Способ получения синтетического флюса для сталеплавильного производства

Изобретение относится к области металлургии и может быть использовано для получения синтетического флюса для сталеплавильного производства. Способ включает смешивание компонентов исходной шихты на основе отходов производства вторичного алюминия (ОПВА) и связующего, последующее формование смеси. При смешивании в качестве связующего используют алюминат натрия и дополнительно вводят армирующий компонент в виде боросиликатного стекловолокна в количестве 0,3-3,6 масс. %, полученную смесь брикетируют, готовые брикеты помещают в герметичную емкость с газоотводящим трактом, а расход связующего зависит от удельной поверхности ОПВА и определяется по эмпирическому уравнению. Изобретение позволяет получить комплексный сталеплавильный флюс с низкими энергозатратами и высокими прочностными свойствами брикетов при одновременном обеспечении стабилизации рафинировочных шлаков. 1 з.п. ф-лы, 6 табл., 1 ил.

 

Изобретение относится к металлургической промышленности и может быть использовано для получения флюса, используемого для рафинирования различных марок стали, наведения и разжижения шлаков в агрегатах «ковш-печь» (АКП) и вакууматорах при внепечной обработке сталей.

Известен способ получения комплексного флюса для сталеплавильного производства (патент РФ №2202627, МПК С21С 5/36, С22В 1/00, оп. 20.04.2003), включающий смешивание путем совместного мокрого помола шихты, состоящей из доломита и железосодержащего материала, сушку, обжиг и высокотемпературное окомкование шихты в окислительной атмосфере во вращающейся трубчатой печи, последующее охлаждение полученного флюса. Перед помолом в шихту вводят связующую добавку в количестве 1,5-3,5% от массы шихты и проводят предварительное окомкование шихты в низкотемпературной части печи.

Недостатком известного способа являются высокие энергетические затраты на получение флюса, поскольку измельчение шихты флюса осуществляют в мокрой среде, что приводит к необходимости последующей сушки материала.

Известен сталеплавильный флюс и способ его получения (патент РФ №2296800, С21С 5/36, С21С 5/54, С22В 1/216, оп.10.04.2007). Флюс содержит, масс. %, на прокаленное вещество: оксид магния основа; оксид кальция 3,0-12,0; оксиды железа 5,0-15,0; оксид алюминия 0,2-2,5; диоксид кремния 2,0-5,0. Компоненты шихты, состоящей из природного магнезита, каустического магнезита и сидеритовой руды, смешивают непосредственно во вращающейся печи при следующем содержании компонентов шихты, масс. %: природный магнезит 40-65; каустический магнезит 20-55; сидеритовая руда 5-15 и обжигают при температуре 1550-1700°С, обеспечивающей получение продукта скатанной формы. Обожженный материал охлаждают и классифицируют с получением готового продукта в виде фракции более 4 мм и фракции менее 4 мм. Отсев обожженного материала фракции менее 4 мм используют в качестве основного исходного материала для изготовления способом брикетирования крупнокускового флюса.

Данный способ получения сталеплавильного флюса не содержит операций в мокрой среде, но обжиг флюса осуществляется при достаточно высокой температуре во вращающейся печи, что тоже приводит к значительным энергозатратам при его производстве.

Известен сталеплавильный флюс и способ его получения (патент РФ №2374327, МПК С21С 5/36, оп. 27.11.2009), включающий смешение обожженных во вращающейся печи магнезиальносодержащих и связующих материалов, брикетирование полученной массы с дополнительным введением в состав шихты алюмосодержащих отходов от производства алюминия, а также углеродсодержащих материалов, или природных магнезита, и/или брусита.

В известном способе энергозатраты на производство флюса снижены, поскольку обжигается не весь объем шихты для приготовления флюса, а только магнезиальносодержащая часть, остальные компоненты шихты вводятся перед брикетированием. Однако энергозатраты на обжиг магнезиальной части все равно достаточно велики.

Наиболее близким по технической сущности и достигаемому эффекту к заявляемому изобретению является способ получения синтетического флюса для металлургических процессов выплавки чугуна и стали (патент РФ №2465342, МПК С21С 7/00, 7/076, оп. 27.10.2012), включающий смешение фторуглеродсодержащих отходов электролитического производства алюминия с крупностью частиц не более 1 мм, кальцийсодержащего компонента и воды, окусковывание шихты с получением материала крупностью 10-100 мм и сушку. В качестве кальцийсодержащего компонента используют материал, содержащий активный оксид кальция или образующий его при выплавке чугуна или стали. Весовое соотношение Ca:F в смеси поддерживают равным 0,8-1,3. При этом используют мелкодисперсные фторуглеродсодержащие отходы в виде пыли электрофильтров, или шлама газоочистки, или хвостов флотации угольной пены, или измельченной отработанной угольной футеровки, или в виде смеси отходов с содержанием фтора не менее 9 вес. %. В качестве кальцийсодержащего компонента на смешивание подают твердые отходы, образующиеся при производстве ацетилена из карбида кальция, или материал, содержащий карбонат кальция или содержащий гидроксид кальция с крупностью частиц не более 1 мм.

Недостатком данного способа является наличие операций введения воды перед смешением и сушки окускованного материала, что усложняет технологию приготовления флюса и приводит к дополнительным энергозатратам. Кроме того, данный флюс содержит значительное количество фтористых соединений, которые разъедают футеровку и отрицательно влияют на окружающую среду.

Общим недостатком всех рассмотренных флюсов является отсутствие в их составе стабилизаторов, которые позволяют при использовании таких флюсов для разжижения высококальциевых рафинировочных шлаков придать шлакам стабильность от рассыпания вследствие полиморфных превращений двухкальциевого силиката, входящего в состав таких шлаков.

Техническим результатом настоящего изобретения является создание способа получения комплексного сталеплавильного флюса с низкими энергозатратами, высокими прочностными свойствами брикетов при одновременном обеспечении стабилизации рафинировочных шлаков, полученных с использованием флюса по предлагаемому способу.

Указанный технический результат достигается тем, что в способе получения синтетического флюса для сталеплавильного производства, включающем смешивание компонентов исходной шихты на основе отходов производства вторичного алюминия и связующего, последующее формование смеси, согласно изобретению на смешивание в качестве связующего подают алюминат натрия и дополнительно вводят армирующий компонент в виде боросиликатного стекловолокна в количестве 0,3-3,6 масс. %, полученную смесь брикетируют, готовые брикеты помещают в герметичную емкость с газоотводящим трактом, а расход связующего (N, %) зависит от удельной поверхности ОПВА и определяется по уравнению:

N=-2,28+0,049⋅Sуд, где Sуд - удельная поверхность ОПВА, м2/г, N - расход связующего, %.

При этом брикетирование смеси осуществляют при давлении 20-100 МПа.

При осуществлении заявленного способа отходы производства вторичного алюминия (ОПВА) перед брикетированием смешивают с алюминатом натрия и боросиликатным стекловолокном. После брикетирования компоненты сырьевой смеси сближаются и начинают реагировать между собой. Входящий в состав ОПВА металлический алюминий вступает в реакцию с алюминатом натрия по реакции

В результате протекания реакции 1, за счет увеличения концентрации Al2О3, каустический модуль алюмината натрия по данной реакции изменяется с 0,6 до 0,3. Поскольку реакция 1 является экзотермической, прессованные брикеты разогреваются до температуры около 60°С, испаряя при этом лишнюю воду, вызывая коагуляцию Al2О3 и отверждение смеси. Таким образом, при незначительных энергозатратах, брикеты приобретают значительную прочность и имеют низкую влажность.

При протекании реакции (1) выделяется значительное количество водорода. При значительных объемах производства в цехе может сформироваться взрывоопасная смесь, поэтому брикеты сразу после прессования помещают в герметичную емкость с газоотводящим трактом для предотвращения выхода водорода в цеховое пространство.

Входящее в состав брикетов боросиликатное стекловолокно является армирующим компонентом и увеличивает прочность получаемых брикетов.

Высококальциевые рафинировочные сталеплавильные шлаки подвержены силикатному распаду ввиду наличия в их составе значительного количества низкотемпературной модификации белита (2CaO⋅SiO2) γ-C2S - шеннонита, образующегося вследствие сложных полиморфных превращений высокотемпературных модификаций белита (α-C2S, α'-C2S и β-C2S) при охлаждении шлака до 830°С, сопровождающееся увеличением объема и последующим распадом шлака на пылевидные фракции.

Стабилизация таких шлаков возможна при обработке их предлагаемым флюсом, в состав которого введены алюминат натрия в качестве связующего и боросиликатное стекловолокно в качестве армирующего компонента. Стабилизирующее действие боратов, входящих в состав боросиликатного стекловолокна, основано на частичном замещении в структуре белита C2S ионов ионами бора , препятствующих трансформации β-C2S в γ-C2S при полиморфном превращении.

Стабилизирующее действие алюмината натрия основано на изоморфном замещении ионов Са2+ и в высокотемпературных модификациях белита α-C2S, α'-C2S и β-C2S на родственные ионы, входящие в состав оксидов MgO, Al2O3, Fe2O3, BaO, K2O, Р2О5, Cr2O3, Na2O, MnO2. Такое замещение приводит к изменению радиуса ионов и трансформации молекулы двухкальциевого силиката, препятствуя полиморфным превращениям белита. Ионы натрия и алюминия, входящие в состав алюмината натрия, стабилизируют высокотемпературную модификацию белита β-C2S.

Экспериментально установлено, что для обеспечения стабильности шлака с содержанием 30 масс. % C2S необходимо вводить В2О3 в количестве от 0,02 масс. % до 0,05 масс. %. При содержании C2S в шлаке 80 масс. %, необходимо добавлять 0,25 масс. % В2O3. Поскольку при изготовлении боросиликатного стекловолокна используют сырьевую смесь, содержащую, масс. %, кварц (SiO2) - 27,55, микрокальцит (СаСО3) - 33,9, каолин - 29,57%, борная кислота - 8,87-8,89%, то полученное стекловолокно имеет химический состав, масс. % SiO2 - 38,3%, СаО - 26,4%, каолин безводный 35,3%, В2О3 - 7,0%. Соответственно для обеспечения стабильности шлака при минимальном содержании в нем белита, 30 масс. % необходимо вводить 0,3% боросиликатного стекловолокна, а при содержании в шлаке 80% белита необходимый расход составит 3,6%.

На основании лабораторных исследований установлена зависимость между удельной поверхностью сырьевых составляющих ОПВА при давлении прессования 20-100 МПа и расходом связующего - алюмината натрия, необходимого для приготовления качественного брикета. Удельная поверхность исходных ОПВА колеблется от 50 до 200 м2/кг, что влияет на расход связующего. Результаты определения удельной поверхности ОПВА и расходы связующего представлены на рисунке и в таблице 1.

На рисунке приведена графическая зависимость расхода связующего от удельной поверхности ОПВА.

Полученное эмпирическое уравнение пригодно для вычисления расхода связующего в зависимости от удельной поверхности ОПВА. В условных единицах обозначений уравнение регрессии выглядит следующим образом:

где N - расход связующего, %; Sуд - удельная поверхность ОПВА, м2/г.

Для повышения прочности получаемого флюса подготовленную смесь брикетируют при давлении 20-100 МПа, что обеспечивает хороший контакт между компонентами и позволяет снизить потери при транспортировке и хранении материала. При давлении прессования менее 20 МПа часть флюса (около 7%) рассыпается, а усилие более 100 МПа нецелесообразно, так как возрастают энергозатраты.

Пример осуществления изобретения

На первом этапе изучались прочностные характеристики брикетов, приготовленных по способу, заявленному в настоящем изобретении.

Исходная смесь для получения предлагаемого флюса готовилась на основе отходов производства вторичного алюминия (ОПВА) - пыли (крупность менее 100 мкм, влажность не более 1,5%) и шлака (крупность не более 3-5 мм) производства вторичного алюминия. Химический состав ОПВА приведен в таблице 2.

Удельная поверхность ОПВА, определенная на приборе ПСХ-4 методом воздухопроницаемости, составила 67 м2/кг. Расчет по уравнению (2) свидетельствует, что для обеспечения нормальной прочности брикета в ОПВА необходимо вводить около 1,0 масс. % связующего.

Компоненты сырьевой смеси смешивали в течение 1-2 минут во вращающемся барабане - окомкователе. Сразу после смешения сырьевая смесь прессовалась при давлении 20 и 100 МПа. Готовые брикеты, имеющие форму сфероида диаметром 60 мм и толщиной 40 мм, помещали в герметичную камеру с газоотводящим трактом для отвода водорода.

Через 24 часа у брикетов определялся предел прочности при сжатии. Результаты испытаний представлены в таблице 3.

По результатам испытаний видно, что при давлении прессования 50 МПа, минимальной нормативной манипуляторной прочности (1,2 МПа) брикеты достигают при содержании в смеси 1,0 масс. % алюмината натрия. Введение перед прессованием в сырьевую смесь боросиликатного стекловолокна армирующего диаметром 9,2-10,2 мкм и длиной 9,0 мм показало, что при введении в исходную смесь армирующего стекловолокна одновременно с алюминатом натрия во всем заявленном диапазоне увеличивает прочность брикета в среднем на 25%.

На втором этапе исследований определялось стабилизирующее действие флюса, приготовленного в соответствии с заявленным способом, на рафинировочный шлак типового состава.

Химический состав рафинировочного шлака приведен в таблице 4.

Исходная смесь для получения предлагаемого флюса готовилась на основе отходов производства вторичного алюминия (ОПВА) - пыли и шлака производства вторичного алюминия. Связующий и армирующий компоненты смешивались с ОПВА и прессовались при давлении 50 МПа. Полученные по предлагаемому способу брикеты вводились в модельный шлак в количестве 10 масс. %, помещались в муфельную печь и нагревались до температуры 1350°С. После полного расплавления смеси шлак выдерживали при данной температуре 15 мин и охлаждали вместе с печью.

После охлаждения определяли степень стабильности шлака, равную отношению количества массы пробы, не прошедшей через сито 063, отнесенной к массе исходной пробы, умноженное на 100%.

План проведения эксперимента и результаты стабилизации шлака при совместном введении связующего и армирующего компонентов приведен в таблице 5.

Результаты испытаний приведены в таблице 6.

По результатам испытаний видно, что стабилизация шлака при совместном введении связующего и армирующего компонентов происходит при содержании алюмината натрия более 1,0%, а боратного стекла более 0,28%. Таким образом, нижний предел содержания боратного стекла принимается равным 0,28 масс. %, а расход связующего определяется расчетным путем в зависимости от удельной поверхности ОПВА. Верхний предел содержания связующего и боратного стекла принимается из экономических соображений, чтобы незначительное введение данных компонентов не привело к существенному удорожанию флюса, изготовленного предлагаемым способом.

Использование техногенных отходов в предлагаемом способе получения синтетического флюса для сталеплавильного производства обеспечивает повышение технико-экономических показателей металлургического процесса и получение флюсового материала, который оказывает комплексное воздействие на фазовый состав высококальциевых рафинировочных шлаков.

1. Способ получения синтетического флюса для сталеплавильного производства, включающий смешивание компонентов исходной шихты на основе отходов производства вторичного алюминия (ОПВА) и связующего, последующее формование смеси, отличающийся тем, что в качестве связующего используют алюминат натрия и армирующий компонент в виде боросиликатного стекловолокна в количестве 0,3-3,6 мас. %, причем полученную смесь брикетируют, а готовые брикеты помещают в герметичную емкость с газоотводящим трактом, при этом расход связующего N определяют в зависимости от удельной поверхности ОПВА по уравнению:

N= -2,28+0,049⋅Sуд, где

Sуд - удельная поверхность ОПВА, м2/г,

N - расход связующего, %.

2. Способ по п. 1, отличающийся тем, что брикетирование смеси осуществляют при давлении 20-100 МПа.



 

Похожие патенты:

Изобретение относится к черной металлургии и может быть использовано при производстве стали с использованием флюсов в качестве обрабатывающих реагентов. Сталеплавильный флюс содержит, мас.

Изобретение относится к металлургии и может быть использовано при производстве легированных марок сталей с содержанием углерода от 0,2 до 0,7 мас. %, в том числе с повышенной концентрацией серы 0,01-0,04 мас.

Изобретение относится к области черной металлургии, в частности к способам получения стали в электродуговых печах. Способ включает проведение заправки печи после выпуска плавки путем подачи магнезитового порошка на поврежденные участки набивки боковых стенок рабочего пространства печи и пода, загрузку шихты в печь, ввод флюса, плавление шихты, окислительный период плавки, восстановительный период плавки, выпуск плавки.

Изобретение относится к области черной металлургии, в частности к способам получения стали в электродуговых печах. Способ включает проведение заправки печи после выпуска плавки путем подачи магнезитового порошка на поврежденные участки набивки боковых стенок рабочего пространства печи и пода, загрузку шихты в печь, ввод флюса, расплавление шихты, окисление углерода газообразным кислородом, дефосфорацию и десульфурацию металла, скачивание шлака, выпуск стали в ковш.
Изобретение относится к области черной металлургии, в частности к выплавке стали в кислородных конвертерах. В способе осуществляют завалку лома, заливку чугуна, продувку металла кислородом, присадку шлакообразующих материалов по ходу продувки.

Изобретение относится к черной металлургии, в частности к производству стали с применением методов ее внепечной обработки. В способе осуществляют отсечку печного шлака, выпуск металла в ковш, подогрев металла в печи-ковше и наведение высокоосновного шлака, десульфурацию металла, наведение низкоосновного шлака, вакуумирование, непрерывную разливку металла и непрерывное перемешивание металла аргоном.

Изобретение относится к металлургической промышленности и может быть использовано для рафинирования стали в агрегатах «ковш-печь» и вакууматорах. Шлакообразующая смесь содержит в качестве флюса отходы производства вторичного алюминия и шлаковую составляющую и дополнительно двууглекислый натрий при следующем соотношении компонентов, мас.%: двууглекислый натрий 1,0-2,0, отходы производства вторичного алюминия 10,0-30,0, шлаковая составляющая остальное.

Изобретение относится к области черной металлургии, в частности, к способам обработки жидкого металла в ковше. В способе осуществляют выпуск плавки из сталеплавильного агрегата, ввод раскислителей и жидкого шлака предыдущей плавки.

Изобретение относится к черной металлургии и может быть использовано при обработке стали в ковше твердыми шлаковыми смесями. Шлаковая смесь содержит известь, алюминий, в качестве флюсующего материала колеманит состава 30-45% B2O3, 20-30% СаО, 3-7% SiO2 и не более 0,2% S и магнезиальный флюс состава 25-75% MgO и 10-50% СаО при следующем соотношении компонентов, мас.%: колеманит 4-10, алюминий 5-20, магнезиальный флюс 6-30, известь - остальное.
Изобретение относится к области металлургии, в частности к составам и способам получения флюсов для высокотемпературных агрегатов. Металлургический флюс выполнен в виде гранул бикерамического состава, содержит, мас.%: оксид магния основа, оксид кальция 12-30, двуокись кремния 2-10, оксиды железа 3-10, оксид алюминия 2-7.
Изобретение относится к области черной металлургии, в частности к выплавке стали в кислородном конвертере. Способ включает завалку лома, заливку чугуна, загрузку флюсов, продувку расплава металла газообразным окислителем, отбор пробы металла и шлака на химический анализ, замер температуры металла, анализ, выпуск металла, слив шлака, осмотр и подготовку конвертера к очередной плавке.

Изобретение относится к области металлургии, в частности к составам флюсов, применяемых в сталеплавильном производстве. Сталеплавильный флюс содержит, мас.
Изобретение относится к области черной металлургии, в частности к выплавке стали в кислородных конвертерах. В способе осуществляют завалку лома, заливку чугуна, продувку металла кислородом, присадку шлакообразующих материалов по ходу продувки.
Изобретение относится к области металлургии, в частности к способу получения ожелезненной извести. Способ включает загрузку в трубчатую печь шихты в виде смеси из известняка и железосодержащей добавки, ее обжиг и окомкование.
Изобретение относится к области металлургии, в частности к составам и способам получения флюсов для высокотемпературных агрегатов. Металлургический флюс выполнен в виде гранул бикерамического состава, содержит, мас.%: оксид магния основа, оксид кальция 12-30, двуокись кремния 2-10, оксиды железа 3-10, оксид алюминия 2-7.
Изобретение относится к области металлургии, в частности к способам производства магнезиального флюса. Способ получения флюса магнезиального включает использование сырого магнезита.

Изобретение относится к области черной металлургии, в частности к составам и производству сталеплавильных высокомагнезиальных флюсов, применяемых в конвертере или электросталеплавильной печи, а также в процессе доводки стали в сталеразливочном ковше.
Изобретение относится к области металлургии, в частности к модификаторам в виде флюса, и может быть использовано для нанесения шлакового гарнисажа на футеровку металлургических агрегатов и наведения шлака в период плавки.

Изобретение относится к металлургии, в частности к флюсам, используемым для обработки ванадийсодержащих чугунов. .

Изобретение относится к области черной металлургии и может быть использовано при нанесении защитного покрытия (гарнисажа) на огнеупорную футеровку конвертеров. .

Изобретение относится к черной металлургии, конкретнее к извлечению ванадия из природнолегированного ванадиевого чугуна. Сущность изобретения заключается в том, что на первой стадии дуплекс-процесса, включающей заливку ванадиевого жидкого чугуна в конвертер, продувку его кислородом и ввод в конвертер охладителей в виде брикета железосодержащего для деванадации чугуна в количестве 20-100 кг/т чугуна. Брикет для деванадации чугуна изготавливается методом холодного брикетирования железосодержащих отходов - шламов газоочистки доменных печей или конвертеров 20-40%, замасленной окалины вторичных отстойников 5-30%, прокатной окалины 30-60% и содержит натриевое жидкое стекло в качестве связующего, причем содержание железа общего в брикете должно составлять 65%, а содержание СаО не более 1,5%. Изобретение позволяет утилизировать отходы металлургического производства, получить кондиционный по химическому составу ванадиевый шлак и обеспечить глубокое извлечение ванадия из чугуна в товарный ванадиевый шлак с требуемым химическим составом. 3 табл.

Изобретение относится к области металлургии и может быть использовано для получения синтетического флюса для сталеплавильного производства. Способ включает смешивание компонентов исходной шихты на основе отходов производства вторичного алюминия и связующего, последующее формование смеси. При смешивании в качестве связующего используют алюминат натрия и дополнительно вводят армирующий компонент в виде боросиликатного стекловолокна в количестве 0,3-3,6 масс. , полученную смесь брикетируют, готовые брикеты помещают в герметичную емкость с газоотводящим трактом, а расход связующего зависит от удельной поверхности ОПВА и определяется по эмпирическому уравнению. Изобретение позволяет получить комплексный сталеплавильный флюс с низкими энергозатратами и высокими прочностными свойствами брикетов при одновременном обеспечении стабилизации рафинировочных шлаков. 1 з.п. ф-лы, 6 табл., 1 ил.

Наверх