего потенциала и определения функции распределения электронов по энергиям, концентрации электронов, их температуры и потенциала плазмы обработкой зондовой характеристики одним из известных методов. Затем находят плотность тока ионов на зонд под плавающим потенциалом, используемую в дальнейшем для контроля чистоты рабочего газа или состояния экспериментальной вакуумной техники. Технический результат - расширение набора измеряемых параметров изучаемой плазмы определением толщины зондового слоя и массы ионов в том случае, когда функция распределения электронов по энергиям плазмы близка к функции Максвелла. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области плазменной техники. Технический результат - повышение срока службы трубчатого самонакаливаемого полого катода в аксиально-симметричном магнитном поле. Способ повышения ресурса катода основан на изменении условий горения разряда в катодной полости при наложении резко неоднородного осесимметричного магнитного поля. С помощью кольцевых постоянных магнитов создают резко неоднородное магнитное поле, максимум которого располагается в плоскости выходной апертуры катода, в результате чего активная зона разряда, характеризующаяся максимальной плотностью тока эмиссии и скоростью эрозии катода, локализуется на торцевой поверхности катода. Повышение ресурса катода обеспечивается созданием условий, при которых износ катода происходит не только в радиальном, но и в продольном направлении путем перемещения катода или магнитов по мере эрозии катода, при котором сохраняется положение максимума магнитного поля в плоскости торца катода. Генератор плазмы на основе разряда с самонакаливаемым полым катодом может быть использован как в магнетронных системах нанесения покрытий для повышения плотности тока ионного сопровождения, так и в устройствах химического осаждения покрытий для плазменной активации процессов взаимодействия реагентов в рабочем объеме. 3 ил.

Изобретение относится к физике высоких плотностей энергии и термоядерного синтеза и может использоваться при получении мощных потоков мягкого рентгеновского излучения. Многопроволочный лайнер содержит анод и катод с токопроводяшими деталями, систему токопроводящих проволочек, соединенных с токопроводяшими деталями анода и катода и расположенных в направляющих. Образующие поверхности токопроводящих деталей электродов плавно сопряжены с внешней поверхностью электродов и обработаны с чистотой поверхности по классу не ниже 13. На сопряженных поверхностях установлены накладки, в которых выполнены направляющие для проволочек в виде прорезей. Техническим результатом является точность позиционирования проволочек, составляющая ±1 мкм; уменьшение вероятности повреждения проволочек при сборке, монтаже и транспортировке устройства. 2 ил., 3 пр.

Изобретение относится к плазменному экспандеру изменяемого объема и к устройствам для формирования плазмы для получения электронных или ионных пучков. Плазменный экспандер изменяемого объема имеет цилиндрическую форму, изготовлен из проводящих материалов, плазма попадает в него через отверстие в аноде, с другой стороны происходит частичное ограничение плазмы. Конструкция экспандера состоит из 1 - цилиндрического основания, 2 - вставки, выполненной в виде кольца (А), выбираемого из набора колец с толщиной от 5 до 30 мм с шагом от 1 до 10 мм, сильфона (В) или резьбового соединения (С), 3 - фронтальной части, 4 - крышки с эмиссионным отверстием и 5 - оснастки для закрепления деталей. Способ получения плоскопараллельного пучка заряженных частиц предусматривает использование указанного плазменного экспандера, в котором изменяют плотность плазмы за счет управления размерами экспандера. При этом в случае расходящегося пучка от вогнутой границы плазмы (фиг. 5С) собирают экспандер с более короткой вставкой (2 на фиг. 6), уменьшая длину и объем экспандера, тем самым повышая плотность плазмы, а в случае расходящегося пучка от выгнутой границы плазмы (фиг. 5А) собирают экспандер с более длинной вставкой (2 на фиг. 6), увеличивая длину экспандера и снижая плотность плазмы до достижения плазменной границы близкой к плоской. Техническим результатом является упрощение настройки системы формирования пучка с одновременным повышением ее точности, что обеспечивает получение плоскопараллельного пучка заряженных частиц. 2 н. и 4 з.п. ф-лы, 6 ил., 4 пр.

Изобретение относится к области исследования физических свойств вещества, в частности к исследованию процессов в плазме и в газоразрядных приборах. Технический результат - обеспечение возможности формирования тепловой кумулятивной струи, плавящей металл, и образованного ею канала на поверхности металла необходимой длины. Способ формирования тепловой кумулятивной струи, плавящей металл, и образованного ею канала на металлической поверхности катодной пластины в импульсном дуговом разряде при взрыве размещенной между электродами проволочки необходимой длины, включает подачу на электроды напряжения, обеспечивающего лавинный пробой разрядного промежутка, возникающий при наличии в воздухе паров испаряющейся проволочки с формированием тепловой кумулятивной струи, плавящей металл, на металлической поверхности катодной пластины, размещение на поверхности катодной пластины диэлектрической преграды на пути кумулятивной струи и перемещение диэлектрической преграды вдоль этой струи до получения необходимой длины тепловой кумулятивной струи и длины образованного ею канала проплавленного металла. 3 з.п. ф-лы, 2 ил.

Группа изобретений относится к управлению вектором тяги плазменных двигателей. Устройство содержит закреплённые на корпусе плазменного двигателя в зоне за срезом его выходного канала две или четыре прямоугольной формы рамочных магнитных катушки, расположенных открытыми частями рамок напротив друг друга. Катушки установлены симметрично относительно продольной оси двигателя, параллельно друг другу или под небольшим углом друг к другу. Данное исполнение устройства обеспечивает создание за срезом выходного канала двигателя существенно однородного поперечного магнитного поля, в т.ч. - в двух ортогональных направлениях. Техническим результатом является повышение эффективности управления вектором тяги плазменного двигателя. 3 н.п. ф-лы, 10 ил.

Изобретение относится к области плазменной техники. . Электродуговой плазмотрон имеет корпус, в котором соосно установлены изолированные друг от друга водоохлаждаемые электроды - анод и катод. Между ними находится узел ввода плазмообразующего газа. Канал анода состоит из конфузора и диффузора, выполненных в форме усеченных конусов, которые сопряжены своими верхними основаниями. Переход между конусами выполнен тороидальным с радиусом образующей окружности r=4…8 мм. Углы при вершинах конусов конфузора и диффузора равны соответственно α=80°…96° и β=38°…48°. Диаметр наименьшего сечения канала равен D=15…18 мм. Катод представляет собой медную водоохлаждаемую обойму с тугоплавкой вставкой и имеет на конце форму усеченного конуса с углом при вершине γ<α. Катод установлен так, что его конический участок располагается в конфузоре анода, а торец его тугоплавкой вставки находится внутри тороидального перехода. Узел ввода плазмообразующего газа представляет собой изоляционную втулку, расположенную над обоймой катода перед входом в канал анода. Втулка имеет не менее двух рядов отверстий диаметром d=0,4…0,6 мм. Каждый ряд содержит не менее 12 отверстий, распределенных равномерно по окружности. Оси отверстий проходят через продольную ось плазмотрона и наклонены к этой оси под углом δ=(45…60)°. Технический результат - увеличение рабочего тока плазмотрона до 2000 А, повышение производительности процесса центробежного распыления, увеличение ресурса работы электродов плазмотрона в среднем до 300 ч, обеспечение стабильной работы плазмотрона в диапазоне силы тока от 700 до 2000 А. 2 ил., 2 пр.

Изобретение относится к наукоемкой технологии и может быть применено для плазменно-электромагнитного воздействия на различные виды материальной среды, расположенной как на близком, так и значительном расстояниях от излучателя. Технический результат - повышение эффективности устройства. Плазмотрон включает коаксиально расположенные конденсаторные пластины, между которыми расположены излучатель и по меньшей мере пара выполненных из пористого проницаемого керамического состава для подачи кислорода и водорода труб, изолированных диэлектрическим огнеупорным составом, причем кислород и водород по трубам подается в камеру смешивания, после чего в разрядной камере происходит пробой смеси с образованием водяной плазмы, которая, дополнительно ускоряясь электромагнитным полем излучателя, линейно излучается в пространство. 2 з.п. ф-лы, 2 ил.

Наверх