Система и способ контроля ячеистой сети возврата тока летательного аппарата

Изобретения относятся к области измерительной техники, в частности к системам возврата электрического тока, и могут быть использованы в авиации. Способ содержит этап измерения силы тока, по меньшей мере, в одном электрическом соединении, в котором течет номинальный ток, для определенных условий полета летательного аппарата; этап беспроводной передачи значения измеренной силы тока, этап приема измеренной силы тока, этап сравнения измеренной силы тока с опорной силой номинального тока, определенной для указанного электрического соединения, для указанных определенных условий полета; и этап диагностики состояния исправности электрического соединения после этапа сравнения. Система содержит, по меньшей мере, один датчик силы тока, связанный, по меньшей мере, с одним электрическим соединением, приспособленным для обеспечения циркуляции номинального тока для определенных условий полета летательного аппарата, указанный датчик силы тока выполнен с возможностью измерения силы тока, указанный датчик силы тока содержит средства беспроводной передачи измеренного значения силы тока, вычислительное устройство технического обслуживания, содержащее средства беспроводного приема данных, вычислительное устройство технического обслуживания выполнено с возможностью сравнивать измеренное значение силы тока с опорной силой номинального тока, определенной для указанного электрического соединения для определенных условий полета летательного аппарата с тем, чтобы определить состояние исправности электрического соединения. 4 н. и 8 з.п. ф-лы, 4 ил.

 

ОСНОВНАЯ ТЕХНИЧЕСКАЯ ОБЛАСТЬ И ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

Настоящее изобретение относится к области систем возврата электрического тока, в частности, для применения в авиации.

Летательный аппарат обычно содержит множество внутреннего оборудования (устройства управления полетом, различные датчики, кресла, осветительные приборы и т.д.), которое запитывается от цепи питания, которая подает электрический ток к указанному оборудованию. Для того чтобы позволить оптимальное питание указанного оборудования, необходимо обеспечить возврат электрического тока, например, на электрическую массу цепи питания.

Для летательного аппарата, содержащего металлическую внешнюю оболочку, известную под названием "обшивка" специалистам в данной области техники, возврат электрического тока обычно осуществляется этой металлической оболочкой, электростатический потенциал которой связан с электрической массой. Так как внешняя оболочка легко доступна из любого внутреннего пространства летательного аппарата, возврат тока не представляет трудности. Внешняя металлическая оболочка позволяет, кроме того, отвод токов утечки, опорное напряжение для электрооборудования, защиту от молний, электромагнитное экранирование, связь с массой антенн и т.д.

Для облегчения массы летательного аппарата и улучшения его усталостной прочности был предложен летательный аппарат с конструкцией из композитных материалов. Летательный аппарат содержит, в частности, внешнюю оболочку из композитного материала, например из углеродных волокон. Как показано на фиг. 1, летательный аппарат обычно включает в себя углеродный конструктивный каркас 71, обернутый снаружи углеродной обшивкой 72. Такая композитная оболочка 72 имеет уменьшенную массу, но не позволяет проводить электрический ток, что делает невозможным возврат электрического тока через композитную оболочку 72.

Для устранения этого недостатка различные металлические элементы летательного аппарата (направляющие кресел, поперечины или кабельные лотки и т.д.) помещаются в сеть, чтобы позволить возврат тока. На практике сеть возврата тока состоит из множества продольных подсетей S1, S2, S3, которые накладываются вертикально в летательном аппарате.

Как показано на фиг. 1 в качестве примера, сеть 1 возврата тока включает в себя:

- продольную верхнюю подсеть S1, состоящую из металлических элементов опор багажных отделений 73, кабельных лотков, центральной опоры 74 и т.п.;

- продольную центральную подсеть S2, состоящую из металлических элементов направляющих кресел 75, кабельных лотков, поперечных балок 77 и т.п.; и

- продольную нижнюю подсеть S3, состоящую из металлических элементов грузовых направляющих 76, кабельных лотков, поперечных балок 78 и т.п.

Для создания сети возврата эквипотенциального тока различные продольные подсети S1-S3 связаны электрическими соединениями 1, которые могут быть жесткими, чтобы обеспечить механическую поддержку и электрическое соединение, или гибкими.

Неисправность электрических соединений 1 может привести к неисправности возврата тока между различными продольными подсетями S1-S3, что является недостатком. Кроме того, электромагнитная защита более не обеспечивается.

Контроль электрических соединений 1 ячеистой сети возврата тока сложен для осуществления. В самом деле, электрические соединения 1, как правило, защищены за переборками или потолками, которые обшивают летательный аппарат, что мешает их осмотру оператором снаружи или изнутри летательного аппарата. Для обнаружения неисправности известно лишь одно решение, которое требует демонтажа переборок и потолков летательного аппарата для того, чтобы визуально обследовать электрическое соединение 1, что является существенным недостатком, поскольку это требует остановки летательного аппарата.

Одно из решений этой проблемы - реализация прямых измерений сопротивления или напряжения на контактах электрического соединения 1, когда летательный аппарат находится на стоянке. Тем не менее, поскольку сеть возврата тока является ячеистой и резервированной, деградация соединения выражается в очень слабом отклонении сопротивления, порядка от 0,1 мОм (соединение подключено) до 1 мОм (соединение отключено), которое можно измерить только с использованием тяжелых инструментов, делая невозможным общий контроль ячеистой сети. Кроме того, такое решение также требует удаления облицовки летательного аппарата.

С этой целью для ограничения риска выхода из строя ячеистой сети возврата тока электрические соединения являются резервированными, что увеличивает массу летательного аппарата и представляет собой недостаток.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Чтобы устранить, по меньшей мере, некоторые из этих недостатков, настоящее изобретение относится к способу контроля ячеистой сети возврата тока летательного аппарата, ячеистая сеть содержит, по меньшей мере, две подсети, электрически соединенные с помощью множества электрических соединений, причем способ содержит:

этап измерения силы тока, по меньшей мере, в одном электрическом соединении, в котором циркулирует номинальный ток, для определенных условий полета летательного аппарата;

этап беспроводной передачи значения измеренной силы тока;

этап приема измеренной силы тока;

этап сравнения измеренной силы тока с опорной силой номинального тока, определенной для указанного электрического соединения, для указанных определенных условий полета; и

этап диагностики состояния исправности электрического соединения после этапа сравнения.

Под подсетью возврата тока понимают единый металлический элемент (поперечная балка, опора багажного отделения, и т.д.) как совокупность взаимосвязанных отдельных элементов.

Этап измерения силы тока, когда летательный аппарат находится в полете, позволяет измерить значения силы тока при использовании, которые находятся в диапазоне силы тока, простом для измерения и не требующем тяжелого измерительного оборудования.

Кроме того, этап беспроводной передачи позволяет избежать снятия обшивки летательного аппарата для доступа к электрическим соединениям, что является преимуществом. Этапы сравнения и диагностики позволяют улучшить обнаружение неисправностей, которое является более точным и надежным по сравнению с визуальным осмотром, что осуществляется в предшествующем уровне техники. Кроме того, обнаружение неисправности происходит быстрее, чем в предшествующем уровне техники.

Кроме того, знание сил токов, циркулирующих через электрические соединения, позволяет получить модель циркуляции возврата тока в ячеистой сети, что является преимуществом для повышения надежности и срока службы. Повышение надежности ячеистой сети возврата тока преимущественно позволяет ограничить количество резервированных электрических соединений, что уменьшает массу ячеистой сети.

Предпочтительно во время этапа передачи измеренное значение силы тока связано с идентификатором соединения, на котором выполнено измерение. Таким образом, можно непосредственно определить соединение, которое повреждено, во время диагностики, что выгодно, когда множество соединений тестируются одновременно.

Согласно предпочтительному аспекту изобретения опорную силу номинального тока, определенную для указанного электрического соединения для указанных определенных условий полета, получают из обратной связи на основе опыта по множеству полетов летательного аппарата. Таким образом, можно сравнить изменение силы тока, циркулирующего в электрическом соединении во время полетов летательного аппарата, для обнаружения каких-либо неисправностей.

Предпочтительно способ включает в себя этап определения неисправности указанного соединения, если измеренная сила тока ниже порога силы тока неисправности. Если электрическое соединение неисправно, номинальный ток возврата тока более не может циркулировать.

Предпочтительно способ включает в себя этап подтверждения исправности указанного соединения, если его измеренная сила тока находится выше порога силы тока исправности. Если электрическое соединение исправно, высокая сила номинального тока возврата тока циркулирует в электрическом соединении.

Согласно аспекту настоящего изобретения способ включает в себя:

- этап измерения силы тока во множестве электрических соединений в окрестности ячеистой сети, в которых циркулируют номинальные токи для определенных условий полета;

- этап беспроводной передачи измеренных значений сил токов;

- этап приема измеренных сил токов;

- этап сравнения измеренных сил токов с опорными силами номинальных токов, определенными для указанных электрических соединений окрестности для указанных определенных условий полета; и

- этап определения неисправности определенного соединения окрестности, если его измеренная сила тока меньше, чем его опорная сила номинального тока, в то время как другие соединения окрестности имеют измеренную силу тока выше их опорной силы номинального тока.

Одновременный контроль множества соединений позволяет анализировать изменение распределения возврата тока между различными соединениями. В самом деле, когда происходит неисправность в соединении, сила тока, циркулирующего в электрическом соединении, уменьшается тогда, как в соседних соединениях она увеличивается. Контроль окрестности электрических соединений, следовательно, повышает надежность контроля, поскольку имеется гораздо больше информации для проведения диагностики.

Изобретение также относится к системе контроля ячеистой сети возврата тока летательного аппарата, ячеистая сеть содержит, по меньшей мере, две подсети, соединенные электрически с помощью множества электрических соединений, при этом система содержит:

- по меньшей мере, один датчик силы тока, связанный, по меньшей мере, с одним электрическим соединением, приспособленным для обеспечения циркуляции номинального тока для определенных условий полета летательного аппарата, указанный датчик силы тока выполнен с возможностью измерения силы тока, указанный датчик силы тока содержит средства беспроводной передачи измеренного значения силы тока,

- вычислительное устройство технического обслуживания, содержащее средство беспроводного приема данных, вычислительное устройство технического обслуживания выполнено с возможностью сравнивать измеренное значение силы тока с опорной силой номинального тока, определенной для указанного электрического соединения для определенных условий полета летательного аппарата с тем, чтобы определить состояние исправности электрического соединения.

Такая система контроля проста в реализации и не требует снятия обшивки летательного аппарата для достижения электрических соединений.

Предпочтительно указанный датчик силы тока является пассивным, что облегчает его установку в соединении так же, как техническое обслуживание.

Предпочтительно указанный датчик силы тока содержит средства передачи радиочастотных волн, предпочтительно типа RFID, которые просты в реализации.

Согласно предпочтительному аспекту указанный датчик силы тока приспособлен для выполнения измерения силы тока посредством гигантского магнитосопротивления. Такой датчик силы тока имеет небольшой размер и значительную точность измерения.

Предпочтительно указанный датчик силы тока содержит средства хранения измеренных сил тока в течение заданного периода времени. Таким образом, можно ограничить частоту опроса датчиков, что является преимуществом. Кроме того, это позволяет получить среднее измеренных сил тока для использования в диагностике.

Согласно аспекту настоящего изобретения каждое из множества электрических соединений в одной и той же окрестности ячеистой сети содержит, по меньшей мере, один датчик силы тока, вычислительное устройство технического обслуживания, адаптированное для сравнения значения измеренной силы тока для каждого электрического соединения с опорной силой номинального тока, определенной для указанного электрического соединения, для определения состояния исправности электрического соединения.

Одновременный контроль множества соединений позволяет анализировать изменение распределения возврата тока между различными соединениями. Контроль окрестности электрических соединений, таким образом, повышает надежность контроля, поскольку имеется гораздо больше информации для диагностики.

Изобретение также относится к ячеистой сети возврата тока летательного аппарата, содержащей, по меньшей мере, одну систему, такую как описано выше, так же как к летательному аппарату, содержащему такую сеть.

ОПИСАНИЕ ЧЕРТЕЖЕЙ

Изобретение будет лучше понято при чтении описания, которое последует, приведенного только в качестве примера и ссылающегося на прилагаемые чертежи, на которых:

- Фиг. 1 представляет собой вид в поперечном сечении летательного аппарата, имеющего оболочку из композитного материала (уже прокомментирован);

- Фиг. 2 представляет собой схематическое изображение соединения двух подсетей ячеистой сети возврата тока;

- Фиг. 3 представляет собой схематическое представление контроля соединения системой контроля в соответствии с изобретением; и

- Фиг. 4 представляет собой схематическое изображение примера осуществления настоящего изобретения.

Следует отметить, что чертежи обрисовывают изобретение детально для осуществления изобретения, указанные чертежи, конечно, могут быть использованы для лучшего определения изобретения, если это необходимо.

ОПИСАНИЕ ОДНОГО ИЛИ НЕСКОЛЬКИХ ВАРИАНТОВ РЕАЛИЗАЦИИ И ОСУЩЕСТВЛЕНИЯ

Система контроля в соответствии с изобретением будет описана для летательного аппарата, содержащего ячеистую сеть возврата тока, содержащую три подсети, связанные электрически с помощью электрических соединений, как представлено в преамбуле.

В качестве примера со ссылкой на фиг. 2, две смежные подсети S1, S2 связаны с помощью множества электрических соединений 1A, 1B, 1C, расположенных в одной и той же окрестности, то есть вблизи друг от друга в ячеистой сети. В этом примере электрические соединения 1A, 1B, 1C расположены за перегородками летательного аппарата и визуально не доступны оператору. Электрическое соединение 1A, 1B, 1C представляется в виде кабеля передачи электрической энергии.

Контроль электрического соединения 1 схематически показан на фиг. 3. Когда летательный аппарат находится в полете, номинальный ток циркулирует через электрическое соединение 1 в соответствии с условиями полета для обеспечения возврата тока, как показано ранее. Значение номинального тока зависит от условий полета летательного аппарата. Действительно, в зависимости от условий полета используемое электрическое оборудование различно, так же как его энергопотребление.

Когда летательный аппарат находится в полете, значения силы тока, протекающего в электрическом соединении 1, принадлежат к диапазону сил тока, простому для измерения, не требующему никакого тяжелого оборудования.

Как показано на фиг. 3, система контроля в соответствии с изобретением содержит датчик 2 силы тока, который связан с электрическим соединением 1, для измерения силы тока IMES, которая является силой номинального тока для данных условий полета летательного аппарата.

Датчик 2 силы тока может быть установлен внутри или на электрическом соединении 1 в зависимости от природы датчика 2 силы тока.

В этом примере датчик 2 силы тока адаптирован для выполнения измерения силы тока посредством гигантского магнитосопротивления (не показано), установленного на электрическом соединении 1. Такое магнитосопротивление позволяет точно измерить AC и DC ток, имея ограниченный потребление. Само собой разумеется, что сила тока может быть измерена по-другому.

Датчик 2 силы тока включает в себя микросхему, способную получить измерение силы тока IMES через равные промежутки времени, каждое измерение разделено периодом получения Pa. В этом примере период получения Рa порядка часа, но, конечно, он может быть другим. Кроме того, микросхема выполнена с возможностью получать максимальную силу тока или среднюю силу тока.

В соответствии с изобретением датчик 2 силы тока содержит средства 3 беспроводной передачи значения измеренной силы тока IMES так, чтобы передать измеренную силу тока на расстояние без демонтажа перегородки летательного аппарата. В этом примере датчик 2 силы тока содержит средства передачи радиочастотных волн, предпочтительно типа RFID. Очевидно, что другие средства передачи могут подойти, например, Wi-Fi, zigbee, Bluetooth, WLAN и т.д. Предпочтительно средства 3 передачи адаптированы для передачи измеренных сил тока IMES по запросу.

Предпочтительно датчик 2 силы тока можно сконфигурировать удаленно, средства 3 передачи выполнены для обеспечения получения этих конфигураций. Такие конфигурации позволяют, например, изменять период получения Pa.

Предпочтительно датчик 2 силы тока содержит средства хранения сил тока, измеренных в течение периода времени для их передачи, предпочтительно постоянную память. Такие средства хранения могут хранить большое количество сил тока, с тем чтобы позволить менее частую передачу сил тока, чем осуществляются получения.

Предпочтительно датчик 2 силы тока является пассивным, т.е. он не содержит собственных средств электропитания. Средства передачи RFID являются, таким образом, привилегированными. В качестве альтернативы датчик силы приспособлен для рекуперации энергии, излучаемой электрическим соединением 1 или для дистанционной подачи питания на него. С этой целью и предпочтительно датчик силы тока включает в себя средства дистанционного питания типа RFID. Однако само собой разумеется, что датчик 2 силы тока может быть в качестве альтернативы подключен к батарейке/аккумулятору. Такой активный датчик 2 силы тока идеально подходит для осуществления передачи типа Wi-Fi, zigbee, Bluetooth, WLAN, и т.д. Аккумулятор питания требует замены, что может удлинить этапы технического обслуживания летательного аппарата.

Еще, как показано на фиг. 3, система контроля согласно изобретению содержит средства беспроводного приема данных, которые представлены в данном примере в виде портативного считывателя 4, включающего средства приема радиочастотных волн для хранения сил тока IMES, отправленных датчиком 2 силы тока. Предпочтительно портативный считыватель 4 включает в себя память для хранения.

Портативный считыватель 4 приспособлен для подсоединения к вычислительному устройству 5 технического обслуживания с помощью соединительных средств 6, которые могут быть проводными или беспроводными. Вычислительное устройство 5 технического обслуживания включает в себя базу данных, которая предоставляет значение номинального тока в данном электрическом соединении 1 для определенных условий полета. Предпочтительно базу данных получают из обратной связи на основе опыта или путем моделирования.

Вычислительное устройство 5 технического обслуживания приспособлено для сравнения значения измеренной силы тока IMES электрического соединения 1 с опорной силой номинального тока IREF, определенной для указанного электрического соединения 1, чтобы определить состояние исправности электрического соединения 1. Предпочтительно сравнения производятся на основе средних или пиковых значений силы тока, которые являются наиболее актуальными.

В этом примере вычислительное устройство 5 технического обслуживания выполняет диагностику состояния исправности электрического соединения 1 посредством программного обеспечения, которое позволяет сравнить измеренную силу тока IMES с опорной силой тока IREF для данных условий полета, чтобы определить, является ли измеренная сила тока IMES характеристикой неисправности электрического соединения 1. Само собой разумеется, что диагностика может быть выполнена непосредственно портативным считывателем 4.

Действительно, если электрическое соединение 1 неисправно, измеренная сила тока IMES будет меньше, чем опорная сила тока IREF, возврат тока является более затрудненным через дефектное соединение из-за повышения его внутреннего сопротивления. И наоборот, если измеренная сила тока IMES превышает опорную силу тока IREF, это означает, что другое соседнее электрическое соединение неисправно, что вынуждает обратный ток течь в большей степени по исправным электрическим соединениям.

Таким образом, контроль изменения разницы между измеренной силой тока IMES и опорной силой тока IREF для данного электрического соединения 1 позволяет обнаружить и прогнозировать неисправности указанного соединения 1 или соседнего соединения. Сравнение может быть выполнено на основе текущих значений силы тока, средних значений силы тока или максимальных значений силы тока. Благодаря контролю изменения разницы сил тока можно контролировать смещение средней или максимальной силы тока в течение долгого времени и, таким образом, прогнозировать обслуживание электрического соединения 1, до того как неисправность станет реальной.

Альтернативно вычислительное устройство 5 технического обслуживания адаптировано для обнаружения дефекта электрического соединения 1, если измеренная сила тока меньше порога SOFF силы тока неисправности. Действительно, если падение измеренной силы тока слишком велико, это обязательно отразит неисправность электрического соединения, которая мешает прохождению тока. В этом примере порог SOFF силы тока неисправности составляет около 20% (предпочтительно 10%) от максимальной опорной силы тока для одних и тех же условий полета.

Кроме того, вычислительное устройство 5 технического обслуживания адаптировано для подтверждения состояния исправности электрического соединения 1, если измеренная сила тока превышает порог SON силы тока исправности. Действительно, если измеренная сила тока высока, это неизбежно означает, что электрическое соединение 1 обеспечивает эффективный возврат тока. В этом примере порог SON силы тока исправности равен 80% от максимальной опорной силы тока для одних и тех же условий полета.

Использование порогов SOFF неисправности и SON исправности позволяет получить прямую и быструю диагностику состояния исправности электрического соединения 1. Если измеренная сила тока содержится между порогами SOFF неисправности и SON исправности, могут быть реализованы дополнительные тесты, чтобы получить надежную диагностику электрического соединения 1.

Предпочтительно порог SON силы тока исправности равен порогу SOFF силы тока неисправности, то есть они равны примерно 10% от максимальной опорной силы тока для тех же условий полета. Такая реализация позволяет быстро и надежно обнаруживать неисправные соединения 1, другие соединения считаются исправными.

Независимо от устройства контроля, представленного ранее, изобретение также относится к способу контроля, включающему:

- этап измерения силы тока в электрическом соединении, в котором циркулирует номинальный ток, таким образом, чтобы обеспечить измерение в диапазоне сил тока, не требующем тяжелых измерительных средств;

- этап беспроводной передачи значения измеренной силы тока таким образом, чтобы позволить легкое и быстрое измерение;

- этап приема измеренной силы тока;

- этап сравнения измеренной силы тока с опорной силой номинального тока, определенной для электрического соединения для указанных определенных условий полета; и

- этап диагностики состояния исправности электрического соединения после шага сравнения.

Предпочтительно для множества электрических соединений одной и той же окрестности электрической ячеистой сети способ включает в себя:

- этап измерения силы тока во множестве электрических соединений окрестности ячеистой сети, в которых циркулируют номинальные токи;

- этап беспроводной передачи значений измеряемых сил токов;

- этап приема измеряемых сил токов;

- этап сравнения измеренных сил токов с опорными силами номинальных токов, определенными для указанных электрических соединений окрестности для указанных определенных условий полета; и

- этап определения неисправности определенного соединения окрестности, если его измеренная сила тока меньше, чем опорная сила номинального тока, в то время как другие соединения окрестности имеют измеренную силу тока выше, чем их опорная сила номинального тока.

Пример реализации изобретения далее будет описан со ссылкой на фиг. 4.

Для контроля состояния электрических соединений 1A, 1B, 1C, связывающих электрические ячеистые подсети S1, S2 (не показаны), оператор перемещается в летательном аппарате с портативным считывателем 4. Электрические соединения 1A, 1В, 1С принадлежат в этом примере одной и той же окрестности. Если одно из электрических соединений 1A, 1B, 1С неисправно (например, соединение 1С), тогда возврат тока выполняется с помощью других электрических соединений (в нашем примере 1A, 1B).

Электрические соединения 1A, 1B, 1С соответственно соединены с датчиками силы тока 2A, 2B, 2C, которые периодически измеряют соответственно силы тока IMES-A, IMES-B, IMES-C и записывают их в их соответствующие средства хранения. Измерения сил тока IMES-A, IMES-B, IMES-C выполняются во время полета летательного аппарата для определенных условий полета для того, чтобы убедится, что возврат тока определенного значения существует между электрическими ячеистыми подсетями S1, S2.

Когда оператор находится на расстоянии порядка одного метра от первого соединения 1А для контроля, портативный считыватель 4 требует измеренные силы тока IMES-A, которые сохранены в средствах хранения датчика 2А силы тока. Последние затем получаются портативным считывателем 4 через средство беспроводной передачи датчика 2А силы тока. Таким образом, нет необходимости демонтировать перегородки летательного аппарата или точно знать расположение электрического соединения 1А.

В этом примере вычислительное устройство 5 технического обслуживания непосредственно подключено к портативному считывателю 4 с помощью кабеля 6 связи. Вычислительное устройство 5 технического обслуживания считывает измеренные силы тока IMES-A и сравнивает на первом этапе с порогом SOFF неисправности и порогом SON исправности. В этом примере измеренные силы тока IMES-A находятся между двумя пороговыми значениями SOFF, SON, что не позволяет получить немедленную диагностику состояния исправности первого соединения 1А.

Вычислительное устройство 5 технического обслуживания сравнивает измеренные силы тока IMES-A с опорными силами тока IREF-A первого соединения 1А, полученными из обратной связи на основе опыта в аналогичных условиях полета. После сравнения оказывается, что измеренные силы тока IMES-A больше, чем эталонные силы тока IREF-A, что показывает отклонение силы тока. Повторяя процесс контроля в регулярные промежутки времени, оператор может следить за изменением отклонения силы тока IMES-A первого соединения 1А и предсказать появление возможной неисправности.

Согласно способу оператор затем выполняет контроль электрических соединений 1В, 1C той же окрестности. В этом примере после сравнения очевидно, что:

- измеренные силы тока IMES-B больше опорных сил тока IREF-B и

- измеренные силы тока IMES-C меньше опорных сил тока IREF-C.

Так как электрические соединения 1A, 1B, 1C принадлежат одной и той же окрестности ячеистой сети, вычислительное устройство 5 технического обслуживания выводит, что третье электрическое соединение 1C неисправно, что увеличивает возврат тока через первое электрическое соединение 1A и второе электрическое соединение 1B.

Способ контроля прост в реализации и повышает надежность летательного аппарата, не требуя остановки его эксплуатации в течение длительных периодов. Кроме того, преимущественно можно прогнозировать появление неисправности соединения и тем самым осуществить техническое обслуживание, прежде чем неисправность станет явной.

Преимущественно благодаря системе контроля, можно смоделировать циркуляцию возврата тока в ячеистой сети и улучшить ее структуру, чтобы уменьшить ее массу и размер.

1. Способ контроля ячеистой сети возврата тока летательного аппарата, ячеистая сеть содержит, по меньшей мере, две подсети (S1, S2), электрически соединенные с помощью множества электрических соединений (1А, 1В, 1С), причем способ содержит:

этап измерения силы тока (IMES), по меньшей мере, в одном электрическом соединении (1А, 1В, 1С), в котором циркулирует номинальный ток, для определенных условий полета летательного аппарата;

этап беспроводной передачи значения измеренной силы тока (IMES);

этап приема измеренной силы тока (IMES);

этап сравнения измеренной силы тока (IMES) с опорной силой номинального тока (IREF), определенной для указанного электрического соединения (1А, 1В, 1С), для указанных определенных условий полета; и

этап диагностики состояния исправности электрического соединения (1А, 1В, 1С) после этапа сравнения.

2. Способ контроля по п. 1, в котором опорную силу номинального тока (IREF), определенную для указанного электрического соединения (1А, 1В, 1С) для указанных определенных условий полета, получают из обратной связи на основе опыта по множеству полетов летательного аппарата.

3. Способ контроля по п. 1, включающий этап определения неисправности указанного соединения (1А, 1В, 1С), если измеренная сила тока (IMES) ниже порога (SOFF) силы тока неисправности.

4. Способ контроля по п. 1, включающий в себя этап подтверждения исправности указанного соединения (1А, 1В, 1С), если его измеренная сила тока (IMES) находится выше порога (SON) силы тока исправности.

5. Способ контроля по одному из пп. 1-4, включающий в себя:

- этап измерения силы тока (IMES) во множестве электрических соединений (1А, 1В, 1С) в окрестности ячеистой сети, в которых циркулируют номинальные токи для определенных условий полета;

- этап беспроводной передачи измеренных значений сил токов (IMES);

- этап приема измеренных сил токов (IMES);

- этап сравнения измеренных сил токов (IMES) с опорными силами номинальных токов (IREF), определенными для указанных электрических соединений (1А, 1В, 1С) окрестности для указанных определенных условий полета; и

- этап определения неисправности определенного соединения окрестности, если его измеренная сила тока (IMES) меньше, чем его опорная сила номинального тока (IREF), в то время как другие соединения (1А, 1В, 1С) окрестности имеют измеренную силу тока (IMES) выше их опорной силы номинального тока (IREF).

6. Система контроля ячеистой сети возврата тока летательного аппарата, ячеистая сеть содержит, по меньшей мере, две подсети (S1, S2), соединенные электрически с помощью множества электрических соединений (1А, 1В, 1С), при этом система содержит:

- по меньшей мере, один датчик (2) силы тока, связанный, по меньшей мере, с одним электрическим соединением (1А, 1В, 1С), приспособленным для обеспечения циркуляции номинального тока для определенных условий полета летательного аппарата, указанный датчик силы тока выполнен с возможностью измерения силы тока (IMES), указанный датчик (2) силы тока содержит средства (3) беспроводной передачи измеренного значения силы тока (IMES),

- вычислительное устройство (5) технического обслуживания, содержащее средства (4) беспроводного приема данных, вычислительное устройство (5) технического обслуживания выполнено с возможностью сравнивать измеренное значение силы тока (IMES) с опорной силой номинального тока (IREF), определенной для указанного электрического соединения (1А, 1В, 1С) для определенных условий полета летательного аппарата с тем, чтобы определить состояние исправности электрического соединения (1А, 1В, 1С).

7. Система по предшествующему пункту, в которой указанный датчик (2) силы тока является пассивным.

8. Система по п. 6, в которой указанный датчик (2) силы тока содержит средства передачи радиочастотных волн, предпочтительно, типа RFID.

9. Система по п. 6, в которой указанный датчик (2) силы тока приспособлен для выполнения измерения силы тока посредством гигантского магнитосопротивления.

10. Система по п. 6, в которой множество электрических соединений (1А, 1В, 1С) в одной и той же окрестности ячеистой сети содержит, каждое, по меньшей мере, один датчик (2) силы тока, вычислительное устройство (5) технического обслуживания выполнено с возможностью сравнения значения измеренной силы тока (IMES) для каждого электрического соединения (1А, 1В, 1С) с опорной силой номинального тока (IREF), определенной для указанного электрического соединения (1А, 1В, 1С), для определения состояния исправности электрического соединения (1А, 1В, 1С).

11. Ячеистая сеть возврата тока летательного аппарата, включающая в себя, по меньшей мере, систему по п. 6.

12. Летательный аппарат, содержащий ячеистую сеть возврата тока по п. 11.



 

Похожие патенты:

Настоящее изобретение относится к способу диагностирования по току шины короткого замыкания основного позиционного переключателя преобразователя мощности вентильного реактивного электродвигателя.

Изобретение относится к области электротехники, а именно к инверторной переносной установке для испытаний кабеля и электрооборудования напряжением постоянного тока 36 кВ, 60 кВ и 110 кВ.

В способе диагностирования неисправности в силовом преобразователе вентильно-индукторного двигателя методом интегрирования фазного тока наличие короткого замыкания или обрыва цепи главного переключателя силового преобразователя вентильно-индукторного двигателя диагностируют посредством измерения мгновенного значения фазного тока iO(t) указанного преобразователя в исправном состоянии, а также мгновенного значения текущего фазного тока i(t) указанного преобразователя для получения с помощью операции интегрирования интегрального значения SnO фазного тока в течение определенного периода в исправном состоянии и интегрального значения Sn фазного тока в течение определенного периода в текущем состоянии, отношение En которых, т.е.

Изобретение относится к методам обнаружения аварийной электрической дуги радиоэлектронной аппаратуры (РЭА), работающей в условиях вакуума и может быть использовано в бортовой аппаратуре космических аппаратов.

Группа изобретений относится к направленному обнаружению замыкания на землю, в частности, в энергосистеме со скомпенсированной нейтралью и, в конкретном случае, с изолированной нейтралью.

Изобретение относится к контролю неисправности силового преобразователя вентильно-индукторного двигателя. Сущность: способ включает нахождение мгновенного значения фазного тока силового преобразователя вентильно-индукторного двигателя для вычисления среднеквадратичного отклонения σ детализирующего коэффициента в качестве характеристического показателя неисправности и анализ кривой среднеквадратичного отклонения σ детализирующего коэффициента фазного тока силового преобразователя вентильно-индукторного двигателя во всем диапазоне скорости вращения или во всем диапазоне крутящего момента для выявления неисправности в виде короткого замыкания главного переключателя силового преобразователя вентильно-индукторного двигателя.

Настоящее изобретение относится к способу и устройству для испытания трансформатора напряжения (20). Предлагаемый способ предусматривает стадии, на которых: имитируют трансформатор напряжения (20) при помощи эквивалентной цепи (30); определяют точность трансформатора напряжения (20) относительно эквивалентной цепи (30) путем оценки ответа на испытательный сигнал, выдаваемого трансформатором (20); и автоматически преобразуют указанную точность в связанную с рабочим состоянием точность трансформатора (20).

Изобретение относится к области измерительной техники и может быть использовано для измерения токов утечки с объектов, подключенных к источникам электрического напряжения.

Техническое решение относится к области железнодорожной автоматики и телемеханики для контроля рельсовых цепей. Способ основан на создании замкнутого через потенциал «Земля» электрического контура постоянного тока, в который включены пары жил кабеля рельсовых цепей, в контуре формируют постоянный ток определенной величины и осуществляют контроль за уменьшением величины тока, протекающего через элементы, соединяющие пары жил кабеля или пару жил кабеля и потенциал «Земля» ниже допустимого значения.

Изобретение относится к области термометрии и может быть использовано для контроля технологических параметров в производственных процессах. Передатчик (12) температуры процесса выполнен по меньшей мере с одним датчиком (32) температуры, имеющим множество проводов.

Изобретение относится к электрическим испытаниям транспортных средств. В способе испытаний электрооборудования автотранспортных средств на восприимчивость к внешнему электромагнитному полю испытываемое электрооборудование устанавливают в бортовую сеть транспортного средства и подвергают воздействию внешнего излучения с заданными параметрами. На каждой частоте воздействующего излучения транспортное средство позиционируется в горизонтальной плоскости по отношению к внешнему источнику электромагнитного поля в диапазоне определенных углов. Во время испытаний угловая скорость вращения транспортного средства относительно внешнего источника излучения не должна превышать 5 град/с. При этом минимальное расстояние между внешним источником излучения и транспортным средством выбирается исходя из максимального линейного размера транспортного средства в горизонтальной плоскости и угла главного лепестка диаграммы направленности в горизонтальной плоскости внешнего источника излучения. Повышается полнота определения помехоустойчивости. 2 ил.

Изобретение относится к электроизмерительной технике. Целью изобретения является автоматическое измерение тока утечки в нагрузке однофазного мостового выпрямителя бесконтактным способом в реальном масштабе времени без выключения выпрямителя из процесса функционирования путем сравнения соответствующих напряжений, пропорциональных реальному и заданным значениям токов утечки. Поставленная цель достигается тем, что в устройстве производится анализ информационного содержания выходных сигналов двух датчиков напряженности внешнего магнитного поля, размещенных на токоподводящем и токоотводящем проводах, подключающих нагрузку к однофазному мостовому выпрямителю. В качестве информационного параметра используются амплитуды спектральных составляющих сигналов датчиков, равных 2ω (ω - частота питающего выпрямитель входного напряжения), которые после усиления выделяются с помощью узкополосных фильтров. Факт появления на выходе устройства сравнения разностного сигнала амплитуд спектральных составляющих сигналов датчиков напряженности и будет свидетельствовать о появлении тока утечки в нагрузке однофазного мостового выпрямителя. 1 ил.

Изобретение относится к области автоматики и вычислительной техники, в частности к устройствам для контроля электрического монтажа. Технический результат - упрощение устройства, обеспечение возможности проверки кабелей с большим количеством проводов и со специальным монтажом. Устройство содержит первый микропроцессор управления, первый и второй генераторы тактовых импульсов, первый и второй блоки индикаций, переключатель режима, формирователь импульса “старт”, формирователь импульса “продолжение работы”, формирователь импульса “запись”, выключатель “программа”, индикатор останова, зуммер, щуп, индикатор “программа”, первый и второй нагрузочные резисторы, второй микропроцессор анализа, третий микропроцессор коммутаций, индикатор выбора, блок выбора и канал связи. Устройство состоит из двух частей и поэтому позволяет проверить многожильный жгут, уже проложенный в закрытом канале, причем для проверки жгута с большим количеством проводов удаленные блоки наращиваются поблочно, при этом основной блок конструктивно выполняется в виде щупа. В режиме программа также можно проверить жгут со специальным монтажом. На блоках индикаций предоставляется полная картина состояния объекта контроля (замыкание, обрыв, специальные соединения). 2 з.п. ф-лы, 4 ил.

Изобретение относится к области автоматики и вычислительной техники, в частности к устройствам для контроля электрического монтажа. Технический результат - упрощение устройства, обеспечение возможности проверки кабелей с большим количеством проводов и со специальным монтажом. Устройство содержит первый микропроцессор управления, первый и второй генераторы тактовых импульсов, первый и второй блоки индикаций, переключатель режима, формирователь импульса “старт”, формирователь импульса “продолжение работы”, формирователь импульса “запись”, выключатель “программа”, индикатор останова, зуммер, щуп, индикатор “программа”, первый и второй нагрузочные резисторы, второй микропроцессор анализа, третий микропроцессор коммутаций, индикатор выбора, блок выбора и канал связи. Устройство состоит из двух частей и поэтому позволяет проверить многожильный жгут, уже проложенный в закрытом канале, причем для проверки жгута с большим количеством проводов удаленные блоки наращиваются поблочно, при этом основной блок конструктивно выполняется в виде щупа. В режиме программа также можно проверить жгут со специальным монтажом. На блоках индикаций предоставляется полная картина состояния объекта контроля (замыкание, обрыв, специальные соединения). 2 з.п. ф-лы, 4 ил.

Изобретение относится к контрольно-измерительной технике. Сущность заявленного технического решения заключается в том, что в системе содержится блок общего управления, блок сетевого информационного обмена, магистраль информационного обмена, распределенная сеть локальных контрольно-измерительных коммутаторов, причем выход - вход блока общего управления соединен с входом - выходом блока сетевого обмена, выход - вход которого соединен посредством магистрали информационного обмена с входами - выходами локальных контрольно-измерительных коммутаторов, отличающаяся тем, что в систему введены n локальных контрольно-измерительных коммутаторов, информационно и аппаратно объединенных в единую информационную сеть, каждый из которых содержит блок информационного обмена, блок управления и вычисления, блок управления коммутаторами, блок задатчика допустимых пределов параметров, блок контроля, измерения и сравнения, коммутатор режимов контроля, шину контроля и измерения, коммутатор точек входа - выхода, обеспечивающий коммутацию точек входа - выхода на шину контроля и измерения или на корпус автономного объекта, блок входных - выходных разъемов. Технический результат, достигаемый при реализации заявленного решения, заключается в расширение функциональных возможностей и реализации методики допускового контроля изменением схемы коммутации прототипа. 1 ил.

Устройство предназначено для диагностики силовых трансформаторов 6-10/0,4 кВ любой мощности на наличие межвитковых замыканий в обмотках трансформатора на ранней стадии развития на месте эксплуатации силового трансформатора. Устройство для диагностики межвитковых замыканий в обмотках силового трансформатора содержит измерительный блок, соединенный с силовым трансформатором. Устройство соединено с силовым трансформатором со стороны низшего напряжения через трехполюсный автомат и содержит заведомо неповрежденный трансформатор, последовательно соединенный через трехполюсный автомат с согласующим трансформатором, а также диоды, регулировочные реостаты и фильтры, последовательно соединенные между собой, через которые проводники силового и согласующего трансформаторов соединены с заземляющим проводником. В качестве измерительного блока используют приборы для измерения разности потенциалов между двумя точками, расположенными между регулировочными реостатами и фильтрами одноименных фаз силового и заведомо неповрежденного трансформаторов. В качестве заведомо неповрежденного трансформатора используют измерительный трансформатор напряжения, а в качестве приборов для измерения разности потенциалов между двумя точками используют гальванометры. Малая стоимость устройства позволяет использовать его в качестве штатного комплектующего устройства трансформаторной подстанции, т.е. без его демонтажа после окончания измерений, что упрощает его использование и процесс измерения. Техническим результатом, при реализации заявленного решение, выступает обеспечение возможности выявить межвитковое замыкание силового трансформатора на ранней стадии развития. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области геофизики и может быть использовано в процессе проведения сейсморазведочных работ. Предлагается устройство сбора данных, содержащее пару входных выводов, выполненных с возможностью соединения с набором, состоящим по меньшей мере из одного аналогового сейсмического датчика, формирующего полезный сейсмический сигнал, и средство обнаружения отключения для обнаружения частичного или полного отключения набора, состоящего по меньшей мере из одного аналогового сейсмического датчика. Средство обнаружения отключения содержит средство введения малого тока в набор, состоящий по меньшей мере из одного аналогового сейсмического датчика, для формирования сигнала смещения, частично зависящего от электрического сопротивления набора, состоящего по меньшей мере из одного аналогового сейсмического датчика, и добавляемого к полезному сейсмическому сигналу, причем сигнал смещения занимает только часть рабочего диапазона устройства сбора данных. Средство обнаружения отключения также содержит аналого-цифровой преобразователь и средство фильтрации для преобразования и фильтрации напряжения, измеренного на паре входных выводов, для получения измеренного значения сигнала смещения, и либо средство анализа изменения во времени измеренного значения сигнала смещения и включения сигнала тревоги при выполнении заданного условия, либо средство передачи измеренного значения сигнала смещения на удаленное устройство, выполненное с возможностью анализа изменения во времени измеренного значения сигнала смещения и включения тревоги при выполнении заданного условия. Технический результат – повышении точности получаемых данных. 2 н. и 7 з.п. ф -лы, 6 ил.

Изобретение относится к области измерительной техники и может быть использовано для измерения токов утечки в электропроводке и электрооборудовании. Техническим результатом заявляемого технического решения является упрощение процедуры преобразования сигнала вторичной обмотки дифференциального трансформатора. Технический результат достигается тем, что в устройство для измерения дифференциального тока, содержащее чувствительный элемент в виде тороидального трансформатора с двумя первичными и одной вторичной обмотками, источник переменного тока, усилитель, блок индикации и блок питания, введены преобразователь переменного напряжения в постоянное напряжение, фотодиод и источник светового потока, причем вход чувствительного элемента соединен с источником переменного тока, выход чувствительного элемента через преобразователь переменного напряжения в постоянное напряжение подключен к первому плечу фотодиода, второе плечо которого соединено с выходом источником светового потока, вход светового потока подключен к блоку питания, третье плечо фотодиода через усилитель соединено с входом блока индикации. 1 ил.

Использование: в области электротехники для защиты электрических линий и приборов. Технический результат - повышение надежности работы электрических сетей 6-35 кВ за счет реализация функции контроля напряжения. Микропроцессорное устройство релейной защиты и автоматики (МУРЗ) содержит: корпус, в котором установлены объединенные общей шиной данных: процессорный модуль, содержащий один или более процессоров, осуществляющий основную вычислительную обработку, и модуль часов реального времени; блок памяти, содержащий ПЗУ и ОЗУ; интерфейсы связи, выполненные с возможностью связи с внешними вычислительными устройствами; модули релейной защитной автоматики (РЗА), соединенные с процессорным модулем и включающие в себя измерительные модули, состоящие из модуля аналоговых входов и модуля дискретных входов, модуля реле, представлявшего собой модуль дискретных выходов, и совмещенный модуль дискретных входов/выходов; блок питания, выполненный с возможностью сохранения работоспособности устройства при потере оперативного питания; причем модуль аналоговых входов содержит АЦП, предназначенный для преобразования поступающих аналоговых сигналов, содержит гальванически развязанные входные каналы и служит для измерения токов и напряжений по трем фазам и нулевой последовательности; лицевую панель, подключаемую посредством USB интерфейса связи к процессорному модулю, причем лицевая панель содержит микроконтроллер, интерфейсы связи с внешними вычислительными устройствами, дисплей, светодиоды, клавиатуру и лицевая панель выполнена съемной с возможностью удаленного управления МУРЗ. 6 з.п. ф-лы, 1 ил.

Изобретение относится к испытаниям в электроэнергетике. Технический результат: снижение потерь электроэнергии, упрощение. Сущность: способ состоит в установке резонансной частоты питающего преобразователя частоты (ПЧ), равной частоте контура, образованного управляемым шунтирующим реактором (УШР) и конденсатором, и номинальной промышленной частоте и подборе величины напряжения, обеспечивающего требуемое значение нагрузочного тока УШР. При этом к режиму резонанса на промышленной частоте подходят поэтапно, устанавливая резонансный режим при минимальном напряжении ПЧ путем задания частоты, равной резонансу при этом напряжении и превышающей промышленную частоту. Затем увеличивают напряжение ПЧ, подстраивают частоту до следующего резонанса. И далее ступенями до достижения номинального режима. 1 ил.
Наверх