Способ очистки перфторэтилизопропилкетона

Изобретение относится к способу очистки перфторэтилизопропилкетона (ПФЭИК), используемому в качестве пожаротушащего средства, растворителя, среды для проведения химических и биохимических процессов. Способ включает выведение димера гексафторпропена из «сырца» ПФЭИК и последующую ректификацию, при этом выведение проводят обработкой газообразным фтором, затем промывают водным раствором бикарбоната натрия, сушат цеолитом и полученную смесь ректификуют. Предлагаемый способ позволяет получить ПФЭИК необходимой чистоты. 1 ил., 4 пр.

 

Изобретение относится к органической химии, а именно к получению и очистке перфторированных ассиметричных кетонов, в том числе перфторэтилизопропилкетона - CF3CF2COCF(CF3)2 от токсичных перфторированных непредельных примесей, образующихся в процессе синтеза ПФЭИК.

Перфторэтилизопропилкетон (далее - ПФЭИК) - пожаротушащее средство нового поколения с нулевым потенциалом озоноразрушения, низким (120 часов) временем разложения в атмосфере, быстрым тушением огня. Кроме того, ПФЭИК является эффективным растворителем, средой для проведения химических и биохимических процессов, получения особо чистых полупроводниковых материалов, в том числе и для выращивания кристаллов для микросхем, также может использоваться в микроэлектронике. Однако содержащиеся в нем технологические примеси 2-перфторметил пентен (димер ГФП) и перфтор-2-метил-3-оксагексанолфторид (димер ОГФП) затрудняют его применение в химических и биологических процессах и электронике.

Оптимальный метод получения ПФЭИК - это реакция между окисью гексафторпропилена (ОГФП) и гексафторпропеном (ГФП) в реакторе идеального вытеснения [Патент РФ 2460717, МПК С07С 49/167, заяв. 06.12.2010, оп. 20.06.2012]. В качестве катализатора используются фторид цезия, нанесенный на активированный уголь. Реакция идет при температуре 100-150°С.

Недостатком данного метода является необходимость в использовании дефицитного и дорогостоящего сырья - окиси гексафторпропена.

Особое значение имеет то, что температуры кипения многих перфторированных жидкостей и олигомеров с одинаковым числом атомов углерода близки, в связи с чем исключается возможность очистки таких жидкостей посредством ректификации. Поэтому особое место в процессах очистки перфторированных соединений имеет химическое модифицирование примесей, сопровождающееся их дальнейшим удалением.

Наиболее трудноотделимой является примесь перфторметилпентена (димера гексафторпропена, далее - ДГФП).

Для очистки «сырца» ПФЭИК от димера ОГФП используется способность последнего к гидролизу с образованием соответствующей кислоты; кислота хорошо растворима в воде и практически нерастворима в ПФЭИК. После промывки водой и содой сырец ПФЭИК содержит неидентифицируемые количества димера ОГФП (≤2,5.10-4 % мас.):

Наличие примеси ДГФП в количестве 0,08% не влияет на эксплуатационные характеристики продукта при применении его в качестве огнетушащего средства, однако для использования в качестве среды для некоторых процессов и для использования в микроэлектронике это количество недопустимо.

Конечная реактивная смесь всегда содержит примесь ДГФП, ее содержание колеблется от 0,03 до 18%, в зависимости от метода получения. ДГФП относительно инертен по сравнению с ПФЭИК. В большинстве случаев его реакционная способность ниже, чем у целевого продукта. ДГФП также обладает близкой температурой кипения (48,5°С) с ПФЭИК (48,9-49°С), что затрудняет его количественное отделение ректификацией даже на эффективной колонне.

Удаление этих примесей ректификацией малоэффективно, т.к. температура их кипения составляет 52-51°С соответственно, а температура кипения ПФЭИК составляет 49°С.

Известны различные способы очистки перфорированных жидкостей от димеров и тримеров гексафторпропена.

Известен способ очистки от примесей ДГФП [Патент США 6478979, МПК A62D 1/00, заяв. 19.07.2000, оп. 12.11.2002] путем его окисления перманганатами щелочных металлов в ацетоне или уксусной кислоте при температурах выше комнатной и атмосферном давлении.

Недостатками этого способа являются: сложное аппаратурное оформление процесса, высокая стоимость перманганата калия, отсутствие сырьевой базы этого реагента в РФ, образование экологически небезопасных отходов, требующих специальной технологии утилизации.

Наиболее близким техническим решением того же назначения к заявляемому по совокупности признаков является способ [Патент США 6774270, МПК С07С 41/00, заяв. 1.04.2003, опубл. 10.08.2004] очистки от димеров и тримеров ГФП обработкой их третичными аминами с предварительной изомеризацией димеров гексафторпропена, с последующим отделением образовавшихся соединений дистилляцией или декантацией.

Этот способ позволяет получать ПФЭИК с остаточным содержанием ДГФП 1.10-2 %мас.

Недостатками этого способа является малая технологичность и для реализации данного способа требуются дорогие, токсичные и дефицитные реагенты, а также не обеспечивается необходимая чистота ПФЭИК.

Эти факторы осложняют создание оптимального, технологичного и надежного способа получения ПФЭИК.

Задачей заявляемого изобретения является создание более технологичного и надежного способа очистки ПФЭИК от примесей димера гексафторпропена для получения необходимой чистоты ПФЭИК.

Указанная задача достигается тем, что по способу очистки перфторэтилизопропилкетона, включающему выведение димера гексафторпропена из «сырца» ПФЭИК и последующую ректификации, согласно изобретению выведение проводят обработкой газообразным фтором, затем промывают водным раствором бикарбоната натрия, сушат цеолитом и затем полученную смесь ректификуют.

Сущность предлагаемого изобретения состоит в том, что полученный в ходе синтеза «сырец» ПФЭИК очищают от примесей ДГФП способом, включающим выведение ДГФП из реакционной смеси путем обработки газообразным фтором, затем промывки водным раствором бикарбоната натрия от кислых примесей, сушки цеолитом и ректификации полученной смеси.

ПФЭИК в условиях эксперимента не вступает в реакцию с фтором. ДГФП присоединяет фтор по кратной связи, а образующийся при фторировании перфторметилпентан (ПФМП), как и все перфторпарафины, мало токсичен. Температура кипения ПФМП составляет 53-54°С, что упрощает его отделение от ПФЭИК ректификацией.

Остаточное содержание ПФМП после ректификации не превышает 0,02% и не влияет на токсикологические свойства ПФЭИК.

Способ очистки осуществляют на установке, схема которой представлена на Фиг. 1 где:

1 - Реактор;

2 - баллон;

3 - ловушка с ХПИ;

4 - ректификационная колонна;

5 - промывная емкость;

6 - сборник готового продукта.

Способ очистки осуществляется следующим образом:

Пример 1

В реактор (1) на фиг. 1 из стали 12Х18Н10Т, вместимостью 0,1 л, снабженный магнитной мешалкой, мановакууметром (на фиг. 1 не показано), загружают 12 г «сырца» ПФЭИК, содержащего 0,9% мас. ДГФП. Реактор (1) перед загрузкой «сырца» ПФЭИК продувают аргоном и помещают в стальной бокс (на фиг. 1 не показано). Далее реактор (1) охлаждают до 0°С и, при работающей мешалке, подают из баллона (2) 100% фтор; подача фтора производится в течение 30 мин. Температура в реакторе (1) при этом не повышается более чем на 0,5°С. После подачи 10 мл фтора его подача останавливается и содержимое реактора (1) перемешивается в течение одного часа, после чего обработанный фтором «сырец» ПФЭИК отмывается раствором бикарбоната натрия в промывной емкости (5), сушится цеолитом СаА, ректификуется на ректификационной колонне (4) (микроколонка Лукаша-Келлера) и анализируется.

Полученный ПФЭИК (5,5 мл) имеет следующий состав:

ПФЭИК 99,1% мас.; ПФМП 0,899% мас.; ДГФП 0,001% мас.

Пример 2

В реактор (1) на фиг. 1 из стали 12Х18Н10Т, вместимостью 0,1 л, снабженный барботером, магнитной мешалкой (на фиг. 1 не показано), охлаждаемым до минус 35°С обратным холодильником и охлаждающей рубашкой (на фиг. 1 не показано), загружают 60 мл «сырца» ПФЭИК, содержащего 0,8% ДГФП. После охлаждения «сырца» до 0°С, при работающей мешалке, через него барботируют 20% фторазотную смесь со скоростью 75 мл/мин. Завершение реакции контролируют по разогреву ловушки с ХПИ (3), расположенной за обратным холодильником. Обработанный фторазотной смесью «сырец» ПФЭИК промывают в промывной емкости (5) 8% мас. водным раствором бикарбоната натрия, сушат цеолитом СаА, затем ректификуют на ректификационной колонне (4) длиной 1,5 м и диаметром 20 мм.

Полученный ПФЭИК (280 мл) имеет следующий состав:

ПФЭИК 99, 92% мас.; ПФМП 0,078% мас.; ДГФП 0,002% мас.

Пример 3

В никелевый вертикальный трубчатый реактор (1) (фиг. 1) диаметром 256 мм и высотой 2000 мм и заполненный никелевой насадкой, снабженный охлаждающей рубашкой и обратным холодильником (на фиг. 1 не показано), охлаждаемым до минус 40°С, загружают 82 л «сырца» ПФЭИК, содержащего 0,8% ДГФП. Реактор (1) расположен в боксе. Температура в реакторе поддерживается 0±1°С. В нижнюю часть реактора подается из баллона (2) 20% фторазотная смесь со скоростью 7,1 л/час. Процесс ведется до повышения температуры в ловушке с ХПИ (3) на 10°С, которая расположена за обратным холодильником. Далее снижают скорость подачи из баллона (2) фторазотной смеси до 1,5 л/час и отогревают реактор (1) до 20°С, после чего процесс прекращают. Обработанный фторазотной смесью «сырец» ПФЭИК отмывается в промывной емкости (5) 5% водным раствором соды (бикарбонат натрия) и сушится цеолитом СаА, затем направляется на ректификацию на ректификационной колонне (4) высотой 6 м и диаметром 50 мм.

Полученный ПФЭИК (124 кг) имеет следующий состав:

ПФЭИК 99, 91% мас.; ПФМП 0,088% мас.; ДГФП 0,002% мас.

Пример 4

Никелевый реактор (1) на фиг. 1 объемом 250 л снабжен рубашкой для охлаждения, турбинной мешалкой (380 об/мин), барботером и обратным холодильником (на фиг. 1 не показано), охлаждаемым до минус 40°С. Реактор (1) располагается в боксе (на фиг. 1 не показано). В реактор загружается 320 кг «сырца» ПФЭИК, содержащего 0,85% ДГФП. «Сырец» ПФЭИК захолаживается до 0°С и при работающей мешалке, в него подается по барботеру из баллона (2) 20% фторазотная смесь, 1100 л за 10 ч; при этом температура в реакторе (1) не превышает 1°С. После завершения подачи фторазотной смеси содержимое реактора (1) отогревается до комнатной температуры, перемешивается в течение 6 часов, после чего обработанный фторазотной смесью «сырец» ПФЭИК обрабатывается аналогично примеру 3.

Полученный ПФЭИК (305 кг) имеет следующий состав: ПФЭИК 99,98% мас.;

ПФМП 0,018% мас.; ДГФП 0,002% мас.

Таким образом, из примеров видно, что при применении заявляемого способа очистки, за счет того что выведение проводят обработкой газообразным фтором, затем промывают водным раствором бикарбоната натрия, сушат цеолитом СаА, а затем полученную смесь ректификуют, обеспечивается необходимая чистота ПФЭИК и заявляемый способ для получения необходимой чистоты ПФЭИК является более оптимальным, технологичным и надежным, чем указанные аналоги и прототип.

Способ очистки перфторэтилизопропилкетона (ПФЭИК), включающий выведение димера гексафторпропена из «сырца» ПФЭИК и последующую ректификацию, отличающийся тем, что выведение проводят обработкой газообразным фтором, затем промывают водным раствором бикарбоната натрия, сушат цеолитом и полученную смесь ректификуют.



 

Похожие патенты:

Изобретение относится к способу получению перфторэтилизопропилкетона, который является пожаротушащим веществом нового поколения. Способ включает взаимодействие оксида гексафторпропена и гексафторпропена в присутствии катализатора, содержащего CsF и последующую стадию выделения.

Настоящее изобретение относится к способу получения перфтор-2-метил-3-пентанона, который может быть использован в качестве очищающего агента, растворителя и огнегасящего вещества.

Настоящее изобретение относится к диэлектрической изолирующей среде, содержащей: а) гексафторид серы (SF6), и/или тетрафторметан (CF4), и/или трифториодметан (CF3I), и/или оксид азота (NO2, NO, N2O) в смеси с b) по меньшей мере одним дополнительным компонентом, представляющим собой по меньшей мере частично фторированный фторкетон, которая может быть использована в изоляции электрически активной части в различных электрических устройствах, таких как коммутационное оборудование или трансформаторы.

Настоящее изобретение относится к способу получения перфторэтилизопропилкетона - вещества, пришедшего на смену хладонам и призванного снизить риски, связанные с безопасностью людей, эффективностью тушения и загрязнением окружающей среды.

Изобретение относится к способу получения фторсодержащих тетракетонов общей формулы , гдеI) R1=CHCH(СН3 )2; R2=CH3;II) R1=CH2; R2=Ph; III) R1=CHCH2CH3; R2 =Ph. .

Изобретение относится к способу получения дигидрата 1,1,1,5,5,5-гексафторацетилацетона, который является исходным соединением для получения низкокипящих хелатов металлов, используемых для разделения изотопов, производства электрических плат, полифторированных гетероциклических соединений: пиразолов, изоксазолов, пиримидинов и т.п.

Изобретение относится к способу получения фторированного кетона нижеследующей формулы (5), который включает реакцию соединения нижеследующей формулы (3), имеющего содержание фтора по крайней мере 30 вес.%, с фтором в жидкой фазе, содержащей растворитель, выбранный из группы, состоящей из перфторалкана, перфторированного сложного эфира, перфторированного простого полиэфира, хлорфторуглеводорода, простого хлорфторполиэфира, перфторалкиламина, инертной жидкости, соединения нижеследующей формулы (2), соединения нижеследующей формулы (4), соединения нижеследующей формулы (5) и соединения нижеследующей формулы (6), с получением соединения нижеследующей формулы (4), а затем подвергание сложноэфирной связи в соединении формулы (4) реакции диссоциации в присутствии KF, NaF или активированного угля и при отсутствии растворителя: где группа RA представляет собой алкильную группу, частично галогенированную алкильную группу, содержащую образующий простой эфир кислородный атом алкильную группу или частично галогенированную содержащую образующий простой эфир кислородный атом алкильную группу, где каждая из указанных групп содержит от 1 до 10 атомов углерода;группа R AF, содержащая от 1 до 10 атомов углерода, является группой RA, которая была перфторирована;группа R B представляет собой алкильную группу, частично галогенированную алкильную группу, содержащую образующий простой эфир кислородный атом алкильную группу или частично галогенированную содержащую образующий простой эфир кислородный атом алкильную группу, где каждая из указанных групп содержит от 1 до 10 атомов углерода; группа RBF, содержащая от 1 до 10 атомов углерода, является группой RB, которая была перфторирована; группы RC и RCF являются одинаковыми, и каждая из групп RC и RCF содержит от 2 до 10 атомов углерода и представляет собой алкильную группу, частично галогенированную алкильную группу, содержащую образующий простой эфир кислородный атом алкильную группу или частично галогенированную содержащую образующий простой эфир кислородный атом алкильную группу, каждая из которых была перфторирована;или где группы RA и RB связаны друг с другом с образованием алкиленовой группы, частично галогенированной алкиленовой группы, содержащей образующий простой эфир кислородный атом алкиленовой группы или частично галогенированной содержащей образующий простой эфир кислородный атом алкиленовой группы, где каждая из указанных групп содержит от 3 до 6 атомов углерода; каждая из групп R AF и RBF является перфторированной группой, образованной RA и RB, и каждая из них содержит от 3 до 6 атомов углерода; и группы RC и RCF являются одинаковыми, и каждая из групп RC и R CF содержит от 2 до 10 атомов углерода ипредставляет собой алкильную группу, частично галогенированную алкильную группу, содержащую образующий простой эфир кислородный атом алкильную группу или частично галогенированную содержащую образующий простой эфир кислородный атом алкильную группу, каждая из которых была перфторирована.
Настоящее изобретение относится к способу получения ванилина, который используют в кондитерской, фармацевтической и парфюмерно-косметической промышленности. Способ заключается в окислении лигнинсодержащего древесного сырья кислородом в щелочной среде при повышенной температуре и давлении в присутствии органической добавки.

Изобретение относится к способу получения гераниаля, который используют в парфюмерии в качестве ароматизаторов и отдушек, из смеси изомеров гераниаля и нераля (цитраля).
Изобретение относится к способу получения ванилина, который используют в кондитерской, фармацевтической и парфюмерно-косметической отраслях промышленности. Способ заключается в окислении кислородом воздуха лигнина, полученного ферментативным гидролизом древесины хвойных пород или древесины, пораженной бурыми или пестрыми гнилями, с содержанием лигнина 40-90 мас.% в водно-щелочной среде при повышенных температурах и давлении.

Изобретение относится к способу очистки ванилина, получаемого из продуктов окисления лигнинов, взаимодействием ванилинсодержащих экстрактов с водными растворами гидросульфита натрия с последующим разложением ванилин-гидросульфитного производного.
Изобретение относится к очистке 2-ацил-производных индандиона-1,3-антикоагулянтов крови непрямого действия, применяемых в практике медицинской дезинфекции для уничтожения мышевидных грызунов.
Изобретение относится к усовершенствованному способу извлечения карбонильных и (или) кислотных соединений из сложных многокомпонентных органических жидких смесей и может быть использовано в различных отраслях промышленности для очистки композиций или же для утилизации карбонильных соединений и (или) кислот.
Изобретение относится к усовершенствованному способу очистки органических смесей от карбонильных соединений и кислот путем обработки их сульфитом натрия, причем на обработку берут органические смеси, содержащие в своем составе карбонильные соединения и карбоновые кислоты в соотношении 1 г-экв : 1 г-экв или с избытком кислот, или с избытком карбонильных соединений, в этом случае перед обработкой сульфитом натрия в исходную смесь вводят добавку карбоновой кислоты в таком количестве, чтобы привести соотношение карбонильных соединений и кислот к 1 г-экв на 1 г-экв, и обработку ведут твердым сульфитом натрия в бисерной мельнице с массовым соотношением загрузки композиции и стеклянного бисера в качестве перетирающего агента 1 : 1-2 и скоростью вращения механической мешалки не менее 1440 об/мин при дозировке сульфита натрия 1,2-1,5 моль на 1 г-экв карбонильного соединения или находящейся в избытке кислоты в присутствии стимулирующей добавки до практически полного расходования карбонильных соединений либо карбонильных соединений и кислот.

Изобретение относится к усовершенствованному способу отделения функционализованных альфа-олефинов от функционализованных неконцевых олефинов, заключающемуся в обработке исходного сырья, содержащего функционализованные альфа-олефины и функционализованные неконцевые олефины, которая включает: a) контактирование исходного сырья с линейным полиароматическим соединением в условиях, эффективных для образования реакционной смеси, содержащей аддукт линейного полиароматического соединения - функционализованного альфа-олефина; b) выделение аддукта линейного полиароматического соединения - функционализованного альфа-олефина, и необязательно также непрореагировавшего линейного полиароматического соединения, из реакционной смеси с получением потока аддукта функционализованного альфа-олефина и потока функционализованного неконцевого олефина; c) диссоциацию аддукта линейного полиароматического соединения - функционализованного альфа-олефина в упомянутом потоке аддукта функционализованного альфа-олефина с получением линейного полиароматического соединения и композиции функционализованных альфа-олефинов, и необязательно, d) выделение линейного полиароматического соединения, образованного на стадии с) , из композиции функционализованных альфа-олефинов; при этом концентрация функционализованных альфа-олефинов в упомянутой композиции альфа - олефинов увеличивается по сравнению с концентрацией функционализованных альфа-олефинов в исходном сырье, и где функционализованные олефины, либо неконцевые, либо альфа представляют собой соединения с, по меньшей мере, одной двойной связью, расположенной в алифатической или циклоалифатической части соединения, и где олефин содержит функциональную группу, отличную от С-С-ненасыщенности, при этом функциональная группа выбрана из кетоновой или гидроксильной группы.

Изобретение относится к способу получения ванилина и сиреневого альдегида - продуктов тонкого органического синтеза. .

Изобретение относится к способу разделения, предназначенному для удаления ацетона из смеси, включающей ацетон, метилацетат и метилиодид. Способ включает следующие стадии: (а) введение указанного потока, включающего ацетон, метилацетат и метилиодид, в первую зону дистилляции; (б) введение уксусной кислоты в указанную первую зону дистилляции путем добавления уксусной кислоты к указанному потоку, включающему ацетон, метилацетат и метилиодид, или путем введения уксусной кислоты напрямую в первую зону дистилляции в одной или более точках, находящихся на одном уровне или выше точки ввода указанного потока, включающего ацетон, метилацетат и метилиодид, в первую дистилляционную зону на стадии (а), или с использованием комбинации указанных способов ввода; (в) удаление из первой дистилляционной зоны потока легких фракций, включающего метилиодид, и потока тяжелых фракций, включающего ацетон, метилацетат, уксусную кислоту и уменьшенное количество метилиодида; (г) введение потока тяжелых фракций со стадии (в) во вторую зону дистилляции; (д) удаление из второй зоны дистилляции потока легких фракций, включающего метилацетат и метилиодид, и потока тяжелых фракций, включающего ацетон, метилацетат и уксусную кислоту; (е) введение потока тяжелых фракций со стадии (д) в третью зону дистилляции; (ж) удаление из третьей зоны дистилляции потока легких фракций, включающего метилацетат и ацетон, и потока тяжелых фракций, включающего метилацетат и уксусную кислоту.

Изобретение относится к способу очистки перфторэтилизопропилкетона, используемому в качестве пожаротушащего средства, растворителя, среды для проведения химических и биохимических процессов. Способ включает выведение димера гексафторпропена из «сырца» ПФЭИК и последующую ректификацию, при этом выведение проводят обработкой газообразным фтором, затем промывают водным раствором бикарбоната натрия, сушат цеолитом и полученную смесь ректификуют. Предлагаемый способ позволяет получить ПФЭИК необходимой чистоты. 1 ил., 4 пр.

Наверх