Способ термомеханической обработки листов из двухфазных титановых сплавов для получения низких значений термического коэффициента линейного расширения в плоскости листа

Изобретение относится к области металлургии, а именно термомеханической обработке листовых полуфабрикатов из двухфазного титанового сплава для получения низких значений термического коэффициента линейного расширения ТКЛР в плоскости листа, то есть для реализации двухмерного инвар-эффекта в двухфазных титановых сплавах. Способ термомеханической обработки листовых полуфабрикатов из двухфазного титанового сплава с молибденовым эквивалентом от 3,3 до 22% включает горячую прокатку листовых полуфабрикатов и холодную продольно-поперечную прокатку. Горячую прокатку осуществляют при температуре от 500°С до Тпп - 20°С с суммарным обжатием не менее 10%, далее проводят закалку с температуры в интервале от 600°С до Тпп, а последующую холодную продольно-поперечную прокатку листового полуфабриката осуществляют при температуре не выше 300°С с суммарным обжатием от 1 до 30%, где Тпп - температура полного полиморфного превращения используемой плавки сплава. Получают значение ТКЛР не более 5⋅106 К-1 в плоскости листа в интервале температур от -140 до +80°С при прочности более 900 МПа и пластичности более 5%. 3 табл., 1 пр.

 

Настоящее изобретение относится к области машиностроения, а именно описывает термомеханической обработки листовых полуфабрикатов из двухфазных титановых сплавов для получения низких значений термического коэффициента линейного расширения в плоскости листа, то есть для реализации двумерного инвар-эффекта в двухфазных титановых сплавах.

В инварном сплаве 36Н (Fe-36%Ni) [1] инвар-эффект связан с ферромагнетностью этого материала, и поэтому такой материал не требует какой-либо специальной термомеханической обработки для реализации инвар-эффекта. Недостатками данного материала является недостаточная прочность при высокой плотности, а также недостаточно низкие значения термического коэффициента линейного расширения (ТКЛР), а также ограниченная коррозионная стойкость.

Также известен неферромагнитный сплав 93ЦТ (Zr-(6-8%)Ti), характеризующийся достаточно высокой пластичностью и коррозионной стойкостью [2]. К недостаткам этого материала можно отнести также сравнительно высокие значения ТКЛР, а также ограниченный температурный интервал проявления инвар-эффекта (-100…150°С) при повышенной плотности.

Недостатком другого существующего сплава Cr-(3-7%)Fe-(0.2-1.5%)Mn-(0.001-1.0%)La является крайне узкий интервал пониженных значений ТКЛР (0…40°С) при катастрофически низкой пластичности при комнатных температурах и высокой плотности [2]. Кроме того, сплав является нетехнологичным.

Известен способ реализации инвар-эффекта в титановых сплавах, легированных 2…20% (масс.) ванадия, а также опционально ниобием и танталом [2, 3], используемый для получения состояния с низким термическим расширением в диапазоне температур от -150 до 200°С, включающий закалку сплава из однофазной β-области для получения структуры α''-мартенсита с последующей холодной прокаткой с обжатием 30…70% для получения преимущественной кристаллографической ориентировки (текстуры) мартенсита. Инвар-эффект в данном случае реализуется за счет анизотропии свойств кристаллической решетки мартенсита вдоль осей «а», «b» и «с».

Данный способ является близким к предлагаемому техническому решению. Недостатком данного подхода является необходимость использования специальных прецизионных сплавов, а также недостаточный уровень прочностных свойств в состоянии после обработки. Последнее отчасти связано с необходимостью закалки сплава из однофазной β-области, что приводит к сильному росту зерен с последующим падением прочностных и пластических свойств. Кроме того, способ требует проведения прокатки с сильными обжатиями в холодном состоянии, когда пластичность сплава является низкой.

Задача, на решение которой направлено изобретение, заключается в формировании состояния в листах из коррозионностойких неферромагнитных промышленных титановых двухфазных титановых сплавов с низким контролируемым значением ТКЛР (вплоть до отрицательного), которое характеризуется повышенной прочностью при удовлетворительной пластичности.

Техническим результатом изобретения является низкое значение ТКЛР (не более 5) в плоскости листа в интервале температур -140…+80°С при высоких значениях прочности (более 900МПа) и удовлетворительной пластичности (более 5%).

Указанный результат достигается за счет комплексной термомеханической обработки, которая включает получение листа методом прокатки при температуре в диапазоне 500°С…Тпп-20°С (Тпп - температура полного полиморфного превращения используемой плавки сплава) с суммарным обжатием не менее 10%, закалку листа с температур в интервале 600°С…Тпп с последующей продольно-поперечной прокаткой листа при температуре не выше 300°С и с суммарным обжатием от 1 до 30%.

В качестве материалов, из которых производится лист, могут выступать двухфазные титановые сплавы, условный молибденовый эквивалент которых находится в интервале от 3,3 до 22%.

Пример.

Предлагаемое техническое решение подтверждено на примере термомеханической обработки промышленных сплавов ВТ23 и ВТ16, условный молибденовый эквивалент которых равен 7,9 и 8,6 соответственно.

В процессе обработки листовые полуфабрикаты из сплава ВТ23 исходной толщиной 6 мм подвергались горячей прокатке при температуре 840°С до толщины 4 мм и закаливались в воду от температуры 800°С. Затем листы при комнатной температуре подвергались первой холодной прокатке в направлении, перпендикулярном направлению горячей прокатки, на относительное обжатие 6%. Далее полученные листы при комнатной температуре прокатывались в направлении, перпендикулярном направлению первой холодной прокатки, на 3 и 6%.

Листовые полуфабрикаты из сплава ВТ16 исходной толщиной 6 мм подвергались горячей прокатке при температуре 840°С до толщины 4 мм и закаливались в воду от температуры 760°С. Затем листы при комнатной температуре подвергались первой холодной прокатке в направлении, перпендикулярном направлению горячей прокатки, на относительное обжатие 6%. Далее полученные листы при комнатной температуре прокатывались в направлении, перпендикулярном направлению первой холодной прокатки, на 6%.

Значения ТКЛР определялись с помощью высокоточного дифференциального дилатометра Linseis L75VD1600C на образцах, вырезанных в двух взаимно перпендикулярных направлениях: направлении последней холодной прокатки (НП) и поперечном направлении (ПН).

В табл. 1, 2 представлены зафиксированные в температурном интервале -140…80°С значения ТКЛР после первой и второй холодных прокаток соответственно. В табл.3 приведены механические свойства сплавов с суммарной степенью обжатия после двух холодных прокаток 12%.

Как видно из представленных данных, в результате предложенной термомеханической обработки в обоих сплавах было достигнуто значительное снижение ТКЛР (примерно в 2…3 раза) и его низкая анизотропия в плоскости листа при сохранении высокой прочности и удовлетворительной пластичности.

Источники информации

1. Прецизионные сплавы. Справочник. М.,1984, с. 212…258.

2. Неферромагнитный инварный сплав и изделие, выполненное из него (их варианты): патент РФ 2095455, №96114190/02; заявл. 16.07.1996; опубл. 10.11.1997.

3. Хромова Л.П. Повышение качества изделий точного машиностроения на основе разработки инварного титанового сплава: автореф. дис. канд. техн. наук. - Москва, 2005. - 28 с.


Способ термомеханической обработки листовых полуфабрикатов из двухфазного титанового сплава с молибденовым эквивалентом от 3,3 до 22%, включающий горячую прокатку листовых полуфабрикатов и холодную продольно-поперечную прокатку, отличающийся тем, что горячую прокатку осуществляют при температуре от 500°С до Тпп - 20°С с суммарным обжатием не менее 10%, далее проводят закалку с температуры в интервале от 600°С до Тпп, а последующую холодную продольно-поперечную прокатку листового полуфабриката осуществляют при температуре не выше 300°С с суммарным обжатием от 1 до 30%, где Тпп - температура полного полиморфного превращения используемой плавки сплава.



 

Похожие патенты:

Изобретение относится к области металлургии, а именно к способам обработки титановых сплавов. Способ измельчения размера зерна заготовки, содержащей сплав титана, включает бета-отжиг заготовки, охлаждение до температуры ниже температуры бета-перехода сплава титана и всестороннюю ковку заготовки.

Изобретение относится к машиностроению и может быть использовано при изготовлении деталей газотурбинного двигателя. Заготовку из титанового сплава подвергают равноканальному угловому прессованию, после чего пластически деформируют экструдированием.

Изобретение относится к металлургии, а именно к термомеханической обработке изделий из сплавов с памятью формы (СПФ) и наведению в них эффекта памяти формы (ЭПФ), в частности клипирующего устройства для создания гемостаза с возможностью восстановления кровотока в трубчатых эластичных структурах организма при проведении операций.

Изобретение относится к области цветной металлургии, в частности к термомеханической обработке высоколегированных псевдо-β титановых сплавов и изделий из них, и может быть использовано в авиационной технике.

Изобретение относится к получению интерметаллидного ортосплава на основе титана. Способ включает перемешивание порошков титана и ниобия с обеспечением механического легирования порошка титана порошком ниобия в течение 8-24 ч, затем проводят механическое перемешивание легированного ниобием порошка титана с порошком алюминия.

Изобретение относится к способам термической обработки изделий или заготовок из псевдо-β титановых сплавов путем закалки и холодной пластической деформации и может быть реализовано в металлургии, а также в машиностроении в производстве для изготовления конкретных изделий из них, в частности, пружин.

Изобретение относится к области металлургии, а именно к титановому листу, который может быть использован для изготовления сепараторов топливных элементов. Титановый лист для сепаратора топливного элемента содержит основу листа из титана или титанового сплава с рекристаллизованной структурой, поверхностный слой и пассивирующий слой.

Изобретение относится к получению изделий из твердого сплава на основе карбида вольфрама. Способ включает спекание порошка в печи при температуре в диапазоне от 1360 до 1550°C с получением изделия и его охлаждение.

Изобретение относится к способу нанесения защитного покрытия из слоев TiN и (Ti+V)N на подложку из титанового сплава ВТ-6. Осуществляют одновременное напыление слоев TiN и (Ti+V)N на подложку из титанового сплава ВТ-6 с помощью двух электродуговых испарителей с чередованием времени нанесения каждого слоя и количества напыляемого материала с каждого из катодов электродуговых испарителей в атмосфере инертного газа.

Изобретение относится к области металлургии, а именно к способу получения заготовки из титанового сплава, и может быть использовано для изготовления деталей самолета.

Изобретение относится к области цветной металлургии, в частности к термомеханической обработке высоколегированных псевдо-β титановых сплавов и изделий из них, и может быть использовано в авиационной технике.

Изобретение относится к области металлургии, а именно к титановому листу, который может быть использован для изготовления сепараторов топливных элементов. Титановый лист для сепаратора топливного элемента содержит основу листа из титана или титанового сплава с рекристаллизованной структурой, поверхностный слой и пассивирующий слой.

Изобретение относится к области металлургии, а именно к способам создания текстуры в тонких листах из титанового сплава Ti-6Al-2Sn-4Zr-2Mo методом горячей прокатки. Способ получения листов из жаропрочного сплава Ti-6Al-2Sn-4Zr-2Мо включает предварительную обработку слитка ковкой или штамповкой в β-области с получением сляба, горячую продольную прокатку сляба на подкат с последующим отжигом и травлением, резку подката на листовые заготовки, их адъюстажную обработку и сборку в пакет, пакетную поперечную прокатку в листовую заготовку с последующими отжигами и адъюстажной обработкой полученных листов.

Изобретение относится к обработке металлов и сплавов давлением, а именно к способам изготовления тонколистового проката на основе алюминидов титана. Способ изготовления тонколистового проката из сплава Ti - 10,0-15,0 Al - 17,0-25,0 Nb - 2,0-4,0 V - 1,0-3,0 Mo - 0,1-1,0 Fe – 1,0-2,0 Zr – 0,3-0,6 Si включает ковку слитка в сляб, механическую обработку сляба, многоэтапную горячую продольную прокатку сляба на подкат, резку подката на листовые заготовки, их адъюстажную обработку, сборку в пакет, прокатку пакета и окончательную адъюстажную обработку листов.

Изобретение относится к способу изготовления алюминиевой фольги, а также алюминиевой фольге, снабженной интегрированными защитными элементами, и может быть использовано для упаковки медицинской продукции для защиты ее от подделки.

Изобретение относится к области металлургии, а именно к толстостенным стальным трубам, которые могут быть использованы для бурения или транспортировки нефти и природного газа.

Изобретение относится к области металлургии, а именно к обработке давлением и может быть использовано для получения из этих материалов заготовок, полуфабрикатов и изделий с регламентированной структурой, используемых в аэрокосмической и автомобильной технике.

Изобретение относится к области металлургии, а именно к термомеханической обработке титановых сплавов, и может быть использовано для получения высокопрочных наноструктурированных прутков круглого сечения из титанового сплава ВТ22.
Изобретение относится к обработке металлов давлением, в частности к производству тонких листов из труднодеформируемых алюминиевых сплавов, в том числе алюминий-литиевых сплавов, и может быть использовано при производстве обшивочных листов для аэрокосмической промышленности и судостроения.

Изобретение относится к области обработки металлов давлением, а именно к способам изготовления листов методом холодной прокатки из псевдо-альфа титановых сплавов.

Изобретение относится к области металлургии, а именно к изготовлению листов из титанового сплава ОТ4, и может быть использовано для получения изделий сложной конфигурации глубокой вытяжкой и штамповкой. Способ изготовления листов из титанового сплава ОТ4 включает деформацию слитка в сляб, механическую обработку сляба, многоэтапную прокатку сляба на подкат, резку подката на листовые заготовки, их сборку в пакет, прокатку листовых заготовок в листы в составе пакета и адъюстажные операции листов после пакетной прокатки. Слиток деформируют в сляб в два этапа, при этом на первом этапе в β-области в интервале температур выше температуры полиморфного превращения (ТПП) на 150-250°C с суммарной степенью деформации 30-80%, а на втором этапе в (α+β)-области в интервале температур ниже ТПП на 30-50°C с суммарной степенью деформации 20-50%, многоэтапную прокатку сляба на подкат осуществляют последовательно в четыре этапа, при этом на первом этапе в β-области в интервале температур выше ТПП на 90-160°C с суммарной степенью деформации 30-90%, на втором этапе в (α+β)-области в интервале температур ниже ТПП на 30-70°C с суммарной степенью деформации 15-40%, на третьем этапе в β-области в интервале температур выше ТПП на 90-160°C с суммарной степенью деформации 15-25% и на четвертом этапе в (α+β)-области в интервале температур ниже ТПП на 30-70°C с суммарной степенью деформации 40-70%, разрезают подкат на листовые заготовки, собирают их в пакет, укладывают с обеспечением перпендикулярности предыдущей прокатки листовой заготовки к направлению последующей прокатки листовой заготовки и прокатывают пакет на готовый размер в интервале температур ниже ТПП на 30-70°C с суммарной степенью деформации 40-70%. Полученные листы имеют высокие значения пластичности, низкую анизотропию механических свойств. 5 ил., 3 табл.

Изобретение относится к области металлургии, а именно термомеханической обработке листовых полуфабрикатов из двухфазного титанового сплава для получения низких значений термического коэффициента линейного расширения ТКЛР в плоскости листа, то есть для реализации двухмерного инвар-эффекта в двухфазных титановых сплавах. Способ термомеханической обработки листовых полуфабрикатов из двухфазного титанового сплава с молибденовым эквивалентом от 3,3 до 22 включает горячую прокатку листовых полуфабрикатов и холодную продольно-поперечную прокатку. Горячую прокатку осуществляют при температуре от 500°С до Тпп - 20°С с суммарным обжатием не менее 10, далее проводят закалку с температуры в интервале от 600°С до Тпп, а последующую холодную продольно-поперечную прокатку листового полуфабриката осуществляют при температуре не выше 300°С с суммарным обжатием от 1 до 30, где Тпп - температура полного полиморфного превращения используемой плавки сплава. Получают значение ТКЛР не более 5⋅106 К-1 в плоскости листа в интервале температур от -140 до +80°С при прочности более 900 МПа и пластичности более 5. 3 табл., 1 пр.

Наверх