Погружной детектор альфа-частиц на основе алмазного чувствительного элемента с трехмерным массивом электродов

Изобретение относится к области измерения альфа-радиоактивности в жидкой и газообразной средах. Погружной детектор альфа-частиц на основе алмазного чувствительного элемента в виде пластины, отличающийся тем, что контакты, создающие электрическое поле в объеме алмазного чувствительного элемента, выполнены в виде трехмерного массива заглубленных графитовых электродов, при этом трехмерный массив заглубленных графитовых электродов формируется в алмазной пластине со стороны грани, обращенной внутрь детектора, и алмазный чувствительный элемент в виде пластины запрессовывается в герметичный корпус детектора таким образом, чтобы противоположная электродам грань пластины была обращена к исследуемой среде. Технический результат – повышение чувствительности детектора, расширение диапазона регистрируемых частиц, упрощение конструкции. 2 ил.

 

Изобретение относится к области измерения удельной активности при наличии других радиоактивных веществ, например естественной радиоактивности в воздухе или жидкости, такой как сточные воды ядерных реакторов.

Известна конструкция детектора для измерения радиоактивности, в частности альфа-радиоактивности, в жидких средах, в которой для защиты от измеряемой среды чувствительный элемент покрыт первым электродом, изготовленным из химически стойкого к воздействию среды вещества и обладающего проводимостью, например легированного бором алмаза.

(RU 2573609, G01T 1/178, опубликован 20.01.2016)

Недостатком такой конструкции, особенно при измерении альфа-радиоактивности, является то, что первый электрод может поглощать значительную часть падающих из среды частиц, что ухудшает разрешение энергетического спектра частиц и снижает чувствительность детектора. Кроме того, в рассматриваемом детекторе один из электродов находится в непосредственном контакте с химически агрессивной средой, наличие которой может существенно усложнить конструкцию детектора и снизить его надежность.

Задачей и техническим результатом данного изобретения является увеличение чувствительности детектора, особенно к альфа-излучению, расширение диапазона регистрируемых детектором частиц и упрощение конструкции детектора.

Технический результат достигается тем, что чувствительным элементом является алмазная пластина, изготовленная из нелегированного алмаза типа IIа. Чувствительный элемент запрессовывается в корпус детектора таким образом, чтобы одна из его плоских граней была обращена к измеряемой среде, а другая находилась внутри детектора, как это показано на фиг. 1, где 1 - измеряемая среда, корпус детектора, 3 - чувствительный элемент.

Со стороны грани, обращенной внутрь детектора, в алмазной пластине формируется трехмерный массив заглубленных графитовых электродов, состоящий из двух частей, между которыми создается разность потенциалов. На фиг. 2 слева приведена схема такого массива, а справа - изображение массива на алмазной пластине на грани, обращенной внутрь корпуса детектора; синим и красным цветами выделены две части массива, между которыми создается разность потенциалов.

При подаче напряжения на части массива в пространстве между электродами возникает электрическое поле, которое будет осуществлять разделение электронно-дырочных пар, образующихся при облучении алмазной пластины ионизирующим излучением, в частности альфа частицами. Протекающие при этом через электроды токи регистрируются специальной электронной аппаратурой. Были проведены расчеты электрических полей, возникающих на грани, обращенной к измеряемой среде, при практически достижимых параметрах приложенного напряжения и алмазных пластин со сформированными на них массивами электродов, которые показали, что величины этих полей вполне достаточны для уверенного собирания зарядов с приповерхностной области чувствительного элемента.

Слой алмаза, отделяющий графитовые электроды от измеряемой среды, служит как чувствительным элементом, так и защитным слоем для этих электродов. Его малая толщина в сочетании с высоким электрическим качеством алмаза и большой величиной электрического поля на поверхности, обращенной к измеряемой среде, позволяет достичь практического полного собирания образующихся в нем под действием внешней радиоактивности электронно-дырочных пар.

Из представленного описания следует, что описанная конструкция чувствительного элемента обеспечивает существенное уменьшение энергетических потерь регистрируемых частиц в области низких энергий и значительно увеличивает чувствительность детектора.

Погружной детектор альфа-частиц на основе алмазного чувствительного элемента в виде пластины, отличающийся тем, что контакты, создающие электрическое поле в объеме алмазного чувствительного элемента, выполнены в виде трехмерного массива заглубленных графитовых электродов, при этом трехмерный массив заглубленных графитовых электродов формируется в алмазной пластине со стороны грани, обращенной внутрь детектора, и алмазный чувствительный элемент в виде пластины запрессовывается в герметичный корпус детектора таким образом, чтобы противоположная электродам грань пластины была обращена к исследуемой среде.



 

Похожие патенты:

Изобретение относится к области радиационного контроля газообразных выбросов и технологических проб предприятий атомной промышленности и используется для определения объемной активности радиоактивных газовых смесей.

Изобретение относится к области измерительной техники в атомной энергетике. Установка радиометрическая многопараметрическая содержит измерительную систему, состоящую из трех независимых измерительных каналов контроля объемной радиоактивности инертных газов, аэрозолей и йода, каждый из которых содержит соответствующее устройство детектирования, содержащее по крайней мере один блок детектирования, и устройство накопления и обработки результатов замеров, а также содержит пробоотборный тракт, включающий две независимые линии подвода воздуха, при этом она снабжена устройством автоматической поддержки расхода воздуха, включающим единое прокачивающее устройство в виде насоса постоянного разрежения, размещенного на выходном трубопроводе выведения воздуха, причем каждая независимая линия подвода воздуха снабжена электрически управляемым клапаном и устройством измерения скорости потока воздуха, связанными с устройством накопления и обработки результатов замеров, содержащим блок аналого-цифрового преобразования и микропроцессор для статистической обработки результатов замеров, при этом каждое устройство накопления и обработки результатов замеров связано с устройством управления и отображения результатов замеров.

Изобретение относится к способу детектирования in situ альфа-частиц, содержащихся в жидкой среде, с использованием системы, включающей противоэлектрод (7) и детектор (1) альфа-частиц, содержащий подложку, полученную из материала собственного полупроводника, который расположен в качестве слоя между двумя электрическими контактами, где контакт, предназначенный для контактирования с жидкой средой, выполнен из алмаза, легированного бором.

Изобретение относится к ядерной энергетике и может быть использовано для оценки и контроля радиационно-экологической обстановки на АЭС и радиохимических производствах в ходе переработки радиоактивных отходов, а также в районах ядерных аварий на суше и на море.

Изобретение относится к области измерения ядерных излучений, а именно к определению скорости адвекции почвенных газов. .

Изобретение относится к области измерения ядерных излучений, а именно к измерению эффективного коэффициента диффузии радона и торона в грунте. .

Изобретение относится к области измерения ядерных излучений и может быть использовано в геохимии, в геофизике, в сейсмологии при краткосрочном прогнозировании землетрясений, в радиоэкологии при инженерно-экологических изысканиях.

Изобретение относится к атмосферному монитору, предназначенному для контролирования присутствия радиоактивных материалов в воздухе. .

Изобретение относится к области измерения альфа-радиоактивности в жидкой и газообразной средах. Погружной детектор альфа-частиц на основе алмазного чувствительного элемента в виде пластины, отличающийся тем, что контакты, создающие электрическое поле в объеме алмазного чувствительного элемента, выполнены в виде трехмерного массива заглубленных графитовых электродов, при этом трехмерный массив заглубленных графитовых электродов формируется в алмазной пластине со стороны грани, обращенной внутрь детектора, и алмазный чувствительный элемент в виде пластины запрессовывается в герметичный корпус детектора таким образом, чтобы противоположная электродам грань пластины была обращена к исследуемой среде. Технический результат – повышение чувствительности детектора, расширение диапазона регистрируемых частиц, упрощение конструкции. 2 ил.

Наверх