Способ получения микросферического катализатора окислительного хлорирования этилена

Изобретение относится к области нефтехимической промышленности, а именно к приготовлению микросферического катализатора окислительного хлорирования этилена в дихлорэтан в производстве получения винилхлорида. Способ состоит из стадий получения микросферического алюмооксидного носителя через распыление суспензии, которая включает в своем составе 55-90 мас.% моногидроксида алюминия псевдобемитной структуры, 35-5 мас.% гидроксохлорида алюминия и 10-5 мас.% модифицированного крахмала, в среде дымовых газов, прокалкой носителя, пропитки полученного носителя по водопоголощению растворами солей хлоридов меди и хлоридами щелочных и щелочноземельных элементов, прокалкой катализатора. Технический результат заключается в получении микросферического катализатора окислительного хлорирования этилена с высокой каталитической активностью и стойкостью к истиранию в псевдоожиженном режиме. 1 табл., 5 пр.

 

Изобретение относится к области нефтехимической промышленности, а именно к приготовлению микросферического катализатора окислительного хлорирования этилена в дихлорэтан в производстве получения винилхлорида.

Катализатор окислительного хлорирования этилена (Катализатор ОХЭ) представляет собой микросферические гранулы размером 20-100 мкм, имеющий в своем составе алюмооксидный микросферический носитель и нанесенные активные компоненты. Данный катализатор используется в технологическом процессе окислительного хлорирования этилена в дихлорэтан, который является основным сырьем для получения поливинилхлорида. Поливинилхлорид широко используется во всем мире в производстве ПВХ изделий.

Микросферический алюмооксидный носитель в катализаторе ОХЭ выполняет следующие функции: обеспечивает высокую удельную поверхность катализатора, доступность активных центров для реагирующих веществ, необходимую механическую прочность, требуемую насыпную плотность и гранулометрический состав.

Для обеспечения процесса окислительного хлорирования этилена в дихлорэтан, осуществляемого в псевдоожиженном слое катализатора, наряду с каталитическими свойствами, повышенные требования предъявляются к прочности, форме, размерам микросферических частиц, насыпной плотности и развитой пористой структуре катализатора, которые определяются во многом характеристиками алюмооксидного носителя.

Из литературных данных известно, что активным компонентом современных катализаторов ОХЭ является хлорная медь, содержание которой составляет 8-12% массы катализатора. Кроме хлорида меди могут использоваться и другие ее соединения, которые под действием реакционной среды переходят в хлорную медь. Имеются сведения о том, что повышению активности хлорида меди способствует добавление хлоридов щелочных и щелочноземельных элементов. Высокая активность катализатора обусловлена равномерным распределением активного компонента в объеме микросферы катализатора, имеющего оптимальное распределение транспортных пор, которые обеспечивают доступность активных центров.

Эффективная работа катализатора определяется не только его каталитической активностью, но и стабильностью эксплуатационных характеристик в процессе окислительного хлорирования этилена. Одним из таких показателей является стойкость микросферы катализатора к истирающим нагрузкам, который во многом определяется характеристиками микросферического носителя для катализатора.

Известен способ получения микросферического катализатора окислительного хлорирования этилена [Патент США N 4377491], когда полученный в несколько стадий носитель - микросферический оксид алюминия - дополнительно прокаливают при 250-500°C в течение 1-5 часов и для однородного распределения меди на поверхности пропитывают оксид алюминия в кипящем слое при температуре не более 50°C расчетным объемом раствора CuCl2 с концентрацией 160-600 г/л. Пропитанные частицы сушат в кипящем слое, поднимая температуру со скоростью 30°C в час до 140°C, и выдерживают при этой температуре 0,5-15 часов. Такой способ пропитки и сушки позволяет добиться наиболее однородного распределения меди на поверхности. Недостатками указанного способа являются многостадийность, высокая энергоемкость процесса и необходимость использования очень концентрированных растворов.

Известен способ получения микросферического катализатора окислительного хлорирования этилена [Патент РФ №2139761, Патент РФ №2131298], где предлагают смешение отмытого осадка гидроксидов алюминия с хлорной медью или смесью хлорной меди и хлористого магния. Образовавшуюся суспензию гидроксидов алюминия с растворами хлоридов металлов подвергают распылительной сушке при температуре газов на выходе из сушилки 130-200°C с получением микросферического катализатора, который в дальнейшем прокаливают при 600-660°C в течение 2-4 часов. Недостатками указанного способа являются то, что при прокалке микросферы при 600-660°C возможны образование соединений нестехиометрического состава оксида алюминия с медью и промотирующими добавками, а также блокировка активных компонентов в объеме носителя.

Известен способ получения микросферического катализатора окислительного хлорирования этилена [Патент РФ №2281806], когда активный компонент распределен в объеме носителя катализатора неравномерно - распределение атомов меди в большей степени, внутри частицы катализатора, чем на поверхности (слой толщиной ), и атомов магния, в большей степени на поверхности (слой толщиной ), чем внутри частицы. Такая технология подразумевает раздельное нанесение растворов солей, что является недостатком такого способа.

Ближайшим известным решением аналогичной задачи по технической сущности является способ получения микросферического катализатора окислительного хлорирования этилена является изобретение [Патент США №4451683], когда сначала получают микросферический алюмооксидный носитель осаждением гидроксида алюминия взаимодействием азотной кислоты и алюмината натрия, затем распылительной сушкой отмытого и отфильтрованного гидроксида алюминия получают микросферические частицы, которые после прокаливания при 730°C превращаются в оксид алюминия - носитель для катализатора оксихлорирования. На приготовленный таким образом носитель распыляют при 70°C раствор CuCl2 или смеси CuCl2 и KCl и сушат при 130°C.

Недостатками указанного способа является многостадийность процесса, необходимость термообработки материала при высоких (730°C) температурах, недостаточная равномерность распределения активного солевого состава на поверхности и в объеме катализатора.

Основной задачей предлагаемого нами решения является разработка безотходной, бессточной и достаточно простой технологии приготовления микросферического катализатора окислительного хлорирования этилена с высокой каталитической активностью и стойкостью к истиранию в псевдоожиженном режиме.

Поставленная цель достигается предлагаемым способом получения микросферического катализатора окислительного хлорирования этилена, включающим стадии получения микросферического алюмооксидного носителя через распыление суспензии в среде дымовых газов, прокалкой носителя, пропитки полученного носителя по водопоглощению растворами солей хлоридов меди и хлоридами щелочных и щелочноземельных элементов, прокалкой катализатора.

Отличительной чертой предлагаемого способа получения катализатора является то, что суспензия для получения микросферического алюмооксидного носителя через распыление суспензии в среде дымовых газов включает в своем составе (55-90)% моногидроксида алюминия псевдобемитной структуры, (35-5)% гидроксохлорида алюминия и (10-5)% модифицированного крахмала.

Порошок моногидроксида алюминия псевдобемитной структуры в сочетании с гидроксохлоридом алюминия и модифицированного крахмала в составе суспензии обеспечивают формирование эффективной вторичной пористой структуры микросферы, а также высокую стойкость к истиранию в псевдоожиженном режиме.

Изменяя соотношение компонентов в суспензии порошка моногидроксид алюминия псевдобемитной структуры, гидроксохлорида алюминия и модифицированного крахмала, можно получит микросферический алюмооксидный носитель с различными показателями по насыпной плотности, объема пор, удельной поверхностью и стойкостью к истиранию.

Таким образом, применение порошка моногидроксид алюминия псевдобемитной структуры, гидроксохлорида алюминия и модифицированного крахмала при получении микросферического катализатора в заявляемом способе соответствует критерию "новизна".

Промышленная применимость предлагаемого способа приготовления микросферического катализатора ОХЭ подтверждается следующими примерами.

Сырье:

1. Моногидроксид алюминия псевдобемитной структуры, Na2O не более 0,1%, ППП (потери при прокаливании) = 25-27%;

2. Гидроксохлорида алюминия (содержание сухого остатка в пересчете на Al2O3 19,5-21,0%);

3. Модифицированный крахмал;

4. Вода химически очищенная (ХОВ);

Оборудование:

1. Емкость с мешалкой (Е-1) 1 м3.

2. Распылительная сушилка (РС-2) с мощностью до 250 л/ч по испаренной влаге.

3. Z-образный смеситель СМП-3 с пропитывателем на 0,2 м3.

4. Вращающаяся прокалочная печь П-1 с верхним пределом температур на 800°C

Все расчеты в примерах приводятся с учетом того, что рабочим объемом емкости с мешалкой принято до 80% объема от исходного.

Пример 1

Для приготовления суспензии в 1 м3 емкость с мешалкой Е-1 заливают 0,45 м3 химочищенной воды (ХОВ), засыпают при перешивании 150 кг порошка моногидроксид алюминия псевдобемитной структуры. После засыпки всех компонентов, суспензия перемешивается в емкости в течение 1 ч. Затем формование микросфер в распылительной сушилке РС-2 в среде дымовых газов с температурой 140-170°C. После прокалка микросфер при температуре 550-650°C во вращающейся прокалочной печи П-1.

Засыпка в смеситель СМП-3 100 кг микросферического алюмокосидного носителя и нанесение пропиткой по водопоголощению растворами солей, содержащий хлорида меди 9% и хлорида щелочноземельных элементов 1% к массе носителя. Затем прокалка при температуре 290-300°C во вращающейся прокалочной печи П-1. Выгрузка готового катализатора.

Пример 2

Для приготовления суспензии в 1 м3 емкость с мешалкой Е-1 заливают 0,45 м3 химочищенной воды (ХОВ), засыпают при перешивании 135 кг порошка моногидроксид алюминия псевдобемитной структуры и 15 кг модифицированного крахмала. После засыпки всех компонентов, суспензия перемешивается в емкости в течение 1 ч. Затем формование микросфер в распылительной сушилке РС-2 в среде дымовых газов с температурой 140-170°C. После прокалка микросфер при температуре 550-650°C во вращающейся прокалочной печи П-1.

Засыпка в смеситель СМП-3 100 кг микросферического алюмокосидного носителя и нанесение пропиткой по водопоглощению растворами солей, содержащий хлорида меди 9% и хлорида щелочноземельных элементов 1% к массе носителя. Затем прокалка при температуре 290-300°C во вращающейся прокалочной печи П-1. Выгрузка готового катализатора.

Пример 3

Для приготовления суспензии в 1 м3 емкость с мешалкой Е-1 заливают 0,45 м3 химочищенной воды (ХОВ), засыпают при перешивании 135 кг порошка моногидроксид алюминия псевдобемитной структуры, 7,5 кг гидроксохлорида алюминия и 7,5 кг модифицированного крахмала. После засыпки всех компонентов, суспензия перемешивается в емкости в течение 1 ч. Затем формование микросфер в распылительной сушилке РС-2 в среде дымовых газов с температурой 140-170°C. После прокалка микросфер при температуре 550-650°C во вращающейся прокалочной печи П-1.

Засыпка в смеситель СМП-3 100 кг микросферического алюмокосидного носителя и нанесение пропиткой по водопоголощению растворами солей, содержащий хлорида меди 9% и хлорида щелочноземельных элементов 1% к массе носителя. Затем прокалка при температуре 290-300°C во вращающейся прокалочной печи П-1. Выгрузка готового катализатора.

Пример 4

Для приготовления суспензии в 1 м3 емкость с мешалкой Е-1 заливают 0,45 м3 химочищенной воды (ХОВ), засыпают при перешивании 120 кг порошка моногидроксид алюминия псевдобемитной структуры, 15 кг гидроксохлорида алюминия и 15 кг модифицированного крахмала. После засыпки всех компонентов, суспензия перемешивается в емкости в течение 1 ч. Затем формование микросфер в распылительной сушилке РС-2 в среде дымовых газов с температурой 140-170°C. После прокалка микросфер при температуре 550-650°C во вращающейся прокалочной печи П-1.

Засыпка в смеситель СМП-3 100 кг микросферического алюмокосидного носителя и нанесение пропиткой по водопоглощению растворами солей, содержащий хлорида меди 9% и хлорида щелочноземельных элементов 1% к массе носителя. Затем прокалка при температуре 290-300°C во вращающейся прокалочной печи П-1. Выгрузка готового катализатора.

Пример 5

Для приготовления суспензии в 1 м3 емкость с мешалкой Е-1 заливают 0,45 м3 химочищенной воды (ХОВ), засыпают при перешивании 112,5 кг порошка моногидроксид алюминия псевдобемитной структуры, 22,5 кг гидроксохлорида алюминия и 15 кг модифицированного крахмала. После засыпки всех компонентов, суспензия перемешивается в емкости в течение 1 ч. Затем формование микросфер в распылительной сушилке РС-2 в среде дымовых газов с температурой 140-170°C. После прокалка микросфер при температуре 550-650°C во вращающейся прокалочной печи П-1.

Засыпка в смеситель СМП-3 100 кг микросферического алюмокосидного носителя и нанесение пропиткой по водопоглощению растворами солей, содержащий хлорида меди 9% и хлорида щелочноземельных элементов 1% к массе носителя. Затем прокалка при температуре 290-300°C во вращающейся прокалочной печи П-1. Выгрузка готового катализатора.

У полученных образцов катализатора затем определяли их насыпную плотность, удельную поверхность, общий объем пор по воде, объемы мезопор и микропор, стойкость к истиранию в газовом потоке в псевдоожиженном режиме и показатели каталитической активности на лабораторной установке в процессе оксихлорирования этилена при температуре 225-235°C.

Из результатов таблицы следует, что изменение соотношения компонентов в исходной суспензии оказывает существенное влияние на характеристики гранул катализатора и на каталитическую активность. При одинаковом содержании активного компонента на показатель активности катализатора и горение этилена (побочный процесс) влияют также насыпной вес и характеристики пористой структуры самого катализатора.

Анализ представленных материалов позволяет сделать вывод о том, что предлагаемое техническое решение дает возможность получать микросферический катализатор процесса окислительного хлорирования этилена с высокими показателями каталитической активности, пористой структуры и стойкостью к истиранию в псевдоожиженном режиме.

Способ получения микросферического катализатора окислительного хлорирования этилена, состоящий из стадий получения микросферического алюмооксидного носителя через распыление суспензии, которая включает в своем составе 55-90 мас.% моногидроксида алюминия псевдобемитной структуры, 35-5 мас.% гидроксохлорида алюминия и 10-5 мас.% модифицированного крахмала, в среде дымовых газов, прокалкой носителя, пропитки полученного носителя по водопоглощению растворами солей хлоридов меди и хлоридами щелочных и щелочноземельных элементов, прокалкой катализатора.



 

Похожие патенты:

Изобретение относится к области разработки способа получения катализатора на основе высокодисперсного диоксида титана с нанесенными наночастицами благородного металла, проявляющего активность под действием ультрафиолетового излучения в реакции фотокаталитического окисления монооксида углерода при комнатной температуре.

Изобретение относится к катализатору гидроочистки для обработки тяжелого углеводородного сырья, имеющего значительные концентрации ванадия, где упомянутый катализатор гидроочистки содержит: прокаленную частицу, содержащую совместно перемешанную смесь, приготовленную посредством совместного перемешивания неорганического оксидного порошка, порошка триоксида молибдена и частиц металла VIII группы и затем формования упомянутой совместно перемешанной смеси в частицу, которую прокаливают, чтобы тем самым получить упомянутую прокаленную частицу, где упомянутая прокаленная частица имеет такую структуру пор, что, по меньшей мере, 23% от общего объема пор упомянутой прокаленной частицы находится в виде пор упомянутой прокаленной частицы, имеющих диаметры пор больше чем 5000 ангстрем, и меньше чем 70% от общего объема пор упомянутой прокаленной частицы находится в виде пор упомянутой прокаленной частицы, имеющих диаметры пор в диапазоне от 70 до 250 , как измерено методом ртутной порометрии.

Изобретение относится к области химии и может быть использовано для катализаторов при получении необходимых в промышленности газов и для синтеза высокопрочной керамики.

Изобретение относится к катализатору окисления горючих газов. Катализатор содержит наночастицы соединений благородных металлов, таких как платина, палладий и иридий, с мольным соотношением элементов (Pt+Pd):Ir, равным 1:x, где x изменяется в диапазоне от 0,02 до 0,67, нанесенных на пористый носитель с удельной площадью поверхности пор от 50 до 500 м2/г.

Настоящее изобретение относится к композиции селеносодержащего катализатора гидрообработки, к способу создания такой композиции, а также к использованию этой композиции в гидрообработке углеводородного сырья.

Изобретение относится к способу приготовления носителя для катализаторов гидроочистки, содержащего, мас.%: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное, при этом входящий в состав носителя борат алюминия Аl3ВО6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 , с углом между ними 53.8°.

Изобретение относится к способу получения фотокатализатора на основе висмутата щелочноземельного металла, который заключается в растворении смеси порошков нитрата висмута Bi(NO3)3 и неорганической соли щелочноземельного металла Me с последующим выстаиванием продуктов их гидролиза до образования частиц с равномерно распределенными в их объеме ионами висмута и неравномерно распределенными ионами щелочноземельного металла и удалением из продуктов гидролиза избыточной влаги, в нагреве полученных частиц до образования частиц в виде гетероструктуры из аморфного по структуре и стехиометричного по составу висмутата щелочноземельного металла и аморфного по структуре и стехиометричного по составу оксида висмута Bi2O3 с последующей их кристаллизацией.

Изобретение относится к очистке газов и может быть использовано для обессеривания газов различного происхождения, содержащих 0,3-15,0 об.% сероводорода: отходящих газов процесса Клауса, биогазов, природного происхождения, топливных, коксовых печей, выбросов химических производств.

В настоящем изобретении предложен способ получения композиций карбоксилатов переходных металлов путем объединения в полярном апротонном первом растворителе соединения-предшественника переходного металла и карбоксилата металла Группы 1 или Группы 2 в, по существу, бескислотных и, по существу, безводных условиях с получением смеси, содержащей композицию карбоксилата переходного металла.

Способ получения содержащего кобальт катализатора синтеза углеводородов предусматривает на стадии образования карбида обработку исходного предшественника катализатора, содержащего подложку катализатора, несущую кобальт, содержащим СО газом не более 1 час при температуре T1, где T1 составляет от 200°C до 260°C для превращения кобальта в карбид кальция, таким образом получая содержащий карбид кобальта предшественник катализатора, причем содержащий СО газ (когда он содержит Н2) не характеризуется молярным соотношением СО к Н2, равным или меньшим 33:1, и при этом стадию образования карбида проводят в неокислительных условиях; и на последующей стадии активации содержащий карбид кобальта предшественник катализатора подвергают обработке водородсодержащим газом при температуре T2, где T2 составляет, по меньшей мере, 300°C для превращения карбида кобальта в металлический кобальт, таким образом активируя содержащий карбид кобальта предшественник катализатора и обеспечивая содержащий кобальт катализатор синтеза углеводородов.
Настоящее изобретение касается способа обработки каталитически активных формованных изделий, в частности, для повышения их механической прочности. Описан способ обработки каталитически активных формованных изделий, содержащих каталитически активный компонент и при необходимости материал носителя катализатора, включающий следующие стадии процесса: a) предоставление окончательно приготовленных каталитически активных формованных изделий, b) пропитку этих окончательно приготовленных каталитически активных формованных изделий пептизирующим вспомогательным средством в количестве жидкости, которое не превышает теоретическое влагопоглощение этих каталитически активных формованных изделий, c) термическую обработку пропитанных каталитически активных формованных изделий при температуре от 50°С до 250°С и d) прокаливание этих термически обработанных каталитически активных формованных изделий при температуре от 250°С до 600°С.

Изобретение относится к области химии, в частности к катализаторам для селективной гидроочистки бензинов каталитического крекинга, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности.

Изобретение относится к экструдированному катализатору с сотовой структурой для восстановления оксида азота в соответствии с методом селективного каталитического восстановления (SCR) в выхлопных газах от автомобилей.

Изобретение относится к области разработки способа получения катализатора на основе высокодисперсного диоксида титана с нанесенными наночастицами благородного металла, проявляющего активность под действием ультрафиолетового излучения в реакции фотокаталитического окисления монооксида углерода при комнатной температуре.

Изобретение относится к способу получения катализатора для гидродеоксигенации органических кислородсодержащих соединений, а именно растительных масел, животных жиров, сложных эфиров жирных кислот, свободных жирных кислот, с образованием н-алканов - компонентов дизельного топлива.

Изобретение относится к катализатору окисления горючих газов. Катализатор содержит наночастицы соединений благородных металлов, таких как платина, палладий и иридий, с мольным соотношением элементов (Pt+Pd):Ir, равным 1:x, где x изменяется в диапазоне от 0,02 до 0,67, нанесенных на пористый носитель с удельной площадью поверхности пор от 50 до 500 м2/г.

Настоящее изобретение относится к способу получения 4-трет-бутил-пирокатехина, который находит широкое применение в качестве ингибитора полимеризации диеновых углеводородов, стабилизаторов непредельных альдегидов, полимерных материалов, этилцеллюлозных искусственных смол, в качестве антиоксидантов масел, восков и животных жиров, в производстве инсектицидных соединений, а также в различных областях экспериментальной биологии, а также к катализатору, используемому в данном способе.

Настоящее изобретение относится к композиции селеносодержащего катализатора гидрообработки, к способу создания такой композиции, а также к использованию этой композиции в гидрообработке углеводородного сырья.

Изобретение относится к композиции, пригодной для обработки выхлопных газов, образующихся при сжигании углеводородного топлива. Композиция включает кристаллическую структуру, при этом, по меньшей мере, часть этой кристаллической структуры представляет собой молекулярное сито с хабазитным каркасом, состоящим из тридцати шести Т-атомов, выбранных из группы, состоящей из кремния, алюминия и фосфора; при этом указанное молекулярное сито включает от примерно 0,05 до примерно 5,0 мол.% входящего в каркас фосфора относительно общего числа молей входящих в каркас кремния, алюминия и фосфора в указанном молекулярном сите; и при этом указанное молекулярное сито характеризуется молярным отношением оксида кремния к оксиду алюминия, по меньшей мере, около 10.

Изобретение относится к способу получения промотированных висмутом оксидных MoVTeNb катализаторов для процесса окислительной конверсии этана в этилен, являющегося важнейшим мономером для производства широкого ассортимента продуктов, в первую очередь полиэтилена.

Изобретение относится к области каталитического синтеза и наноматериалов. Описан кобальтовый нанокатализатор синтеза Фишера-Тропша, локализованный в пористом материале.

Изобретение относится к области нефтехимической промышленности, а именно к приготовлению микросферического катализатора окислительного хлорирования этилена в дихлорэтан в производстве получения винилхлорида. Способ состоит из стадий получения микросферического алюмооксидного носителя через распыление суспензии, которая включает в своем составе 55-90 мас. моногидроксида алюминия псевдобемитной структуры, 35-5 мас. гидроксохлорида алюминия и 10-5 мас. модифицированного крахмала, в среде дымовых газов, прокалкой носителя, пропитки полученного носителя по водопоголощению растворами солей хлоридов меди и хлоридами щелочных и щелочноземельных элементов, прокалкой катализатора. Технический результат заключается в получении микросферического катализатора окислительного хлорирования этилена с высокой каталитической активностью и стойкостью к истиранию в псевдоожиженном режиме. 1 табл., 5 пр.

Наверх